Quantum Monte Carlo Simulations

Anouar Benali, Ph.D.
Assistant Computational Scientist

Argonne Leadership Computing Facility
Argonne National Laboratory - Argonne, IL, USA

Contact: benali@anl.gov
Outline

- (Very) brief introduction to Electronic Structure
- Monte Carlo Simulation
- Quantum Monte Carlo (QMC) Simulations
 - VARIATIONAL MONTE CARLO (VMC)
 - DIFFUSION MONT CARLO (DMC)
 - TRIAL WAVEFUNCTION
- QMCPACK: Hybrid Parallelization Computational view
- Performance targeted for specific platform
- Examples of Applications
Electronic Structure
First-Principles Computational Physics/Chemistry

Schroedinger Equation
Theory of electrons and ions

Chemistry:
- chemical reactions
- molecular properties
- bonding patterns/formation
- solvation properties
- surfaces

Exotic electronic phases:
- Superconductivity
- Magnetism
- Charge ordering

Thermodynamics:
- crystal structures
- phase transitions
- strength
- defects and dislocations

Plasmas:
- equilibrium prop.
- kinetics
- instabilities
- shocks

Optical and Transport Properties:
- spectra
- conductivity
- viscosity
- diffusion

\[i\hbar \frac{\partial}{\partial t} \Psi = \hat{H}\Psi \]
Born-Oppenheimer Approximation

\[i\hbar \partial_t \Psi(\vec{r}, t) = \hat{H}\Psi(\vec{r}, t) \]

\[\hat{H} = -\frac{\hbar^2}{2m} \sum_i \vec{\nabla}_i^2 + \sum_{i,l} \frac{e^2}{|\vec{r}_i - \vec{r}_l|} - \sum_{i,l} \frac{Z_i e^2}{|\vec{r}_i - \vec{R}_l|} - \frac{\hbar^2}{2M} \sum_l \vec{\nabla}_l^2 + \sum_{l<j} \frac{Z_l Z_j e^2}{|\vec{R}_l - \vec{R}_j|} \]

\[m_{\text{elec}} \ll m_{\text{prot}} \rightarrow \text{they move on different time scales} \]

\[\Psi(\vec{r}, \vec{R}) = \sum_k \xi_k(\vec{R}) \sum_q \psi_{k,q}(\vec{r}, \vec{R}) \]

BO leads to independent solutions for electrons and ions (different approximations) !!!

\[\left[-\frac{\hbar^2}{2m} \vec{\nabla}_i^2 + V_{e-e}(\vec{r}, \{\vec{R}\}) + V_{e-I}(\vec{r}, \{\vec{R}\}) \right] \psi_q(\vec{r}) = E_{BO}^{\psi} \psi_q(\vec{r}) \]

If finite gap between ground state and 1st excited state, assume electrons remain in the ground state! (Electrons at T=0 K !)

\[\left[-\frac{\hbar^2}{2m} \vec{\nabla}_l^2 + V_{I-I}(\vec{R}) + E_{BO}(\vec{R}) \right] \xi(\vec{R}) = E \xi(\vec{R}) \]

Solve ionic problem!
Electronic Structure Methods

- Time scale: picosecond = 10^{-12} seconds
- Length scale: 10 nm = 10^{-8} meters

Accuracy (eV):
- Exact: 0.001-0.01
- 0.05-0.1
- 0.5+

System size (atoms):
- 10
- 100
- 1,000
- 10,000

Methods:
- CI N!
- CC N^7
- QMC N^{2-3}
- DFT N^3
- TB N^3

Applications:
- Superconductivity, magnetism
- Cohesion, barriers
- Chemical bonds

Not ab initio:
- A combination of quantum chemistry and ab initio methods.

ATPESC 2014 - Anouar Benali
First-Principles Electronic Structure Theory

\[
\begin{align*}
\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{e-e}(\vec{r},\{\vec{R}\}) + V_{e-I}(\vec{r},\{\vec{R}\})\right] \psi_q(\vec{r}) = E_q^{BO} \psi_q(\vec{r})
\end{align*}
\]

Only input:
- \(N\alpha, R\alpha, Z\alpha\)

Density Functional Theory
- Mean-field cost, well developed codes, easy to learn, HPC.
- Hard to improve, accuracy is unknown, fails for correlated problems!

Quantum Chemistry Methods
- Very accurate and robust, well developed codes.
- High cost(\(>N^5\)), very hard for solids, complicated, no HPC.

Quantum Monte Carlo
- Accurate, improvable, trivially parallelizable, ok scaling (\(N^3\))
- High cost, human time intensive, small community, problems at high Z.
Monte Carlo Simulations (Brief outline)
Markov chain MC or Random Walk

- Markov chain is a random walk through phase space:
 \[s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow \ldots \]
 Here “s” is the state of the system.
- ALL QMC is some type of Markov process. VMC is the simplest.
- The transition probability is \(P(s_n \rightarrow s_{n+1}) \) a stochastic matrix
 \[
P(s \rightarrow s') \geq 0 \quad \sum_s P(s \rightarrow s') = 1
 \]
- In a Markov chain, the distribution of \(s_{n+1} \) depends only on \(s_n \) (by definition). *A drunkard has no memory!*
- Let \(f_n(s) \) be the probability after “n” steps. It evolves according to a “master equation.”
 \[
f_{n+1}(s') = \sum_s f_n(s) \cdot P(s \rightarrow s')
 \]
 \[
f_{n+1} = P \cdot f_n
 \]
- The stationary states are eigenfunctions of \(P \):
 \[
P \cdot f = \lambda f
 \]
Ergodicity

In physics and thermodynamics, the ergodic hypothesis says that, over long periods of time, the time spent by a system in some region of the phase space of microstates (s) with the same energy is proportional to the volume of this region, i.e., that all accessible microstates are equiprobable over a long period of time.

Statistically, for this random process, the time average of one sequence of events is the same as the ensemble average.

=> For a Markov Chain, as one increases the steps, there exists a positive probability measure at step n that is independent of probability distribution at initial step 0
Metropolis algorithm

Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance.
3. Achieve detailed balance by using rejections.

Detailed balance
\[\pi(s) \, P(s \to s') = \pi(s') \, P(s' \to s). \]

Rate balance from s to s'.

Put \(\pi(s) \) into the master equation. *(Or sum above Eq. on s.)*

\[\sum_s \pi(s) \, P(s \to s') = \pi(s') \sum_s P(s' \to s) = \pi(s') \]

- Hence, \(\pi(s) \) is an eigenfunction.
- If \(P(s \to s') \) is ergodic, \(\pi(s) \) is unique steady state solution.
Rejection Method

Metropolis achieves detailed balance by *rejecting* moves.

General Approach:

1. Choose distribution to sample, e.g., \(\pi(s) = \exp[-\beta H(s)]/Z \)
2. Impose detailed balance on transition: \(K(s \rightarrow s') = K(s' \rightarrow s) \)
 where \(K(s \rightarrow s') = \pi(s) P(s \rightarrow s') \)
 *(probability of being at s) * *(probability of going to s’).*
3. Break up transition probability into sampling and acceptance:
 \(P(s \rightarrow s') = T(s \rightarrow s') A(s \rightarrow s') \)
 *(probability of generating s’ from s) * *(probability of accepting move)*

The optimal acceptance probability that gives detailed balance is:

\[
A(s \rightarrow s') = \min[1, \frac{T(s' \rightarrow s) \pi(s')}{T(s \rightarrow s') \pi(s)}] = \min[1, \frac{\pi(s')}{\pi(s)}]
\]

Normalization of \(\pi(s) \) is not needed or used! If \(T \) is constant!
The “Classic” Metropolis method

*Metropolis-Rosenbluth*² - *Teller*² (1953) method is:

- Move from \(s \) to \(s' \) with probability \(T(s \rightarrow s') = \text{constant} \)
- Accept with move with probability:

\[
A(s \rightarrow s') = \min \left[1, \exp \left(\frac{- (E(s') - E(s))}{k_B T} \right) \right]
\]

- Repeat many times
- Given ergodicity, the distribution of \(s \) will be the canonical distribution:
 \[
 \pi(s) = \exp(-E(s)/k_B T)/Z
 \]
- Convergence is guaranteed but the rate is not!
How to sample

\[S_{\text{new}} = S_{\text{old}} + \Delta \cdot (\text{sprng} - 0.5) \]

Uniform distribution in a cube of side “\(\Delta \)”.

Note: It is more efficient to move one particle at a time because only the energy of that particle comes in and the acceptance ratio will be larger.

\[
A(s \to s') = \exp[-\beta(V(s') - V(s))] \\
= \exp[-\beta \sum_{j \neq i} (v(r'_i - r_j) - v(r_i - r_j))]
\]

For \(V \) with cut-off range, difference is local.
call **initstate**(s_old)
E_old = **action**(s_old)

LOOP{
 call **sample**(s_old,s_new,T_new,1)
 E_new = **action**(s_new)
 call **sample**(s_new,s_old,T_old,0)
 A=exp(-E_new+E_old) T_old/T_new
 if(A.gt.sprng()) {
 s_old=s_new
 E_old=E_new
 naccept=naccept+1
 }
 call **averages**(s_old) }

Initialize the state
Sample snew
Trial action
Find prob. of going backward
Acceptance prob.
Accept the move
Collect statistics
Estimated Errors

- In what sense do we calculate exact properties? Answer: if we average long enough the error goes to zero, the errors of the simulation are controlled.

- Next, how accurate is the estimate of the exact value?
 - Simulation results without error bars are only suggestive.
 - Without error bars one has no idea of its significance.
 - You should understand formulas and be able to make an “eye-ball” estimate.

- Error bar: the estimated error in the estimated mean.
 - Error estimates based on Gauss’ Central Limit Theorem.
 - Average of statistical processes has normal (Gaussian) distribution.
 - Error bars: square root of the variance of the distribution divided by the number of uncorrelated steps.
Quantum Monte Carlo Simulations
Quantum Monte Carlo

- We need to use simulation techniques to “solve” many-body quantum problems just as you need them classically.
- Both the wavefunction and expectation values are determined by the simulations. Correlation built in from the start.
- Based on Feynman’s imaginary time path integrals.
- QMC gives most accurate method for general quantum many-body systems.
- QMC determined electronic energy is the standard for approximate LDA calculations. (but fermion sign problem!)
- Path Integral Methods provide an exact way to include effects of ionic zero point motion (include all anharmonic effects)
- A variety of stochastic QMC methods:
 - Variational Monte Carlo VMC (T=0)
 - Projector Monte Carlo (T=0)
 - Diffusion MC (DMC)
 - Reptation MC (RQMC)
 - Path Integral Monte Carlo (PIMC) (T>0)
 - Coupled Electron-Ion Monte Carlo (CEIMC)
Quantum Monte Carlo Simulations
Variational Monte Carlo (VMC)
Variational Monte Carlo (VMC)

• Variational Principle. Given an appropriate trial function:
 – Continuous
 – Proper symmetry
 – Normalizable
 – Finite variance

• Quantum chemistry uses a product of single particle functions

• With MC we can use any “computable” function.
 – Sample \(R \) from \(|\psi|^2\) using MCMC.
 – Take average of local energy:
 – Optimize \(\psi \) to get the best upper bound
 – Error in energy is 2\(^{\text{nd}}\) order

• Better wavefunction, lower variance!
 “Zero variance” principle. (non-classical)

\[
E_V = \frac{\int dR \langle \psi | H | \psi \rangle}{\int dR \langle \psi \psi \rangle} \geq E_0
\]

\[
\sigma^2 = \frac{\int dR \langle \psi | H^2 | \psi \rangle}{\int dR \langle \psi \psi \rangle} - E_V^2
\]

\[
E_L (R) = \Re \left[\psi^{-1} (R) H \psi (R) \right]
\]

\[
E_V = \langle E_L (R) \rangle_{\psi^2} \geq E_0
\]
VARIATIONAL MONTE CARLO CODE

```
call initstate (s_old)    Initialize the state
p_old = psi2 (s_old)     Evaluate psi_trial
LOOP {
    call sample (s_old,s_new,T_new,1)     Sample new state
    p_new = psi2 (s_new)                  Evaluate psi_trial
    call sample (s_new,s_old,T_old,0)    Find transition prob.
    A = (p_new/T_new)/(p_old/T_old)      for going backward
    if(A > rand () ) {
        s_old=s_new
        p_old=p_new
        naccept = naccept +1}              Acceptance prob.
    call averages (s_old)                Accept the move
}                                             Collect statistics
```
Quantum Monte Carlo Simulations
Diffusion Monte Carlo (DMC)
Projector Monte Carlo
(variants: Green’s function MC, Diffusion MC, Reptation MC)

- Project single state using the Hamiltonian
 \[\phi(t) = e^{-(H-E_T)t} \phi(0) \]
- We show that this is a diffusion + branching operator. Maybe we can interpret as a probability. **But is this a probability?**
 - **Yes!** for bosons since ground state can be made real and non-negative.
 - **But** all excited states must have sign changes. This is the “sign problem.”
- For efficiency we do “importance sampling.”
- Avoid sign problem with the fixed-node method.
Diffusion Monte Carlo

- How do we analyze this operator?

 \[\psi(R,t) = e^{-(H-E_T)t} \psi(R,0) \]

- Expand into exact eigenstates of H.

 \[H \phi_\alpha = E_\alpha \phi_\alpha \]

 \[\psi(R,0) = \sum_\alpha \phi_\alpha(R) \langle \phi_\alpha | \psi(0) \rangle \]

- Then the evolution is simple in this basis.

 \[\psi(R,t) = \sum_\alpha \phi_\alpha(R) e^{-t(E_\alpha-E_T)} \langle \phi_\alpha | \psi(0) \rangle \]

- Long time limit is lowest energy state that overlaps with the initial state, usually the ground state.

 \[\lim_{t \to \infty} \psi(R,t) = \phi_0(R) e^{-t(E_0-E_T)} \langle \phi_0 | \psi(0) \rangle \]

 \[E_0 \approx E_T \Rightarrow \text{normalization fixed} \]
Importance Sampling
Kalos 1970, Ceperley 1979

- Why should we sample the wavefunction? The physically correct pdf is $|\Phi|^2$.
- Importance sample (multiply) by trial wave function.

\[
f(R,t) \equiv \psi_T(R)\phi(R,t) \quad \lim_{t \to \infty} f(R,t) \equiv \psi_T(R)\phi_0(R)
\]

\[-\frac{\partial f(R,t)}{\partial t} = \psi_T(R)H\left[\frac{f(R,t)}{\psi_T(R)}\right] \text{ Commute } \Psi \text{ through } H
\]

\[-\frac{\partial f(R,t)}{\partial t} = -\frac{1}{2} \nabla^2 f - \nabla \left(f \nabla \ln \psi_T(R)\right) + \left(\psi_T^{-1} H \psi_T\right)f(R,t)
\]

Evolution = diffusion + drift + branching
- Use accept/reject step for more accurate evolution. make acceptance ratio > 99%. Determines time step.
Schematic of DMC

Ensemble evolves according to

- Diffusion
- Drift
- Branching

ensemble
DIFFUSION MONTE CARLO CODE

```plaintext
call initstate(s_old)
psi_old = psi(s_old)
d_old = drift(s_old)
LOOP {
  LOOP {
    call sample(s_old,s_new,T_new,d_old,1)
    psi_new = psi(s_new)
    if (psi_new * psi_old < 0) {
      weight = 0
    } else {
      d_old = drift(s_old)
      call sample(s_new,s_old,T_old,d_new,0)
      A = (p_new/T_new)/(p_old/T_old)
      if (A > rand()) {
        s_old = s_new
        p_old = p_new
        naccept = naccept + 1
      }
    }
    weight *= exp(- tau * local_energy(s_old))
  }
  call reweight(s_old)
call averages(s_old)
}
```

- Initialize the ensemble of states
- Evaluate psi_trial
- Evaluate grad psi_trial
- Loop over steps
- Loop over walkers
- Sample new state from drifted Gaussian
- Evaluate psi_trial
- Check node crossing
- Kill walker if it crosses a node of psi_trial
- Evaluate grad psi_trial
- Find transition prob. for going backward
- Acceptance prob.
- Accept the move
- Update weight
- Reweight ensemble
- Collect statistics
Quantum Monte Carlo Simulations
Trial Wavefunction
What do we use for the trial function?

- **Formal requirements** antisymmetry, continuity, finite variance.
- **Mean field approaches** Slater determinant,
- **Expand in basis sets** e.g. multideterminants, CI.
- **Local energy argument**
 - Control singularity at small r, or r_{12}. Leads to cusp condition.
 - Behavior at large r, plasmons, van der Waals (dispersion) interaction
- **Feynman-Kacs formula** gives connection to local energy
 - Jastrow, Backflow, three-body interactions
The many-body trial wavefunction

\[\Psi_T(R) = J(R) \Psi_{AS}(R) = e^{J_1 + J_2 + \ldots} \sum_k C_k D_k^\uparrow(\phi) D_k^\downarrow(\phi) \]

Correlation (Jastrow)

\[J_1 = \sum_i^{N_{ions}} \sum_j u_1(|r_i - r_j|) \]

\[J_2 = \sum_{i \neq j}^N u_2(|r_i - r_j|) \]

Anti-symmetric function (Pauli principle)

\[D_k^\sigma = \begin{pmatrix}
\phi_1(r_1) & \cdots & \phi_1(r_{N_1}) \\
\vdots & \ddots & \vdots \\
\phi_{N_1}(r_1) & \cdots & \phi_{N_1}(r_{N_1})
\end{pmatrix} \]

Single-particle orbitals

\[\phi_i = \sum_l C_l^i \Phi_l \]

Basis sets: molecular orbitals, plane-wave, grid-based orbitals...
Single particle orbitals

- The most common source for single particle orbitals for solid state calculations is from a DFT code.
- These wavefunctions are typically represented in a plane wave basis:
 \[\phi_i(\vec{r}) = \sum_j c_{ij} e^{i\vec{k}_j \cdot \vec{r}} \]
- Each single particle move requires evaluating every orbital at a new position.
 - In a plane wave basis set, this means all N plane waves must be evaluated for every orbital!
Single particle orbitals

- Plane wave representations are inefficient
- A real space basis is much more efficient
 - Extensive testing shows that 3D b-splines are a good choice for efficiency
 - Only 64 basis elements are nonzero at each point (versus thousands or more for plane waves)

\[B_{ijk}(x,y,z) = a_i(x)b_j(y)c_k(z) \]

- Efficient routines exist to convert from a plane wave basis to b-splines with an arbitrary real space spacing using the FFT

1D

2D
QMCPACK
Quantum Monte Carlo Simulation Package

David Ceperley
Norman Tubman
Raymond Clay

Paul Kent
Jaron Krogel

Anouar Benali

Luke Shulenburger
Miguel Morales

Jeongnim Kim (Intel)
Ken Esler (StoneRidge)
Jeremy McMinis (Private)
QMCPACK

Today, developed by a large number of developers, interested parties

Builds in ~all common computing environments (HPC, clusters, workstations)

C++, Object oriented, extensible, very efficient

MPI Parallelized

Fully OpenMP threaded (important for e.g. large solids by reducing memory usage + increasing efficiency)

GPU CUDA version (currently single determinant, splined wavefunctions)

Standardized XML inputs & HDF5 input/output for large data
B-splines and Memory

- QMCPACK uses a regularly spaced grid of points to calculate the 3d b-splines
 - Extremely efficient lookup in memory and streaming of many wavefunctions to CPU
 - Inefficient in terms of total memory used
 - All wavefunctions may be small in a region of space (for instance if vacuum is included in the calculation)
 - Wavefunctions typically vary most rapidly near nuclei
 - Some single-particle wavefunctions may be small in some regions but large in others
QMCPACK Hybrid Parallelism and memory

- Moves for a given walker are evaluated by a single processing unit (CPU core)
 - So every core has to be able to quickly evaluate all single particle wavefunctions at all points in space
 - Modern supercomputers typically have 10s of cores per node
 - The single particle wavefunctions are never changed during the calculations
 - Share them between all of the cores on a node

- QMCPACK uses a combination of MPI and OpenMP for parallelization
 - OpenMP on a node makes sharing large static data for the wavefunction easy
 - Reduces required memory by nearly a factor of the number of cores per node
QMCPACK on Clusters of SMP

MPI+X Model for QMC, X=(OpenMP, CUDA, threads, ?)

For performance: make the most of shared memory domain and SIMD
QMCPACK: computational view

- **Computationally Intensive**: Quantum Force, Ratio, Local Energy (Opportunity to be “thread nested”)
- Communication light
- Ample parallel opportunities: configurations, k-point, walkers

Population (walkers)

- Generation
- Drift/Diffusion
- Make a move
 \[R' = R + \tau \nabla \ln \Psi_T(R) + \chi \]
 (“Quantum Force”)
- Accept/reject a move
 \[\frac{|\Psi_T(R')|^2}{|\Psi_T(R)|^2} \cdot \frac{G_d(R \rightarrow R'; \tau)}{G_d(R' \rightarrow R; \tau)} \]
- Random
- Branch with the weight
 \[\exp^{-\tau \left(\frac{E_L(R) + E_L(R')}{2} - \tilde{E}_T \right)} \]

Branch

- Collect & load balance
(MPI+X)/C++ has worked (so far)

- Simple but effective for QMC
- Productive solution for developers (physicists)
 - Abstraction for physics concepts, methods and algorithms
 - Extensible and efficient
- Object-oriented and generic programming
 - Allow separation of science from coding
 - Lazy implementations and optimizations
- Efficient memory and thread management
 - Oversubscription on Intel & IBM BGQ increases performance
- Portable and scalable from a laptop to HPC
- Optimal use of current multi/many-core SMP architectures
- Exploit steady improvement of HPC ecosystem
 - Compilers, open standards, systems, numerical libraries, I/O
Performance on BGQ
Mira: next-generation supercomputer

48 racks
1,024 nodes per rack
16 cores per node
64 threads per node
16GB memory/node
1.6GHz 16-way core processor
240 GB/s, 35 PB storage

786k cores
8.15 PF/s
BGQ - High Performance features

Quad FPU (QPU)
DMA unit
List-based prefetcher
TM (Transactional Memory)
SE (Speculative Execution)
Wakeup-Unit
Scalable Atomic Operations

Instruction Extensions (QPX) to PowerISA
4-wide double precision FPU SIMD (BG/L,P are 2-wide) usable as:
 scalar FPU
 4-wide FPU SIMD
 2-wide complex arithmetic SIMD
Attached to AXU port of A2 core – A2 issues one instruction/cycle to AXU
8 concurrent floating point operations (FMA) + load + store
 ▪ 6 stage pipeline
Permute instructions to reorganize vector data
 supports a multitude of data alignments
4R/2W register file
 32x32 bytes per thread
32B (256 bits) data path to/from L1 cache

Intrinsic:

TYPE: vector4double A;
Loads and stores
Unary operations
Binary operations
Multiply-add operations
Special functions
Profiling

HPM Profile with original version of QMCPACK

System:
- Ar Solid – 32 atoms – 256 electrons – B-splines representation of WF (1.9Gb):
- 256 nodes – 32 threads – 2 Walkers per thread
- Total run time: 53min40

Percentage of peak= 6.55%

27.644.290.379.027 All XU Instruction
22.786.190.220.714 All AXU Instruction
43.043.218.198.088 FP Operations Group 1

Derived metrics for code block "mpiAll" averaged over process(es) on node <0,0,0,0,0>:

Instruction mix:
- FPU = 45.18 %,
- FXU = 54.82 %

Instructions per cycle completed per core = 0.6138
Per cent of max issue rate per core = 33.65 %
Total weighted GFlops for this node = 13.412
Loads that hit in L1 d-cache = 94.03 %
- L1P buffer = 5.36 %
- L2 cache = 0.35 %
- DDR = 0.26 %

DDR traffic for the node: ld = 1.508, st = 0.540, total = 2.049 (Bytes/cycle)
Profiling

System:
- Ar Solid – 32 atoms – 256 electrons – B-splines representation of WF (1.9Gb):
- 256 nodes – 32 threads – 2 Walkers per thread

Profile with original version of QMCPACK

Flat profile:

Total run time: 53min40

Each sample counts as 0.01 seconds.

<table>
<thead>
<tr>
<th>% cumulative self</th>
<th>self</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>cumulative</td>
<td>time</td>
<td>seconds</td>
</tr>
<tr>
<td>56.95</td>
<td>58369.57</td>
<td>58369.57</td>
</tr>
<tr>
<td>14.02</td>
<td>72738.82</td>
<td>14369.25</td>
</tr>
<tr>
<td>2.11</td>
<td>77918.51</td>
<td>2161.01</td>
</tr>
<tr>
<td>1.70</td>
<td>79663.07</td>
<td>1744.56</td>
</tr>
</tbody>
</table>

71% of the application time spent in the Spline evaluation of the Wave Function
Einspline

Eval_z_vgh:
Evaluation of spline coefficients, gradient and hessian (complex)

for (int i=0; i<4; i++)
 for (int j=0; j<4; j++)
 for (int k=0; k<4; k++) {
 //missing code (definition of abc and loading arithmetic pointer coefs)
 for (int n=0; num_splines; n++) {
 vals[n] += abc * coefs[n];
 grads[3*n+0] += dabc[0]*coefs[n];
 grads[3*n+1] += dabc[1]*coefs[n];
 grads[3*n+2] += dabc[2]*coefs[n];
 hess [9*n+0] += d2abc[0]*coefs[n];
 hess [9*n+1] += d2abc[1]*coefs[n];
 hess [9*n+2] += d2abc[2]*coefs[n];
 hess [9*n+4] += d2abc[3]*coefs[n];
 hess [9*n+5] += d2abc[4]*coefs[n];
 hess [9*n+8] += d2abc[5]*coefs[n];
 }
 }
 }

Alternative

- Inner loop to Outer loop
- Unroll (j) and (k) loops
- Reformulate the arithmetic problem
- Load data from non contiguous
complex_double* restrict coefs = spline->coefs + ix*xs + iy*ys + iz*zs;
 for (int n=0; n<num_splines; n++, coefs++) {
 for (int i=0; i<4; i++) {

complex_double coef00 = coefs[i*xs];
complex_double coef11 = coefs[i*xs + zs];
complex_double coef22 = coefs[i*xs + 2*zs];
complex_double coef33 = coefs[i*xs + 3*zs];

val = a[i]{(coef00*c[0]+coef01*c[1]+coef02*c[2]+coef03*c[3]) * b[0]

Reminder:
 vector4double : {doubles,double,double,double}
 Complex_double : {double,double}
Einspline

```c
complex_double* restrict coefs = spline->coefs + ix*xs + iy*ys + iz*zs;
    for (int n=0; n<num_splines; n++, coefs++) {
        for (int i=0; i<4; i++) {

            val = a[i]{{(coef00*c[0]+coef01*c[1]+coef02*c[2]+coef03*c[3])*b[0]}

            val = a[i]{{(real(coef00)*c[0]+real(coef01)*c[1]+real(coef02)*c[2]+real(coef03)*c[3]
            imag(coef00)*c[0]+imag(coef01)*c[1]+imag(coef02)*c[2]+imag(coef03)*c[3])*b[0]}
            //code omitted
        }

        val = a[i]{{(real(coef00)*c[0] + real(coef02)*c[2]
            imag(coef00)*c[0] + imag(coef02)*c[2]
            real(coef01)*c[1] + real(coef03)*c[3]
            imag(coef01)*c[1] + imag(coef03)*c[3]) *b[0]}
```
Einspline

```c
complex_double* restrict coefs = spline->coefs + ix*xs + iy*ys + iz*zs;
    for (int n=0; n<num_splines; n++, coefs++) {
        for (int i=0; i<4; i++) {
            val = a[i]{
                real(coef00) * c[0] + real(coef01) * c[1] + real(coef02) * c[2] + real(coef03) * c[3] * b[0]
            val = a[i]{
            //code omitted
        }
    }

    vector4double b_0=vec_splat(b,0);
```
complex_double* restrict coefs = spline->coefs + ix*xs + iy*ys + iz*zs;
for (int n=0; n<num_splines; n++, coefs++) {
 for (int i=0; i<4; i++) {
 val = a[i]{
 real(coef00) * c[0],
 imag(coef00) * c[0],
 real(coef01) * c[1],
 imag(coef01) * c[1]
 } +
 real(coef02) * c[2],
 imag(coef02) * c[2],
 real(coef03) * c[3],
 imag(coef03) * c[3]
 }
}

vector4double Coef0_0_0 = vec_ld2(0, (double*) (coefs + (i*xs)));
vector4double Coef0_0_1 = vec_ld2(0, (double*) (coefs + (i*xs+zs)));

vector4double Coef0_1_0 = vec_ld2(0, (double*) (coefs + (i*xs+zs)));
vector4double Coef0_1_0 = vec_sldw(Coef0_0_0, Coef0_0_1, 2);
complex_double* restrict coefs = spline->coefs + ix*xs + iy*ys + iz*zs;
for (int n=0; n<num_splines; n++, coefs++) {
 for (int i=0; i<4; i++) {
 val = a[i]{
 real(coef00) * c[0] + real(coef02) * c[2] * b[0] + real(coef01) * c[1] + real(coef03) * c[3] * b[0] +
 imag(coef00) * c[0] + imag(coef02) * c[2] * b[0] + imag(coef01) * c[1] + imag(coef03) * c[3] * b[0];
 }
 }
}

vector4double mantissa_1 = vec_gpci(0011);
vector4double mantissa_2 = vec_gpci(02233);

vector4double splatc_0_1 = vec_perm(c, c, mantissa_1);
vector4double splatc_0_2 = vec_perm(c, c, mantissa_2);

vector4double Coef01 = vec_add(vec_mul(Coef0_1_0, splatc_0_1), vec_mul(Coef0_2_0, splatc_0_2));
Einspline

Eval_z_vgh:

Evaluation of spline coefficients, Gradient and Hessian (complex)

<table>
<thead>
<tr>
<th>Number of Cycles = 1879207</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.975</td>
</tr>
<tr>
<td>619.513</td>
</tr>
<tr>
<td>1.141.770</td>
</tr>
</tbody>
</table>

Derived metrics for code block

"Original" averaged over process(es) on node <0,0,0,0,0>:

- Instruction mix: FPU = 55.14 %, FXU = 44.86 %
- Instructions per cycle completed per core = 0.5940
- Per cent of max issue rate per core = 59.40 %
- Total weighted GFlops for this node = 0.966
- Loads that hit in L1 d-cache = 93.44 %
- L1P buffer = 5.52 %
- L2 cache = 0.83 %
- DDR = 0.21 %

DDR traffic for the node: ld = 0.009, st = 0.016, total = 0.025 (Bytes/cycle)

<table>
<thead>
<tr>
<th>Number Of Cycles = 246752</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.395</td>
</tr>
<tr>
<td>32.802</td>
</tr>
<tr>
<td>160.874</td>
</tr>
</tbody>
</table>

Derived metrics for code block

"Benali QPX" averaged over process(es) on node <0,0,0,0,0>:

- Instruction mix: FPU = 38.50 %, FXU = 61.50 %
- Instructions per cycle completed per core = 0.3115
- Per cent of max issue rate per core = 31.15 %
- Total weighted GFlops for this node = 0.941
- Loads that hit in L1 d-cache = 93.44 %
- L1P buffer = 5.52 %
- L2 cache = 0.83 %
- DDR = 0.21 %

DDR traffic for the node: ld = 0.009, st = 0.016, total = 0.025 (Bytes/cycle)

Speedup compared to original: 7.62
Profiling

System:
- Ar Solid – 32 atoms – 256 electrons – Bsplines WF (1.9Gb):
- 256 nodes – 32 threads – 2 Walkers per thread

Profile with QPX and Prefetch

<table>
<thead>
<tr>
<th>Flat profile:</th>
<th>Profile with Original Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total run time: 20min03</td>
<td>Total run time: 53min40</td>
</tr>
<tr>
<td>Each sample counts as 0.01 seconds.</td>
<td>Each sample counts as 0.01 seconds.</td>
</tr>
<tr>
<td>% cumulative self time</td>
<td>% cumulative self time</td>
</tr>
<tr>
<td>seconds</td>
<td>seconds</td>
</tr>
<tr>
<td>14.08</td>
<td>56.95</td>
</tr>
<tr>
<td>8.25</td>
<td>14.02</td>
</tr>
<tr>
<td>5.68</td>
<td>2.11</td>
</tr>
<tr>
<td>4.85</td>
<td>1.70</td>
</tr>
<tr>
<td>5380.43</td>
<td>58369.57</td>
</tr>
<tr>
<td>12270.83</td>
<td>72738.82</td>
</tr>
<tr>
<td>14441.45</td>
<td>77918.51</td>
</tr>
<tr>
<td>16292.97</td>
<td>79663.07</td>
</tr>
<tr>
<td>5380.43</td>
<td>58369.57</td>
</tr>
<tr>
<td>3152.52</td>
<td>14369.25</td>
</tr>
<tr>
<td>2170.62</td>
<td>2161.01</td>
</tr>
<tr>
<td>1851.52</td>
<td>1744.5</td>
</tr>
<tr>
<td>.eval_multi_UBspline_3d_z_vgh</td>
<td>.eval_multi_UBspline_3d_z</td>
</tr>
<tr>
<td>.SymmetricDTD</td>
<td>EinsplineSetExtended::evaluate</td>
</tr>
</tbody>
</table>

Total run time Speedup of 2.68 times
Parallel Performance

- DMC “weak” scaling is almost perfect, > 90% efficiency
- Limited by collectives for $E_T, N_p^w - <N^w>$
- 1 MPI to 1 NUMA or accelerator mapping: Gain in Collectives; easy to balance walkers per node

(a) Fixed walker per node

(b) Fixed total walker

- (Nodes) for the reference Compute Unit
 - Mira: 16-core Blue Gene/Q
 - Titan: 16-core (CPU) and 1 GPU XK7

Optimize productivity
Applications
Benchmarking the accuracy of QMC for molecules

High accuracy achievable for atoms:
Benchmarking the accuracy of QMC for molecules

Testing accuracy for G1 test set (C_2H_2, CN, H$_2$O, NaCl, SiH$_4$, SiO...), going beyond single determinant “standard recipe”. MAE of 0.8kcal/mol achieved for atomization energies, i.e. Chemical accuracy.

See also Nemec et al. JCP 132 034111(2010) http://dx.doi.org/10.1021/ct3003404 all electron single determinant tests for same test set (CASINO code).
Benchmarking the accuracy of QMC for solids

Analysis of structural properties (V, B₀) of ionic, metallic, covalent and van der Waals solids using “standard recipe” single determinant Slater-Jastrow pseudopotentials. Careful convergence of calculations. Finds high accuracy over whole set of solids.

van der Waals interactions

Extensive DMC calculations for noble gas solids, clusters and DNA+intercalating drug molecule. Drug molecule requires 3 body corrections in vdw DFT to ~match DMC results, while some other correction schemes overbind. (PBE DFT does not bind)

A. Benali, L. Shulenberger, N. A. Romero, J. Kim, O. Anatole von Lilienfeld JCTC (June 2014), http://dx.doi.org/10.1021/ct5003225
Benchmarking density functionals for bulk water

M. A. Morales, J. R. Gergely, J. McMinis, J. M. McMahon, J. Kim, and D. M. Ceperley

JCTC 10 2355 (2014) http://dx.doi.org/10.1021/ct500129p

Analysis of energies of water configurations taken from TIP5P and PIMD (path integral) simulations computed using various DFT functionals vs DMC. Identifies a possible route to optimizing functionals for specific applied problems.

“We found that, while optB88 seems to provide the best description of dispersion in the liquid, the vdW-DF and vdW-DF2 functionals offer the best agreement of all nonhybrid functionals when fully flexible, realistic water configurations are considered.”
Binding and diffusion of lithium in graphite

DMC calculations accurately predict the lattice constant and binding energy of A-A graphite relative to A-B graphite. When dilute Li is added, self-consistent van der Waals DFTs outperform empirical schemes due to the importance of charge transfer.

Computing the exchange constant in cuprates

Within a variational scheme (a non-empirical scheme), DMC predicts exchange constants in good agreement with experiment for Ca$_2$CuO$_3$. Indicates promise for describing ground state properties of strongly correlated materials.

Also see QMC results for La$_2$CuO$_4$, with more properties considered including phonons, L. Wagner & P. Abbamonte http://arxiv.org/abs/1402.4680
The vacancy in ZnO

DMC calculations rule out the oxygen vacancy as the source of persistent n-type conductivity in ZnO. Confirms previous DFT predictions but finds (i) much higher oxygen vacancy formation energy that HSE or other DFT approximations, (ii) finds a positive U behavior in contrast to the DFT.

Challenges

- Balance computational efficiency vs complexity for target accuracy
- Balance memory use vs computational intensity
- Optimize memory access
- Optimize computational kernels and data structures: problem and hardware dependent
- Expose parallelisms: tasks, SIMD
- Optimize communications on nodes and between them
- Handle faults
- Automate all of these and more
- Design adaptive software

Need adaptive solutions for increasingly complex, hierarchical & heterogeneous architectures
Acknowledgment

- Jeongnim Kim. Intel (Formerly ORNL)
- David Ceperley UIUC
- Paul Kent ORNL
- Luke Shulenburger SNL
- Miguel Morales LLNL
- Jaron Krogel ORNL
- Nichols Romero ANL

This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. This research was also partly funded by the Early Science Program at Argonne Leadership Computing Facility.

Supported through Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Science (BES), Department of Energy (DOE)."
Questions