
OpenMP for Intranode Programming

Barbara Chapman, University of Houston

Deepak Eachempati, University of Houston

Kelvin Li, IBM

http://www.cs.uh.edu/~hpctools

ATPESC, 08/06/2014

Agenda

 Morning: An Introduction to OpenMP 3.1

 Afternoon: Hybrid Programming with MPI

and OpenMP; Using OpenMP; OpenMP 4.0

 Evening: Practical Programming

2

Agenda

 Hybrid Programming with MPI and OpenMP

 Using OpenMP
 Common programming errors

 Performance Topics

3

Programming Options for “Hybrid”

Architectures
 Pure MPI – each core runs an MPI process

 new MPI-3 support for shared memory makes

MPI+MPI “hybrid” programming a viable option*

 Pure OpenMP

 single process, fully multi-threaded

 virtual distributed shared address space

 MPI and OpenMP

 non-overlapped (“Masteronly”) – only a master thread

makes MPI calls, while no other threads are active

 overlapped - many interesting approaches here

* T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R.

Thakur: MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared

memory. Computing, 95(12):1121– 1136, December 2013.
4

Reasons to Add OpenMP
 OpenMP can be a more efficient solution for intra-node

parallelism
 uses less memory than MPI

 more efficient for fine-grained parallelism

 may require use within NUMA nodes

 Constraint on total number of MPI processes that can be used for
application
 per-node memory limits

 system limits on number of processes that can be spawned

 application doesn’t scale past a certain number of MPI processes

 Application exhibits hierarchical parallelization pattern
 natural to use MPI for top-level, and OpenMP for second level

 Unbalanced MPI workloads – can assign more threads to
heavily-loaded MPI processes

5

Reasons to be Cautious
 Interoperability issues between MPI and

OpenMP implementations
 is MPI library thread-safe?

 how might presence of additional threads impact
MPI’s performance?

 Added complexity in program - beware of shared
memory programming pitfalls such as data races
or false sharing

 If limiting communication to a single thread, are
we still able to saturate the network?

6

NUMA considerations

 NUMA, Non-Uniform Memory Access
 this is a common case for your compute nodes

 Nodes -> (NUMA nodes) Sockets -> Cores -> H/W
Threads

 consideration of process/thread assignment to
cores is critical for performance

0 0 2

1 3

MPI process/master thread

NUMA node 0 NUMA node 1 NUMA node 0 NUMA node 1

NUMA node 2 NUMA node 3 NUMA node 2 NUMA node 3

OpenMP worker threads

7

Resource Utilization Considerations
 Network Utilization

 if only one MPI process per node, can we still

saturate the network port?

 usually yes, but maybe not if multiple network ports

become commonplace in the near future

 Core Utilization

 Threads can help overlap computation with

communication

 Can also help balance workloads through

worksharing constructs

 However: sleeping threads (“Masteronly” mode) will

limit core utilization

8

Hybrid Programming in Practice

 Typically start with an MPI program, and you use
OpenMP to parallelize it
 loop parallelism

 task parallelism

 SIMD and Accelerators (next talk: OpenMP 4.0)

 Strategies
 vary number of threads based on workload in each process

 find best mapping of threads to cores

 use threads to overlap computation with MPI calls for more
asynchronous progress

 generally requires experimentation to find best combination
(e.g. # processes, # threads/process, thread affinity)

9

MPI Thread Support Modes (Recap)

 Request/get thread support mode using call to MPI_Init_thread instead
of MPI_Init

 MPI_THREAD_SINGLE (default with MPI_Init)
 assume MPI process is not multi-threaded

 MPI_THREAD_FUNNELED
 multi-threaded processes allowed

 only one designated thread is making MPI calls

 MPI_THREAD_SERIALIZED
 multi-threaded, and multiple threads may make MPI calls

 calls must be serialized

 MPI_THREAD_MULTIPLE
 multi-threaded, no restrictions

 requires fully thread-safe MPI implementation

10

Example: MPI_THREAD_FUNNELED

#include <mpi.h>

int main(int argc, char **argv)

{

 int rank, size, ierr, i, provided;

 MPI_Init_thread(&argc,&argv,

 MPI_THREAD_FUNNELED,

 &provided);

 ...

 #pragma omp parallel

{

 #pragma omp master

 { ... MPI calls ... }

 #pragma barrier

 #pragma omp for

 for (i = 0; i < N; i++) {

 do_something(i);

 }

 ...

call MPI_Init_thread to request

MPI_THREAD_FUNNELED

now we can do MPI in parallel

region

(NOTE: master construct ensures its

the same thread which does it)

REMEMBER: if using master, we

may also need a barrier

11

Example: MPI_THREAD_SERIALIZED

...

 MPI_Init_thread(&argc,&argv,

 MPI_THREAD_SERIALIZED,

 &provided);

 ...

 #pragma omp parallel

{

 ...

 #pragma omp single

 { ... MPI calls ... }

 #pragma omp for

 for (i = 0; i < N; i++) {

 do_something(i);

 }

 ...

With SERIALIZED, we can now use

a SINGLE construct for more

flexibility.

NOTE: Use nowait clause if you

wish to avoid implicit barrier at the

end and obtain overlap

12

Example: MPI_THREAD_MULTIPLE

...

 MPI_Init_thread(&argc,&argv,

 MPI_THREAD_MULTIPLE,

 &provided);

 ...

 #pragma omp parallel

{

 tid = omp_get_thread_num();

 ...

 if (mpi_rank % 2) {

 MPI_Send(data, N, MPI_INT, mpi_rank-1, tid, ...);

 } else {

 MPI_Recv(data, N, MPI_INT, mpi_rank+1, tid, ...);

 }

 ...

}

With MULTIPLE, no restrictions on

using MPI calls in a parallel region.

13

Hiding Communication Latency using OpenMP

 MPI communication is often blocking

 even non-blocking calls may require MPI calls to

achieve progress

 hardware support and/or helper threads might

help, but often not available

 Strategies using OpenMP

 use an “explicit” SPMD approach

 use nested parallel region

 use tasks

14

Achieving Overlap using a SPMD approach

15

...

 MPI_Init_thread(...);

 ...

 #pragma omp parallel

{

 tid = omp_get_thread_num();

 ...

 if (tid == 0) {

 /* first thread does MPI stuff */

 } else {

 /* remaining threads carry on with independent

 computation */

 }

 #pragma omp barrier

}

Here we divide thread team into two

“subteams” using thread ID.

Main Issue:

- work-sharing constructs in “else”

block are unavailable to us

- requires explicit coding of work-

sharing, cumbersome and

inflexible

Achieving Overlap using Nested Parallelism

16

...

 omp_set_nested(true);

 ...

 #pragma omp parallel num_threads(2)

{

 tid = omp_get_thread_num();

 ...

 if (tid == 0) {

 /* do MPI stuff */

 } else {

 /* thread 1 spawns a new parallel region to do work */

 #pragma omp parallel

 { ... }

 }

 ...

}

nested parallel region here can

perform all work-sharing constructs

independent of the MPI

communication by thread 0

Achieving Overlap using nowait clause

17

...

 MPI_Init_thread(...);

 ...

 #pragma omp parallel

{

 #pragma omp master

 { /* first thread does MPI stuff */ }

 /* remaining threads continue with other work */

 #pragma omp for schedule (...) nowait

 for(...) { ... }

 #pragma omp for schedule(...) nowait

 for(...) { ... }

 ...

}

This approach allows us to utilize all

threads (including, eventually, the

MPI-designated thread(s)) for doing

computation

Achieving Overlap using explicit tasks

18

...

 MPI_Init_thread(...);

 ...

 #pragma omp parallel

{

 ...

 #pragma omp master

 {

 for (...) {

 #pragma omp task

 { /* create tasks for other threads to work on */ }

 }

 /* after task creation, master does MPI stuff*/

 }

 #pragma omp barrier

 ...

}

Here, the master creates tasks

which may be picked up by the

other threads.

Recall: barriers are task scheduling

points.

NPB Multi-Zone Parallel Benchmarks

 Compute discrete solutions of unsteady, compressible Navier-Stoke equations
in 3D

 For each problem, a logically rectangular discretization mesh is divided into a
2D horizontal tiling of 3D zones

 Consists three algorithm benchmarks: LU, SP and BT
 LU (Lower-Upper symmetric Gauss-Seidel)

 SP (Scalar Penta-diagonal)
 BT (Block Tri-diagonal)

19

Assign more

threads to larger

size zones, static

load balancing

BT-MZ and SP-MZ Results

 Class E
 4096 zones (max.

number of MPI processes)
 Platform:

 “Ranger” at TACC, Austin
 3936 blades, each with 4

AMD Opteron “Barcelona”
quad-core chips

 MPI: mvapich
 numactl used for

thread/core affinity

BT-MZ performance with

unbalanced workload

greatly improved

by adding OpenMP

Rolf Rabenseifner, Georg Hager, and Gabriele Jost: Hybrid MPI/OpenMP

Parallel Programming on Clusters of Multi-Core SMP Nodes.

In Didier El Baz et al. (Eds.), (PDP 2009), in Weimar, Germany, Feb. 16-18, 2009,

Computer Society Press, pp. 427-236.
20

http://www.pdp2009.org/

Summary

 Technological trends makes hybrid programming all the more

important

 “fatter” nodes with cc-NUMA characteristics

 reduced memory available per core

 extreme-scale computing will require dynamic, load balancing

strategies

 With OpenMP, you can

 develop more memory-efficient algorithms for within the node

 “workshare” among threads using various scheduling policies, to

curtail load imbalance

 hide communication latency using a variety of strategies

 As always, choose the best programming system for

your problem.

21

Agenda

 Hybrid Programming with MPI and OpenMP

 Using OpenMP
 Common programming errors

 Performance Topics

22

Common Sources of Errors

 Wrong “spelling” of sentinel

 Wrongly declared data attributes (shared vs. private,
firstprivate, etc.)

 Incorrect use of synchronization constructs

 Less likely if user sticks to directives

 Erroneous use of locks can lead to deadlock

 Erroneous use of NOWAIT can lead to race conditions.

 Race conditions (true sharing)

 Can be very hard to find

23

It can be very hard to track race conditions. Tools may help check for these, but

they may fail if your OpenMP code does not rely on directives to distribute work.

Moreover, they can be quite slow.

Care with Synchronization

 Recall that a thread’s temporary view of memory may vary
from shared memory

 Value of shared objects updated at synchronization points

 User must be aware of the point at which modified values are
(guaranteed to be) accessible

 Compilers routinely reorder instructions that implement a
program

 Helps exploit the functional units, keep machine busy

 Compiler cannot move instructions past a barrier

 Also not past a flush on all variables

 But it can move them past a flush on a set of variables so long as
those variables are not accessed

24

Race Condition

 Several threads access and update shared data
concurrently

 One thread writes and one or more threads read or write
same memory location at about the same time

 Outcome depends on relative ordering of operations and
may differ between runs

 User is expected to avoid race conditions

 insert synchronization constructs as appropraite, or

 privatize data

 Some tools exist to detect data races at runtime

 e.g. Intel Thread Checker, Oracle Solaris Studio Thread
Analyzer

25

Global Data – An Example/1

 program global_data

 use mod_global_data

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

module mod_global_data

 implicit none

 integer, parameter:: m= .., n= ..
 integer :: a(m,n), b(m)

end module mod_global_data

Arrays “a”

and “b” are

shared

26

Global Data – An Example/2

subroutine suba(j)

use mod_global_data

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

Data Race !

27

Global Data - A Data Race!

call suba(1)

Thread 1

call suba(2)

Thread 2

S
h

a
re

d

subroutine suba(j=1)

do i = 1, m
 a(i,1)=func_call(b(i))
end do

do i = 1, m
 b(i) = 1
end do

subroutine suba(j=2)

do i = 1, m
 a(i,2)=func_call(b(i))
end do

do i = 1, m
 b(i) = 2
end do

28

Global Data – A Solution/1

 program global_data

 use mod_global_data

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

module mod_global_data

 implicit none

 integer, parameter:: m= .., n= ..
 integer, parameter:: nthreads = ...
 integer :: a(m,n), b(m,nthreads)

end module mod_global_data

Make array “b”

2-dimensional

29

Global Data – A Solution/2

subroutine suba(j)

use omp_lib
use mod_global_data

TID = omp_get_thread_num()+1
do i = 1, m
 b(i,TID) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i),TID)
end do

return
end

A lot of work and

not very portable

30

Global Data – The Preferred Solution

 program global_data

 use mod_global_data

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

Only add the

“threadprivate” directive to

the module file; no other

changes needed !

module mod_global_data

 implicit none

 integer, parameter:: m= .., n= ..
 integer :: a(m,n), b(m)

 !$omp threadprivate(b)

end module mod_global_data

This solution

also

automatically

adapts to the

number of

threads used

31

Recap: About Global Data

 Global data is shared: take care when using it

 Potential problems if multiple threads access the
same memory simultaneously:
 Read-only data is no problem

 Updates have to be checked for race conditions

 It is your responsibility to deal with this situation

 In general one can do the following:
 Split the global data into a part that is accessed in serial

code only and a part that is accessed in parallel

 Manually create copies of the latter

 Use the thread ID to access these copies

 Alternative: Use OpenMP's threadprivate directive !

32

Agenda

 Hybrid Programming with MPI and OpenMP

 Using OpenMP
 Common programming errors

 Performance Topics

33

General Comments on Performance

 Be aware of overheads of OpenMP constructs,

thread management

 Microbenchmarks help here*

 Don’t create too many parallel regions

 Dynamic loop schedules have much higher overheads
than static schedules

 Synchronization is expensive, so minimize

 use nowait where possible

 privatize data

 minimize code in critical region

 Choose default behavior carefully

 Use appropriate schedules

 Wait policy (OMP_WAIT_POLICY=passive|active)

34

* J. M. Bull and D. O’Neill, A microbenchmark suite for OpenMP 2.0,

SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.

General Comments on Performance

 Thread / Data Affinity

 Check on your implementation’s documentation to control for this
 e.g. KMP_AFFINITY for Intel, GOMP_CPU_AFFINITY for GNU

 Other tools (e.g. taskset, numactl, likwid) can help with this

 OpenMP 4.0 includes features to control for this

 Structure and characteristics of program
 Minimize sequential part of program

 Be aware of and address load balance

 Address cache utilization and false sharing (it can kill any
speedup if not addressed)

 Large parallel regions help reduce overheads, enable better
cache usage and standard optimizations

 Quality of compiler is also a factor on achievable
performance

35

Briefly, on OpenMP Implementations
 Directives implemented via

code modification and
insertion of runtime library
calls
 Typical approach is outlining of

code in parallel region

 Or generation of micro tasks

 Runtime library responsible
for managing threads
 Scheduling loops

 Scheduling tasks

 Implementing synchronization

 Collector API provides interface
to give external tools state
information

 Implementation effort is
reasonable

OpenMP Code Translation

int main(void)

{

int a,b,c;

#pragma omp parallel \

private(c)

do_sth(a,b,c);

return 0;

}

_INT32 main()

{

int a,b,c;

/* microtask */

void __ompregion_main1()

{

_INT32 __mplocal_c;

/*shared variables are kept intact,

substitute accesses to private

variable*/

do_sth(a, b, __mplocal_c);

}

…

/*OpenMP runtime calls */

__ompc_fork(&__ompregion_main1

);

…

}

Each compiler has custom run-time support. Quality of the

runtime system has major impact on performance.

36

OpenMP and Data Locality

 Implicit Data Locality

 Thread fetches data it needs into local cache

 Emphasis on privatizing data where possible, and optimizing

code for cache

 Implicit means of data layout on NUMA systems

 “First touch” as introduced by SGI for Origin

 Emphasis on privatizing data where

possible, and optimizing code for cache

 This can work pretty well

 But small mistakes may be costly

37

Tuning: Critical Regions

 It often helps to chop up large critical sections into
finer, named ones

 Original Code
 #pragma omp critical (foo)

 {

 update(a);

 update(b);

 }

 Transformed Code
 #pragma omp critical (foo_a)

 update(a);

 #pragma omp critical (foo_b)

 update(b);

38

Tuning: Locks Instead of Critical

 Original Code

 #pragma omp critical

 for(i=0; i<n; i++) {

 a[i] = …

 b[i] = …

 c[i] = …

 }

 Idea: cycle through

different parts of the array

using locks!

 Transformed Code

 jstart = omp_get_thread_num();

 for(k = 0; k < nlocks; k++) {

 j = (jstart + k) % nlocks;

 omp_set_lock(lck[j]);

 for(i=lb[j]; i<ub[j]; i++) {

 a[i] = …

 b[i] = …

 c[i] = …

 }

 omp_unset_lock(lck[j]);

 }

 Adapt to your situation

39

Tuning: Eliminate Implicit Barriers

 Worksharing constructs have implicit barrier at end

 If consecutive work-sharing constructs modify (& use) different

objects, the barrier in the middle can be eliminated

 If same object modified (or used), barrier can be safely removed if

iteration spaces guaranteed to align

40

#pragma omp for nowait

for (i = 0; i < N; i++) {

 d[i] = a[i] + b[i]*c[i];

}

#pragma omp for schedule(runtime)

for (i = 0; i < N; i++) {

 e[i] = c[i] + b[i]*a[i];

}

#pragma omp for nowait

for (i = 0; i < N; i++) {

 d[i] = a[i] + b[i]*c[i];

}

#pragma omp for

for (i = 0; i < N; i++) {

 e[i] = d[i] + b[i]*c[i];

}

no barriers needed here

spec guarantees same

iteration-to-thread

mapping

no dependences

between these loops

Cache Coherence and False Sharing

 Blocks of data are fetched into cache lines

 What happens if multiple threads access different data,

but on same cache line, at same time?

41

core1 core2 core3 coreN

Shared memory

cache1 cache2 cache3 cacheN

...

Updates to Shared Data

 Blocks of data are transferred to cache lines

 When an element of cache line is updated, the entire line is

invalidated: local copies are reloaded from main memory

42

core1 core2 core3 coreN

Shared memory

cache1 cache2 cache3 cacheN

a

a[2]

a

a[1], but also a[0]

and a[2]

a[0], but

also a[1]

and a[2]

...

Small “Mistakes”, Big Consequences

 GenIDLEST

 Scientific simulation code

 Solves incompressible Navier
Stokes and energy equations

 MPI and OpenMP versions

 Platform

 SGI Altix 3700 (NUMA)

 512 Itanium 2 Processors

 OpenMP code slower than MPI

OpenMP version

MPI version

In the OpenMP version, a single procedure is responsible for 20% of

the total time and is 9 times slower than the MPI version . Its loops are up
to 27 times slower in OpenMP than MPI.

43

A Solution: Privatization
• Lower and upper bounds of arrays used

privately by threads are shared, stored in

same memory page and cache line

•Here, they have been privatized to eliminate

false sharing issue

•The privatization improved the performance of

the whole program by 30% and led to a 10x

speedup for the procedure.

OpenMP Optimized Version

44

False Sharing: Monitoring Results

 Phoenix codes ported from Pthreads to OpenMP

 5 out of 8 apps show symptoms of false sharing

Program name 1-thread 2-threads 4-threads 8-threads

histogram 13 7,820,000 16,532,800 5,959,190

kmeans 383 28,590 47,541 54,345

linear_regression 9 417,225,000 254,442,000 154,970,000

matrix_multiply 31,139 31,152 84,227 101,094

pca 44,517 46,757 80,373 122,288

reverse_index 4,284 89,466 217,884 590,013

string_match 82 82,503,000 73,178,800 221,882,000

word_count 4,877 6,531,793 18,071,086 68,801,742

Cache Invalidation Count

45

False Sharing: Data Analysis Results

 Determining the variables that cause misses

Program

Name

Global/static data Dynamic data

histogram - main_221

linear_regression - main_155

reverse_index use_len main_519

string_match key2_final string_match_map_266

word_count length, use_len,

words

-

46

Runtime False Sharing Detection

0

2

4

6

8

S
p

e
e
d

u
p

1-thread 2-threads

4-threads 8-threads

0

2

4

6

8

S
p

e
e
d

u
p

1-thread 2-threads

4-threads 8-threads

Original Version Optimized Version

B. Wicaksono, M. Tolubaeva and B. Chapman. “Detecting false sharing in OpenMP
applications using the DARWIN framework”, LCPC 2011 47

Summary

 OpenMP is designed to be easy to use, but

there are several pitfalls to avoid

 Data races are a common programming error in

shared memory programming which can be hard to

spot – know when to privatize your data!

 Beware of subtle synchronization error

 unless you’re very careful, stick to OpenMP directives

 Know the overheards associated with the

constructs you’re using

 Know how to control thread and data placement

 False sharing can also kill performance

48

