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Agenda 

 

 Morning: An Introduction to OpenMP 3.1 

 

 Afternoon: Hybrid Programming with MPI 

and OpenMP; Using OpenMP; OpenMP 4.0 

 

 Evening: Practical Programming 
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Agenda 

 Hybrid Programming with MPI and OpenMP 

 

 Using OpenMP 
 Common programming errors 

 Performance Topics 
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Programming Options for “Hybrid” 

Architectures 
 Pure MPI – each core runs an MPI process 

 new MPI-3 support for shared memory makes 

MPI+MPI “hybrid” programming a viable option* 

 Pure OpenMP 

 single process, fully multi-threaded 

 virtual distributed shared address space 

 MPI and OpenMP 

 non-overlapped (“Masteronly”) – only a master thread 

makes MPI calls, while no other threads are active 

 overlapped - many interesting approaches here  

 
* T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. 

Thakur:  MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared 

memory. Computing, 95(12):1121– 1136, December 2013. 
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Reasons to Add OpenMP 
 OpenMP can be a more efficient solution for intra-node 

parallelism 
 uses less memory than MPI 

 more efficient for fine-grained parallelism 

 may require use within NUMA nodes 

 

 Constraint on total number of MPI processes that can be used for 
application 
 per-node memory limits 

 system limits on number of processes that can be spawned 

 application doesn’t scale past a certain number of MPI processes 

 

 Application exhibits hierarchical parallelization pattern 
 natural to use MPI for top-level, and OpenMP for second level 

 

 Unbalanced MPI workloads – can assign more threads to 
heavily-loaded MPI processes 
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Reasons to be Cautious 
 Interoperability issues between MPI and 

OpenMP implementations 
 is MPI library thread-safe? 

 how might presence of additional threads impact 
MPI’s performance? 

 

 Added complexity in program - beware of shared 
memory programming pitfalls such as data races 
or false sharing 

 

 If limiting communication to a single thread, are 
we still able to saturate the network? 
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NUMA considerations 

 NUMA, Non-Uniform Memory Access 
 this is a common case for your compute nodes 

 Nodes -> (NUMA nodes) Sockets -> Cores -> H/W 
Threads 

 consideration of process/thread assignment to 
cores is critical for performance 

0 0 2 

1 3 

MPI process/master thread 

NUMA node 0 NUMA node 1 NUMA node 0 NUMA node 1 

NUMA node 2 NUMA node 3 NUMA node 2 NUMA node 3 

OpenMP worker threads 
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Resource Utilization Considerations 
 Network Utilization 

 if only one MPI process per node, can we still 

saturate the network port? 

 usually yes, but maybe not if multiple network ports 

become commonplace in the near future 

 Core Utilization 

 Threads can help overlap computation with 

communication 

 Can also help balance workloads through 

worksharing constructs 

 However: sleeping threads (“Masteronly” mode) will 

limit core utilization 
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Hybrid Programming in Practice 

 Typically start with an MPI program, and you use 
OpenMP to parallelize it 
 loop parallelism 

 task parallelism 

 SIMD and Accelerators (next talk: OpenMP 4.0) 

 Strategies 
 vary number of threads based on workload in each process 

 find best mapping of threads to cores  

 use threads to overlap computation with MPI calls for more 
asynchronous progress 

 generally requires experimentation to find best combination 
(e.g. # processes, # threads/process, thread affinity) 
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MPI Thread Support Modes (Recap) 

 Request/get thread support mode using call to MPI_Init_thread instead 
of MPI_Init 

 

 MPI_THREAD_SINGLE (default with MPI_Init) 
 assume MPI process is not multi-threaded 

 

 MPI_THREAD_FUNNELED 
 multi-threaded processes allowed 

 only one designated thread is making MPI calls 

 

 MPI_THREAD_SERIALIZED 
 multi-threaded, and multiple threads may make MPI calls 

 calls must be serialized 

 

 MPI_THREAD_MULTIPLE 
 multi-threaded, no restrictions 

 requires fully thread-safe MPI implementation 
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Example: MPI_THREAD_FUNNELED  

#include <mpi.h> 

 

int main(int argc, char **argv) 

{ 

    int rank, size, ierr, i, provided;  

    MPI_Init_thread(&argc,&argv,  

                                  MPI_THREAD_FUNNELED,  

                                  &provided); 

  ... 

   #pragma omp parallel 

{ 

   #pragma omp master 

     { ... MPI calls ... } 

   #pragma barrier 

   #pragma omp for 

    for (i = 0; i < N; i++) { 

           do_something( i );          

    } 

    ... 

call MPI_Init_thread to request 

MPI_THREAD_FUNNELED 

now we can do MPI in parallel 

region 

(NOTE: master construct ensures its 

the same thread which does it) 

REMEMBER: if using master, we 

may also need a barrier 
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Example: MPI_THREAD_SERIALIZED  

... 

 

   MPI_Init_thread(&argc,&argv,  

                                  MPI_THREAD_SERIALIZED,  

                                  &provided); 

  ... 

   #pragma omp parallel 

{ 

   ... 

   #pragma omp single 

     { ... MPI calls ... } 

   

   #pragma omp for 

    for (i = 0; i < N; i++) { 

           do_something( i );          

    } 

    ... 

With SERIALIZED, we can now use 

a SINGLE construct for more 

flexibility. 

 

NOTE: Use nowait clause if you 

wish to avoid implicit barrier at the 

end and obtain overlap 
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Example: MPI_THREAD_MULTIPLE  

... 

 

   MPI_Init_thread(&argc,&argv,  

                                  MPI_THREAD_MULTIPLE,  

                                  &provided); 

  ... 

   #pragma omp parallel 

{ 

     tid = omp_get_thread_num(); 

     ... 

     if (mpi_rank % 2) { 

          MPI_Send(data, N, MPI_INT, mpi_rank-1, tid, ... ); 

     } else { 

          MPI_Recv(data, N, MPI_INT, mpi_rank+1, tid, ... ); 

     } 

      ... 

} 

With MULTIPLE, no restrictions on 

using MPI calls in a parallel region. 
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Hiding Communication Latency using OpenMP 

 MPI communication is often blocking 

 even non-blocking calls may require MPI calls to 

achieve progress 

 hardware support and/or helper threads might 

help, but often not available 

 Strategies using OpenMP 

 use an “explicit” SPMD approach 

 use nested parallel region  

 use tasks 
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Achieving Overlap using a SPMD approach 
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... 

   MPI_Init_thread(...); 

  ... 

 #pragma omp parallel 

{ 

     tid = omp_get_thread_num(); 

     ... 

     if (tid == 0) { 

         /* first thread does MPI stuff */ 

     } else { 

         /* remaining threads carry on with independent 

            computation */ 

     } 

     #pragma omp barrier 

} 

Here we divide thread team into two 

“subteams” using thread ID.  

 

Main Issue: 

- work-sharing constructs in “else” 

block are unavailable to us 

- requires explicit coding of work-

sharing, cumbersome and 

inflexible 

 



Achieving Overlap using Nested Parallelism 
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... 

  omp_set_nested(true); 

  ... 

 #pragma omp parallel num_threads(2) 

{ 

     tid = omp_get_thread_num(); 

     ... 

     if (tid == 0) { 

        /* do MPI stuff */ 

     } else { 

        /* thread 1 spawns a new parallel region to do work */  

        #pragma omp parallel  

        { ... }      

     } 

     ... 

} 

nested parallel region here can 

perform all work-sharing constructs 

independent of the MPI 

communication by thread 0 



Achieving Overlap using nowait clause 

17 

... 

   MPI_Init_thread(...); 

  ... 

 #pragma omp parallel 

{ 

   #pragma omp master 

   { /* first thread does MPI stuff */ } 

 

    /* remaining threads continue with other work */ 

   #pragma omp for schedule (...) nowait 

    for(...) { ... } 

   #pragma omp for schedule(...) nowait 

    for(...) { ... } 

    ... 

} 

This approach allows us to utilize all 

threads (including, eventually, the 

MPI-designated thread(s)) for doing 

computation 



Achieving Overlap using explicit tasks 
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... 

   MPI_Init_thread(...); 

  ... 

 #pragma omp parallel 

{ 

     ... 

    #pragma omp master 

     {  

        for (...) { 

        #pragma omp task 

            { /* create tasks for other threads to work on */ } 

        } 

        /* after task creation, master does MPI stuff*/  

     } 

 

    #pragma omp barrier 

    ... 

} 

Here, the master creates tasks 

which may be picked up by the 

other threads. 

 

Recall: barriers are task scheduling 

points. 



NPB Multi-Zone Parallel Benchmarks  

 Compute discrete solutions of unsteady, compressible Navier-Stoke equations 
in 3D 
 

 For each problem, a logically rectangular discretization mesh is divided into a 
2D horizontal tiling of 3D zones 
 

 Consists three algorithm benchmarks: LU, SP and BT 
 LU (Lower-Upper symmetric Gauss-Seidel)  

 SP (Scalar Penta-diagonal) 
 BT (Block Tri-diagonal)  
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Assign more 

threads to larger 

size zones, static 

load balancing 



BT-MZ and SP-MZ Results 

 Class E 
 4096 zones (max. 

number of MPI processes) 
 Platform: 

 “Ranger” at TACC, Austin 
 3936 blades, each with 4 

AMD Opteron “Barcelona” 
quad-core chips 

 MPI: mvapich 
 numactl used for 

thread/core affinity 

 
BT-MZ performance with 

unbalanced workload 

greatly improved 

by adding OpenMP 

Rolf Rabenseifner, Georg Hager, and Gabriele Jost: Hybrid MPI/OpenMP 

Parallel Programming on Clusters of Multi-Core SMP Nodes.  

In Didier El Baz et al. (Eds.), (PDP 2009), in Weimar, Germany, Feb. 16-18, 2009, 

Computer Society Press, pp. 427-236. 
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http://www.pdp2009.org/


Summary 

 Technological trends makes hybrid programming all the more 

important 

 “fatter” nodes with cc-NUMA characteristics 

 reduced memory available per core 

 extreme-scale computing will require dynamic, load balancing 

strategies 

 With OpenMP, you can 

 develop more memory-efficient algorithms for within the node 

 “workshare” among threads using various scheduling policies, to 

curtail load imbalance 

 hide communication latency using a variety of strategies 

 As always, choose the best programming system for 

your problem.  
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Agenda 

 Hybrid Programming with MPI and OpenMP 

 

 Using OpenMP 
 Common programming errors 

 Performance Topics 
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Common Sources of Errors  
 
 Wrong “spelling” of sentinel 

 Wrongly declared data attributes (shared vs. private, 
firstprivate, etc.) 

 Incorrect use of synchronization constructs 

 Less likely if user sticks to directives 

 Erroneous use of locks can lead to deadlock 

 Erroneous use of NOWAIT can lead to race conditions. 

 Race conditions (true sharing) 

 Can be very hard to find 

23 

It can be very hard to track race conditions. Tools may help check for these, but 

they may fail if your OpenMP code does not rely on directives to distribute work. 

Moreover, they can be quite slow.  



Care with Synchronization 

 Recall that a thread’s temporary view of memory may vary 
from shared memory 

 Value of shared objects updated at synchronization points 

 User must be aware of the point at which modified values are 
(guaranteed to be) accessible 

 Compilers routinely reorder instructions that implement a 
program 

 Helps exploit the functional units, keep machine busy 

 Compiler cannot move instructions past a barrier 

 Also not past a flush on all variables 

 But it can move them past a flush on a set of variables so long as 
those variables are not accessed 
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Race Condition 

 Several threads access and update shared data 
concurrently 

 One thread writes and one or more threads read or write 
same memory location at about the same  time 

 Outcome depends on relative ordering of operations and 
may differ between runs 

 User is expected to avoid race conditions 

 insert synchronization constructs as appropraite, or 

 privatize data 

 Some tools exist to detect data races at runtime 

 e.g. Intel Thread Checker, Oracle Solaris Studio Thread 
Analyzer 
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Global Data – An Example/1 

      program global_data 
             .... 
      use mod_global_data 
          .... 
!$omp parallel do private(j) 
      do j = 1, n 
         call suba(j) 
      end do 
!$omp end parallel do 
        ...... 

module mod_global_data 
 
   implicit none 
 
   integer, parameter:: m= .., n= .. 
   integer           :: a(m,n), b(m) 
 
end module mod_global_data 

Arrays “a” 

and “b” are 

shared 
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Global Data – An Example/2 

subroutine suba(j) 
  ..... 
 
use mod_global_data 
   
  ..... 
 
 
do i = 1, m 
   b(i) = j 
end do 
 
do i = 1, m 
   a(i,j) = func_call(b(i)) 
end do 
 
return 
end 

Data Race ! 
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Global Data - A Data Race! 

call suba(1) 

Thread 1 

call suba(2) 

Thread 2 

S
h

a
re

d
  

subroutine suba(j=1) 
     
 
 
     
        .... 
do i = 1, m 
  a(i,1)=func_call(b(i)) 
end do 

do i = 1, m 
   b(i) = 1 
end do 

subroutine suba(j=2) 
     
 
 
     
        .... 
do i = 1, m 
  a(i,2)=func_call(b(i)) 
end do 

do i = 1, m 
   b(i) = 2 
end do 
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Global Data – A Solution/1 

      program global_data 
             .... 
      use mod_global_data 
          .... 
!$omp parallel do private(j) 
      do j = 1, n 
         call suba(j) 
      end do 
!$omp end parallel do 
        ...... 

module mod_global_data 
 
   implicit none 
 
   integer, parameter:: m= .., n= .. 
   integer, parameter:: nthreads = ... 
   integer           :: a(m,n), b(m,nthreads) 
 
end module mod_global_data 

Make array “b” 

2-dimensional 
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Global Data – A Solution/2 

subroutine suba(j) 
  ..... 
 
use omp_lib 
use mod_global_data 
   
  ..... 
 
TID = omp_get_thread_num()+1 
do i = 1, m 
   b(i,TID) = j 
end do 
 
do i = 1, m 
   a(i,j) = func_call(b(i),TID) 
end do 
 
return 
end 

A lot of work and 

not very portable 
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Global Data – The Preferred Solution 

      program global_data 
             .... 
      use mod_global_data 
          .... 
!$omp parallel do private(j) 
      do j = 1, n 
         call suba(j) 
      end do 
!$omp end parallel do 
        ...... 

Only add the 

“threadprivate” directive to 

the module file; no other 

changes needed ! 

module mod_global_data 
 
   implicit none 
 
   integer, parameter:: m= .., n= .. 
   integer           :: a(m,n), b(m) 
 
   !$omp threadprivate(b) 
 
end module mod_global_data 

This solution 

also 

automatically 

adapts to the 

number of 

threads used 
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Recap: About Global Data 

 Global data is shared: take care when using it 

 Potential problems if multiple threads access the 
same memory simultaneously: 
 Read-only data is no problem 

 Updates have to be checked for race conditions 

 It is your responsibility to deal with this situation 

 In general one can do the following: 
 Split the global data into a part that is accessed in serial 

code only and a part that is accessed in parallel 

 Manually create copies of the latter 

 Use the thread ID to access these copies 

 Alternative: Use OpenMP's threadprivate directive ! 
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Agenda 

 Hybrid Programming with MPI and OpenMP 

 

 Using OpenMP 
 Common programming errors 

 Performance Topics 

33 



General Comments on Performance 
 
 Be aware of overheads of OpenMP constructs, 

thread management 

 Microbenchmarks help here* 

 Don’t create too many parallel regions 

 Dynamic loop schedules have much higher overheads 
than static schedules 

 Synchronization is expensive, so minimize 

 use nowait where possible  

 privatize data 

 minimize code in critical region 

 Choose default behavior carefully 

 Use appropriate schedules 

 Wait policy (OMP_WAIT_POLICY=passive|active)  
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* J. M. Bull and D. O’Neill, A microbenchmark suite for OpenMP 2.0,   

SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.   



General Comments on Performance 
 
 Thread / Data Affinity 

 Check on your implementation’s documentation to control for this 
 e.g. KMP_AFFINITY for Intel, GOMP_CPU_AFFINITY for GNU 

 Other tools (e.g. taskset, numactl, likwid) can help with this 

 OpenMP 4.0 includes features to control for this 

 Structure and characteristics of program 
 Minimize sequential part of program 

 Be aware of and address load balance 

 Address cache utilization and false sharing (it can kill any 
speedup if not addressed) 

 Large parallel regions help reduce overheads, enable better 
cache usage and standard optimizations 

 Quality of compiler is also a factor on achievable 
performance 
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Briefly, on OpenMP Implementations 
 Directives implemented via 

code modification and 
insertion of runtime library 
calls 
 Typical approach is outlining of 

code in parallel region 

 Or generation of micro tasks 

 Runtime library responsible 
for managing threads 
 Scheduling loops 

 Scheduling tasks 

 Implementing synchronization 

 Collector API provides interface 
to give external tools state 
information 

 Implementation effort is 
reasonable 

OpenMP Code Translation 

int main(void) 

{ 

int a,b,c; 

#pragma omp parallel \ 

private(c) 

do_sth(a,b,c); 

return 0; 

} 

_INT32 main() 

{ 

int a,b,c; 

/* microtask */ 

void __ompregion_main1() 

{ 

_INT32 __mplocal_c; 

/*shared variables are kept intact,  

substitute accesses to private 

variable*/ 

do_sth(a, b, __mplocal_c); 

} 

… 

/*OpenMP runtime calls */ 

__ompc_fork(&__ompregion_main1

); 

… 

} 

Each compiler has custom run-time support. Quality of the 

runtime system has major impact on performance. 
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OpenMP and Data Locality 

 Implicit Data Locality 

 Thread fetches data it needs into local cache 

 Emphasis on privatizing data where possible, and optimizing 

code for cache 

 Implicit means of data layout on NUMA systems 

 “First touch” as introduced by SGI for Origin 

 Emphasis on privatizing data where 

possible, and optimizing code for cache 

 This can work pretty well 

 But small mistakes may be costly 
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Tuning: Critical Regions 

 It often helps to chop up large critical sections into 
finer, named ones 

 Original Code 
 #pragma omp critical (foo) 

 { 

  update( a ); 

  update( b ); 

 } 

 Transformed Code 
 #pragma omp critical (foo_a) 

  update( a ); 

 #pragma omp critical (foo_b) 

  update( b ); 
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Tuning: Locks Instead of Critical 

 Original Code 
  

 #pragma omp critical 

   for( i=0; i<n; i++ ) { 

  a[i] = … 

  b[i] = … 

  c[i] = … 

   }   

 

 Idea: cycle through 

different parts of the array 

using locks! 
 

 Transformed Code 
  

 jstart = omp_get_thread_num(); 

 for( k = 0; k < nlocks; k++ ) { 

   j = ( jstart + k ) % nlocks; 

   omp_set_lock( lck[j] ); 

   for( i=lb[j]; i<ub[j]; i++ ) { 

    a[i] = … 

    b[i] = … 

    c[i] = … 

     }   

   omp_unset_lock( lck[j] ); 

 } 

 

 Adapt to your situation 
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Tuning: Eliminate Implicit Barriers 

 Worksharing constructs have implicit barrier at end 

 If consecutive work-sharing constructs modify (& use) different 

objects, the barrier in the middle can be eliminated 

 If same object modified (or used), barrier can be safely removed if 

iteration spaces guaranteed to align 
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#pragma omp for nowait 

for (i = 0; i < N; i++) { 

    d[i] = a[i] + b[i]*c[i]; 

} 

 

#pragma omp for schedule(runtime) 

for (i = 0; i < N; i++) { 

    e[i] = c[i] + b[i]*a[i]; 

} 

 

#pragma omp for nowait 

for (i = 0; i < N; i++) { 

    d[i] = a[i] + b[i]*c[i]; 

} 

 

#pragma omp for 

for (i = 0; i < N; i++) { 

    e[i] = d[i] + b[i]*c[i]; 

} 

 

no barriers needed here 

spec guarantees same 

iteration-to-thread 

mapping 

no dependences 

between these loops 



Cache Coherence and False Sharing 

 Blocks of data are fetched into cache lines 

 What happens if multiple threads access different data, 

but on same cache line, at same time?  
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core1 core2 core3 coreN 

Shared memory 

cache1 cache2   cache3 cacheN 

... 



Updates to Shared Data  

 Blocks of data are transferred to cache lines 

 When an element of cache line is updated, the entire line is 

invalidated: local copies are reloaded from main memory 
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core1 core2 core3 coreN 

Shared memory 

cache1 cache2   cache3 cacheN 

a 

a[2] 

a 

a[1], but also a[0] 

and a[2] 

a[0], but 

also a[1] 

and a[2] 

... 



Small “Mistakes”, Big Consequences 

 GenIDLEST 

 Scientific simulation code 

 Solves incompressible Navier 
Stokes and energy equations 

 MPI and OpenMP versions 

 Platform 

 SGI Altix 3700 (NUMA) 

 512 Itanium 2 Processors 

 OpenMP code slower than MPI 

OpenMP version 

MPI version 

In the OpenMP version, a single procedure is responsible for 20% of  

the total time and is 9 times slower than the MPI version . Its loops are up 
to 27 times slower in OpenMP than MPI.     
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A Solution: Privatization 
• Lower and upper bounds of arrays used 

privately by threads are shared, stored in 

same memory page and cache line 
 

•Here, they have been privatized to eliminate 

false sharing issue 

 

•The privatization improved the performance of 

the whole program by 30% and led to a 10x 

speedup for the procedure. 

 

 

OpenMP Optimized Version 
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False Sharing: Monitoring Results 

 Phoenix codes ported from Pthreads to OpenMP 

 5 out of 8 apps show symptoms of false sharing 

Program name 1-thread 2-threads 4-threads 8-threads 

histogram 13 7,820,000 16,532,800 5,959,190 

kmeans 383 28,590 47,541 54,345 

linear_regression 9 417,225,000 254,442,000 154,970,000 

matrix_multiply 31,139 31,152 84,227 101,094 

pca 44,517 46,757 80,373 122,288 

reverse_index 4,284 89,466 217,884 590,013 

string_match 82 82,503,000 73,178,800 221,882,000 

word_count 4,877 6,531,793 18,071,086 68,801,742 

Cache Invalidation Count 
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False Sharing: Data Analysis Results 

 Determining the variables that cause misses 

Program 

Name 

Global/static data Dynamic data 

histogram - main_221 

linear_regression - main_155 

reverse_index use_len main_519 

string_match key2_final string_match_map_266 

word_count length, use_len, 

words 

- 
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Runtime False Sharing Detection 
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B. Wicaksono, M. Tolubaeva and B. Chapman. “Detecting false sharing in OpenMP 
applications using the DARWIN framework”, LCPC 2011 47 



Summary 

 OpenMP is designed to be easy to use, but 

there are several pitfalls to avoid 

 Data races are a common programming error in 

shared memory programming which can be hard to 

spot – know when to privatize your data! 

 Beware of subtle synchronization error 

 unless you’re very careful, stick to OpenMP directives 

 Know the overheards associated with the 

constructs you’re using 

 Know how to control thread and data placement 

 False sharing can also kill performance 
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