
 1

OpenMP 4.0 features

Barbara Chapman (University of Houston)
Deepak Eachempati (University of Houston)

Kelvin Li (IBM)

Aug 6, 2014

 2

 3

New features

• device constructs (a.k.a. accelerator support)
• array section syntax for C/C++
• SIMD constructs
• cancellation constructs (a.k.a. error model)
• thread affinity
• taskgroup construct
• task dependence
• user-defined reduction
• atomic construct extension
• OMP_DISPLAY_ENV environment variable
• partial Fortran 2003 support

 4

New features

• device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 5

device constructs

• terminology
– device: An implementation defined logical execution

engine. (A device could have one or more processors.)
– host device: The device on which the OpenMP program

begins execution.
– target device: A device onto which code and data may be

offloaded from the host device. It is implementation defined
(i.e. optional).

 6

device constructs – execution
model
• host-centric; host device

offloads target regions (code
and data) to target devices

• the target region may be
executed by the target device
or host device

• the target region is executed
by the host device if
– a target device does not exist,

or
– the target device is not

supported by the
implementation, or

– the target device cannot
execute the target construct

!$omp target
 a(i) = a(i) + b
!$omp end target

Host

program main
 integer a(100)
 a(:) = 0
 ...
!$omp target
 a(i) = a(i) + b
!$omp end target
 ...
end program

Device

!$omp target
 a(i) = a(i) + b
!$omp end target

 7

device constructs – execution
model

• the task that encounters
the target construct waits
at the end of the construct
until execution of the
region completes
– it is synchronous

• a target region is executed
on one target device

• each device has its own
threads
– no thread migration and

no sharing among devices

!$omp target
 a(i) = a(i) + b
!$omp end target

program main
 integer a(100)
 a(:) = 1
 ..

 ...
end program

Host Device

 8

device constructs – execution
model
• the teams construct creates

a league of thread teams
– by default, one team is

created (more about it later)
– exploit extra level of

parallelism on some
hardware (e.g. Nvidia GPU)

– work can be distributed
among the teams (i.e.
distribute construct ...
more about it later)

Device

Team Team

......

#pragma omp target
#pragma omp teams
{
 for (i=1; i<N; i++)
 a[i] = a[i] + b;
}

 9

device constructs – device data
model
• very important to get the data right on host and

target devices
• possible to be out of sync or unavailable
• data can implicitly mapped to the target region
• data can explicitly (via data-mapping attribute

clause) mapped to the target region
– provide more precise information to the compiler

– reduce unnecessary data transfer – that is expensive!

 10

target data construct

• create a new device data
environment

• executable statements inside a
target data construct is
executed on the host device

• a structured data mapping
construct

#pragma omp target data [clause ...] new-line
 structured-block

!$omp target data [clause ...]
 structured-block
!$omp end target data

Host

data[10]

Device

data[10]

 11

target and target data
constructs - clauses

• device clause
– specify on which device the data environment is created as well as the code is

executed if target is used
• if clause

– if present and false, the device is the host
• map clause

– map-type: alloc, to, from, tofrom
– alloc: each new corresponding list item has an undefined initial value
– to: each new corresponding list item is initialized with the original list item’s

value
– from: on exit from the region the corresponding list item’s value is assigned to

each original list item
– tofrom: each new corresponding list item is initialized with the original list item’s

value and that on exit from the region the corresponding list item’s value is
assigned to each original list item

– default is tofrom

clause:
•device(integer-expression)
•map([map-type:]list)
•if(scalar-expression)

 12

target data construct - example

• the target data region
creates a new device
environment

• variable N is mapped (tofrom
map-type by default) to the
target device and initialized

• variable i are mapped to the
target device – to ensure that
the variables are available

• the “i=10” is executed on the
host device; i.e. variable i is
initialized but not the
corresponding variable on the
target device

void foo()
{
 int N=0;
#pragma omp target data map(N)
{
 int i;

 i = 10;
}
}

 13

target data construct - example

• if the system has multiple
devices, different data can
be mapped on different
devices

• the target data region
creates a new device
environment on the device
specified by the device
clause

• variable N and i are
mapped to device 1

• variable M and k are
mapped to device 2

void foo()
{
 int N, M;
#pragma omp target data device(1) \
 map(N)
{
 int i
 ...
}

#pragma omp target data device(2) \
 map(M)
{
 int k;
 ...
}
}

there are rules for variables that are not listed on the map clause

 14

target data construct - example

• use target data with the
map clause to indicate how
data is mapped particularly

• by default it is tofrom, data
is transferred in to the target
region upon entry and
transfer out when exit

• use the default or tofrom
type when you need the
initial data in the region and
also the resulting data after
the region (i.e. the host can
access the results from the
target region)

subroutine compute_array()
{
 real arr0(100);
 arr0 = ...

!$omp target data map(arr0)
 ...
!$omp end target data

 ... = arr0
}

 15

target data construct - example

• use target data with the
map clause to indicate how
data is mapped particularly

• the map-type is to
• data is transferred in to the

target region but not
transferred out

• after the target data
region the value of arr0
keeps the same as before
entering the region

subroutine compute_array()
{
 real arr0(100);
 arr0 = ...

!$omp target data map(to: arr0)
 ...
!$omp end target data

 ... = arr0
}

 16

target data construct - example

• use target data with the
map clause to indicate how
data is mapped particularly

• the map-type is from
• data is transferred out from the

target region, but not
transferred in

subroutine compute_array()
{
 real arr0(100);
 arr0 = ...

!$omp target data map(from: arr0)
 ...
!$omp end target data

 ... = arr0
}

 17

target construct

• the code block enclosed by
the target directives is
offloaded and executed on
the target device

• the compiler generates code
of the target region for the
target device

• the compiler will also
generate the host version of
the code – just in case, the
target device is not available
during the execution of the
application

• the data required by the
computation is expected to
be available and up-to-date
on the target device

!$omp target
 a(i) = a(i) + b
!$omp end target

Host

program main
 integer a(100)
 ...
!$omp target
 a(i) = a(i) + b
!$omp end target
 ...
end program

Target

!$omp target
 a(i) = a(i) + b
!$omp end target

!$omp target
 a(i) = a(i) + b
!$omp end target

 18

target construct

• create a device data
environment and execute the
construct on the same device
(superset of the functionality
and restrictions provided by the
target data directive)

• the encountering task waits for
the device to complete the
target region – synchronous
operation

#pragma omp target [clause ...] new-line
 structured-block

!$omp target [clause ...]
 structured-block
!$omp end target

clause:
•device(integer-expression)
•map([map-type:]list)
•if(scalar-expression)

 19

target construct

void update(int N, float *arr,
 float *brr, float C)
{
 int j;
#pragma omp target
{
 for (j=0; j<N; j++)
 arr[j] = C*arr[j] + brr[j];
}
}

arr, brr, C and j
are implicitly
mapped on the
target device

it involves
data

transfer in
and out

some data is read
only in the

target region,
copyout is not

necessary

• too much traffic between
the host and the target
devices

• need to reduce it!

 20

target construct

void update(int N, float *arr,
 float *brr, float C)
{
 int j;
#pragma omp target map(tofrom:arr[0:N]) \
 map(in:C) map(in:brr[0:N])
{
 for (j=0; j<N; j++)
 arr[j] = C*arr[j] + brr[j];
}
}

arr is read and
write in the

target
region

brr and C are
read only in
the target

region

 21

target construct - example

• the DO loop is offloaded to
the target device

• the DO loop is executed
sequentially on the target
device

• does it work?
• It works. But a lot of transfer

is seen!!
• why?
• data are implicitly mapped

onto the target and needs
to transfer in/transfer out

real function compute(N)
 integer, intent(in) :: N
 integer :: i, j, k
 real :: mat(N), c, psum

 psum = 0.0
!$omp target
 do i=1, N
 psum = psum + mat(k) + c
 enddo
!$omp end target

 compute = psum
end function

 22

target construct - example

• use the target data
directive to map the data
on the target device

• map variables according
to the activities in the
region

• variable c and N are
needed in the target
region and it is reference
only – we can just do
map(to: c, N)

• variable mat needs to
map(tofrom: mat) as
the initial value is needed
for the target region and
the final value it needed
after exit of the target
region

real function compute(N)
 integer, intent(in) :: N
 integer :: i, j, k
 real :: mat(N), c, psum
!$omp target data &
!$omp& map(to: c, N) &
!$omp& map(from: psum) &
!$omp& map(tofrom: mat)
!$omp target
 psum = 0.0
 do i=1, N
 mat(i) = mat(i) + c
 psum = psum + mat(i)
 enddo
!$omp end target
!$omp end target data
 compute = psum
end function

 23

target and target data
construct - example
• so why is the target data

directive needed?
• consider you have two target

regions in your routine
• both regions need to access

the same set of data
• what is the problem of having

the two target regions and
accessing array arr1?

• too much data transfer!

void foo() {
#pragma omp target data
{
 float arr1[500];

#pragma omp target
{
 for (int k=0; k<500; k++) {
 arr1[k] = ...
 }
}
 ...
#pragma omp target
{
 for (int k=0; k<500; k++) {
 arr1[k] = arr1[k] + 1.0;
 }
}
}}

• enclosing the target regions by
a target data region can
guarantee data still alive on the
target device

 24

target and target data
constructs - example
• how about C/C++?

can we do the same
thing?

• everything looks the
same – a straight
translation from
Fortran to C

• but it does not work!
• the compiler does

not know how large
array mat is

• need Fortran-like
array syntax

float compute(int N, float *mat) {
 int i, j;
 float c, psum;
#pragma omp target data map(to:

c,N) map(from: psum)
map(tofrom: mat)

{
#pragma omp target
{
 psum = 0.0;
 for (int k=0;k<N;k++) {
 mat[k] += c;
 psum += mat[k];
 }
}}}

 25

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 26

array section syntax for C/C++

• C and C++ array syntax extended to support array sections
• usage:

– mark dependency of portion of an array in task dependence
– can map a portion of array to target device (i.e. accelerator)

• array sections only applicable in the OMP pragma context
• array sections are only allowed in the following clauses:

– to and from clause (target update directive)
• must be contiguous

– depend clause (task directive)
• must not be zero-length

– map clause (target and declare target directives)
• must be contiguous

[lower-bound : length] or
[lower-bound :] or
[: length] or
[:]

 27

C/C++ array section syntax -
examples

• c[10][:][:0] – a zero-length array
• d[1:10][42][0:6] – this array section is not contiguous
• d[42][1:10][0:6] – this array section is contiguous

a[0:6]
a[0],a[1],...,a[5]

a[:6]

int a[10]; a[4:3] a[4],a[5],a[6]

a[6:] a[6],a[7],a[8],a[9]

a[:] a[0],a[1],..,a[9]

 28

target and target data
constructs - example
• how to fix the compute

routine in C?
• we need to specify the

range of the array on
the map clause

• mat[0:N] or mat[:N]
is sufficient for the
compiler to figure out

float compute(int N, float *mat)
{
 int i, j;
 float c, psum;

#pragma omp target map(to:c, N)\
 map(from: psum)\
 map(tofrom: mat[0:N])
{
 psum = 0.0;
 for (int k=0; k<N; k++) {
 mat[k] += c;
 psum += mat[k];
 }
}
 return psum;
}

 29

target and target data
constructs - example
• offloading to the target

device may not always be
beneficial, copying data is
always costly

• if mat is large, the copy
overhead may overwhelm
performance benefit

• the if clause can be used
to control if offloading to
target device is beneficial

float compute(int N, float *mat) {
 int i, j;
 float c, psum;
#pragma omp target data map(to:

c,N) map(from: psum)
map(tofrom: mat[0:N]) if(N<500)

{
#pragma omp target if(N<500)
{
 psum = 0.0;
 for (int k=0;k<N;k++) {
 mat[k] += c;
 psum += mat[k];
 }
}}
 return psum;
}

 30

target and target data
constructs - example
• if more than one target

devices are supported
and available, one can
split the computation to
the devices

• this example splits the
computation onto two
target devices – hence
two target regions with
device clause are
created

• mapping has to be done
accordingly

float compute(int N, float *mat) {
 int i, j, half;
 float c, psum[2];
 half = N/2;
 for (i=0; i<2; i++) {
 int start=i*half;
 int end=(i+1)*half-1;
#pragma omp target map(to: c,half)

map(from: psum[i:1]) map(tofrom:
mat[start:end]) if(half<250)
device(i)

{
 psum[i] = 0.0;
 for (int k=start;k<=end;k++) {
 mat[k] += c;
 psum[i] += mat[k];
 }
}}
 return psum[0]+psum[1];
}

 31

target constructs - example

• the for loop is executed
sequentially on the
target device

• may not fully exploit the
parallelism available on
the hardware

• parallel for loop can be
added in the code to
speed it up further

float compute(int N, float *mat) {
 int i, j;
 float c, psum;
#pragma omp target map(to: c,N)

map(from: psum) map(tofrom:
mat[0:N]) if(N<500)

{
 psum = 0.0;
#pragma omp parallel for

reduction(+:psum)
 for (int k=0;k<N;k++) {
 mat[k] += c;
 psum += mat[k];
 }
}
 return psum;
}

Device Device

 32

target constructs - example

• we can further improve
this compute routine to
exploit more parallelism

• the execution of the for
loop is independent –
parallelize it

• achieve multiple levels
of parallelism
– on the host device
– on the target device

float compute(int N, float *mat) {
 int i, j, half=N/2;
 float c, psum, sum[2];
#pragma omp parallel num_threads(2)

private(psum)
{
 int nthd=omp_get_thread_num();
 int start=nthd*half;
 int end=(nthd+1)*half-1;
#pragma omp target

map(to:start,end,c,half) map(from:
psum) map(tofrom:mat[start:end])
device(nthd)

{
 psum = 0.0;
#pragma omp parallel for
 for (int k=start;k<=end;k++) {
 mat[k] += c;
 psum += mat[k];
 }
}
 sum[nthd] = psum;
}
 return psum[0]+psum[1];}

 33

target update construct

• makes the data consistent
between the target device and
the host device

• a standalone directive
• from clause – the value of the

corresponding list item is
assigned to the original list item

• to clause – the value of the
original list item is assigned to
the corresponding list item

#pragma omp target update [clause[[,] clause],...] newline

!$omp target update [clause[[,] clause],...]

motion-clause:
• to(list)
• from(list)

clause:
• device(integer-expression)
• if(scalar-expression)
• motion-clause

 34

target update construct -
example
• sometime we need to

update the data
either on the host
device or on the
target device

• the call statement is
executed on the host
– i.e. v1, v2 may
have different values
from those on the
target device

• the target update
directive is to copy
the up-to-date values
in v1 and v2 to the
target device

subroutine vec_mult(p, q, v1, v2, N)
 real :: p(N), q(N), v1(N), v2(N)
 integer :: i

!$omp target data map(to:v1,v2) map(from:p)
!$omp target
!$omp parallel do
 do i=1, N
 p(i) = v1(i)*v2(i)
 enddo
!$omp end target
 call init(v1,v2,N) ! executed on the host
!$omp target update to(v1,v2)
!$omp target
!$omp parallel do
 do i=1, N
 q(i) = v1(i)*v2(i)
 enddo
!$omp end target
!$omp end target data
end subroutine

 35

declare target construct

• specify variables (e.g. module variables and common blocks in
Fortran; file scope or namespace scope variables in C/C++)
and procedures being mapped to a device

• a declarative directive
• this directive instructs the compiler that the functions are called

or the variables are referenced in the target region; a target
device version of the code needs to be generated

• note that the Fortran and C/C++ syntax are quite different

#pragma omp declare target new-line
declarations-definition-seq
#pragma omp end declare target new-line

!$omp declare target (list)

!$omp declare target

 36

declare target constructs -
example
• note that the C/C++

syntax is different from
Fortran, there is a
declare target/end
declare target pair

• fastAdd routine is
called inside the target
region

• the declare target
pragma instructs the
compiler to generate the
target device version of
the routine

• however, the compiler
should also generate
the host device version
of the fastAdd routine

#pragma declare target
float fastAdd(float, float)
{ ... }
#pragma end declare target
float compute(int N, float *mat) {
 int i, j;
 float c, psum;

#pragma omp target map(to: c,N)
map(from: psum) map(tofrom:
mat[0:N]) if(N>50)

{
 psum = 0.0;
 for (int k=0;k<N;k++) {
 mat[k] = fastAdd(mat[k],c);
 psum = fastAdd(psum, mat[k]);
 }
}
 return psum;
}

 37

declare target constructs -
example
• note that the Fortran

syntax is different from
the C/C++ syntax

• fastAdd routine is
called inside the target
region

• the declare target
directive instructs the
compiler to generate the
target device version of
the routine

• however, the compiler
should also generate
the host device version
of the fastAdd routine

real function fastAdd(x1, x2)
 real, intent(in) :: x1, x2
!$omp declare target
 ...
end function
real function compute(N)
 integer, value :: N
 real :: mat(N), c, psum
 interface
 real function fastAdd(x1,x2)
 real, intent(in) :: x1, x2
!$omp declare target
 end function
 end interface
!$omp target map(to:c,N) &
!$omp& map(from:psum) map(tofrom:mat)
 psum = 0.0
 do i=1, N
 mat(k) = fastAdd(mat(k), c)
 psum = fastAdd(psum, mat(k))
 enddo
!$omp end target
end function

 38

declare target constructs -
example

• in this example, variable
c is a module variable,
it needs to be mapped
to the target device via
the declare target
directive

• the fastAdd function is
a module procedure,
the declare target
directive is required as
the function is called
inside the target region

module M
 real :: c
!$omp declare target(c)
contains
 real function fastAdd(x1, x2)
 real, intent(in) :: x1, x2
!$omp declare target
 ...
 end function
end module
real function compute(N)
 use M
 integer, value :: N
 real :: mat(N), psum
!$omp target map(to:c,N) map

(from:psum) map(tofrom:mat)
 psum = 0.0
 do i=1, N
 mat(k) = fastAdd(mat(k), c)
 psum = fastAdd(psum, mat(k))
 enddo
!$omp end target
end function

 39

target data and target
constructs – Jacobi example

#pragma omp target data device(gpu0) map(to:n, m, omega, ax, ay, \
 b, f[0:n][0:m]) map(tofrom:u[0:n][0:m]) \
 map(alloc:uold[0:n][0:m])
while ((k<=mits) && (error>tol))
{
 // a loop copying u[][] to uold[][] is omitted here
 ...
#pragma omp target device(gpu0) map(to:n, m, omega, ax, ay, b,\
 f[0:n][0:m], uold[0:n][0:m]) map(tofrom:u[0:n][0:m])
#pragma omp parallel for private(resid,j,i) reduction(+:error)
 for (i=1;i<(n-1);i++)
 for (j=1;j<(m-1);j++)
 {
 resid = (ax*(uold[i-1][j] + uold[i+1][j]) \
 + ay*(uold[i][j-1] + uold[i][j+1]) \
 + b * uold[i][j] - f[i][j])/b;
 u[i][j] = uold[i][j] - omega * resid;
 error = error + resid*resid ;
 } // the rest code omitted ...
}

Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski, Daniel J. Quinlan
and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013

 40

teams construct

• creates a league of thread
teams

• the master thread of each team
executes the region

• allow to exploit one more level
of parallelism on some target
devices (e.g. Nvidia)

• no implicit barrier at the end of
a teams construct

• no statement/directive is
allowed between target
construct and teams construct

#pragma omp teams [clause[[,] clause],...] new-line
structured-block

!$omp teams [clause[[,] clause],...]
structured-block
!$omp end teams

clause:
• num_teams(integer-expression)
• thread_limit(integer-expression)
• [C/C++]
 default(shared|none)
 [Fortran]
 default(shared|none|private|firstprivate)
• private(list)
• firstprivate(list)
• shared(list)
• reduction(reduction-identifer:list)

 41

teams construct – runtime routines

• returns the number of teams in the current teams
region

int omp_get_num_teams(void);

integer function omp_get_num_teams()

• returns the number of the team number of the
calling thread

int omp_get_team_num(void);

integer function omp_get_team_num()

 42

teams construct – example

• two teams regions
are created inside
the target region

• each teams region
compute a portion of
the array operation

• note that since there
is only one team
region, the entire
array mat is mapped
to the target device

target device

Team Team

real function compute(N)
 integer :: i, N, ntm, start, end
 real :: mat(N), psum(2)
!$omp target map(to:c,N) &
!$omp& map(from:psum) map(tofrom:mat)
!$omp teams num_teams(2) &
!$omp& private(i,ntm,start,end)
 ntm = omp_get_team_num()+1
 psum(ntm) = 0.0
 start = (ntm-1)*(N/2)
 end = ntm*(N/2) – 1
 do i=start, end
 mat(i) = mat(i) + c;
 psum(ntm) = psum(ntm) + mat(i)
 enddo
!$omp end teams
!$omp end target
 compute = sum(psum)
end function

 43

teams construct – example

• more parallelism
can be exploited
in the team
regions since
there are multiple
threads in a team

target device

Team Team

real function compute(N)
 integer :: i, N, ntm, start, end
 real :: arr(N), psum
 psum = 0.0
!$omp target map(to:c,N) &
!$omp& map(tofrom:mat)
!$omp teams num_teams(2) &
!$omp& private(i,ntm,start,end) &
!$omp& reduction(+:psum)
 ntm = omp_get_team_num() + 1
 start = (ntm-1)*(N/2)
 end = ntm*(N/2) – 1
!$omp parallel do reduction(+:psum)
 do i=start, end
 mat(i) = mat(i) + c;
 psum = psum + mat(i)
 enddo
!$omp end teams
!$omp end target
 compute = psum
end function

 44

distribute construct

• iterations distributed
among master threads of
all teams

• specify to the loops only
• must be closely nested to

the teams construct
• workshare among teams

to exploit the parallelism
on the target device

#pragma omp distribute [clause[[,] clause],...] new-line
structured-block

!$omp distribute [clause[[,] clause],...]
structured-block
[!$omp end distribute]

clause:
• private(list)
• firstprivate(list)
• collapse(n)
• dist_schedule(kind[,chunk_size])

 45

distribute construct – example

• the iterations are divided
into blocks, each block is
offloaded to the teams
regions

• the distribute
directive share the
iterations among teams
in the target region

target device

Team Team

function dotprod(B,C,N)
 real :: B(N), C(N), sum
 integer :: N, i, j
 sum = 0.0
!$omp target map(to:B,C)
!$omp teams num_teams(2) &
!$omp& reduction(+:sum)
!$omp distribute
 do j=1, N, N/2
!$omp parallel do reduction(+:sum)
 do i=j, min(j+N/2,N)
 sum = sum + B(i)*C(i)
 enddo
 enddo
!$omp end teams
!$omp end target
end function

!$omp parallel do
 do i=1,250
 ...

!$omp parallel do
 do i=251,500
 ...

 46

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 47

simd construct

• a level of parallelism that
exploits the hardware
feature – instruction level
parallelism (ILP)

• enable the execution of
multiple iterations of the
loops concurrently by
means of SIMD instructions

#pragma omp simd [clause[[,] clause],...] new-line
for-loops

!$omp simd [clause[[,] clause],...]
do-loops
[!$omp end simd]

clause:
• safelen(length)
• linear(list[:linear-step])
• aligned(list[:alignment])
• private(list)
• lastprivate(list)
• reduction(reduction-identifier:list)
• collapse(n)

 48

simd construct

• terminology
– SIMD instruction: A single machine instruction that

can operate on multiple data elements.
– SIMD lane: A software or hardware mechanism

capable of processing one data element from a SIMD
instruction.

– SIMD chunk: A set of iterations executed
concurrently, each by a SIMD lane, by a single thread
by means of SIMD instructions.

– SIMD loop: A loop that includes at least one SIMD
chunk

 49

simd construct – clause

• no two iterations executed
concurrently with SIMD
instructions can have a
greater distance in the
logical iteration space than
n, where n is an integer
constant

• note: the number of
iterations that are executed
concurrently at any given
time is implementation
defined

#pragma omp simd safelen(4)
for (int i=0; i<N; i++)
 a[i] = a[i+4] + 0.5;

safe to vectorize
with a length
of 4 or less

a[0] = a[4] + 0.5;
a[1] = a[5] + 0.5;
a[2] = a[6] + 0.5;
a[3] = a[7] + 0.5;
a[4] = a[8] + 0.5;
...

can use
vector of
length 4
or less

a[0]=... and
a[4]=... should
not execute
concurrently

safelen(length)

 50

simd construct – clause

• has private clause semantics, and
also firstprivate and lastprivate
semantics

• int x=2;
#pragma omp simd linear(x:
4)
 for (int i=0; i<12; i++)
 ... = x;
printf(“%d\n”, x);

• in each iteration, private x is
initialized as x = x0 + i * 4, where x0
is the initial value of x before entering
the SIMD construct

• the value of x in the sequentially last
iteration is assigned to the original
list item

#pragma omp simd linear(i:1)
for (i=0; i<N; i++)
 a[i] = b[i] * c[i];

i is incremented
by 1 in every

iteration

m = 1;
#pragma omp simd linear(m:2)
for (i=0; i<N; i++)
 a[i] = a[i]*m;

a[0] = a[0]*(1+0*2);
a[1] = a[1]*(1+1*2);
a[2] = a[2]*(1+1*3);
...

linear(list[:linear-step])

 51

simd construct – clause

• aligned(x:8)- variable x is aligned to 8 byte
• if no alignment is specified in the clause, the alignment is

implementation defined

aligned(list[:alignment])

collapse(n)
• associate the nested loops with the construct

reduction(reduction-identifier:list)

• each SIMD lane has a private copy and values of the private
copies are combined at the end

lastprivate(list)
• private to a SIMD lane and copy the value in the last

iteration back to the original list item

privat(list)

• private to a SIMD lane

 52

declare simd construct

• specify for functions/subroutines
• create “one or more versions that

can process multiple arguments
using SIMD instructions from a
single invocation from a SIMD loop”

• a function can be specified by
multiple declare simd directives
– allow different combinations of

SIMD length and other attributes
(uniform, linear, ... etc)

#pragma omp declare simd [clause[[,] clause],...] new-line
[#pragma omp declare simd [clause[[,]clause],...] new-line]
[...]
function definition declaration

!$omp declare simd(proc-name) [clause[[,] clause],...]

clause:
• simdlen(length)
• linear(list[:linear-step])
• aligned(list[:alignment])
• uniform(argument-list)
• inbranch
• notinbranch

 53

declare simd construct – clause

• length is the number of concurrent
arguments of the function to be
created

• if the simdlen clause is not
specified, the number of concurrent
arguments is implementation
defined

simdlen(length)
#pragma omp declare simd \
 simdlen(4)
#pragma omp declare simd \
 simdlen(8)
void foo(float a);

void __simd_f4_foo(float a1,
float a2, float a3, float a4);

void __simd_f8_foo(float a1,
float a2, ..., float a8);uniform(argument-list)

• arguments that have an invariant value for all concurrent
invocations of the function in the execution of a single SIMD loop

inbranch / notinbranch

• function always / never called from inside a conditional statement in a
SIMD loop

 54

loop SIMD construct

• combine worksharing loop construct and the SIMD construct
– executed concurrently using SIMD instructions
– executed in parallel by threads in the team

• how it is done:
– distribute the iterations across the implicit tasks (i.e. threads)
– the chunks of iterations will then be converted to a SIMD loop

• ordered clause is not allowed

#pragma omp for simd [clause[[,]clause]...] new-line
for-loops

!$omp simd do [clause[[,] clause],...]
do-loops
[!$omp end do simd [nowait]]

 55

loop SIMD construct
• each implicit task (i.e.

thread) takes on a chunk
of 40 iterations

• the chunk is converted
to the SIMD loop with
safelen of 8 (i.e. no two
iterations executed
concurrently with SIMD
instructions can have a
greater distance in the
logical iteration space
than 8)

• it achieves multiple
levels of parallelism

!$omp do simd num_threads(4) &
!$omp& safelen(8) private(i)
do i=1, N
 a(i) = b(i)*c(i)
enddo

begin = (N/4)*th_id + 1
end = (N/4)*(th_id+1)
do i=begin, end, 8
 call __vec_mult(a(i),b(i),c(i),8)
enddo

begin = (N/4)*th_id + 1
end = (N/4)*(th_id+1)
do i=begin, end, 8
 call __vec_mult(a(i),b(i),c(i),8)
enddo

begin = (N/4)*th_id + 1
end = (N/4)*(th_id+1)
do i=begin, end, 8
 call __vec_mult(a(i),b(i),c(i),8)
enddo

begin = (N/4)*th_id + 1
end = (N/4)*(th_id+1)
do i=begin, end, 8
 call __vec_mult(a(i),b(i),c(i),8)
enddo

 56

device and SIMD constructs –
combination of constructs

• distribute simd
• distribute parallel for/do
• distribute parallel for/do simd
• parallel for/do simd
• target teams
• teams distribute
• teams distribute simd
• target teams distribute
• target teams distribute simd
• teams distribute parallel for/do
• target teams distribute parallel for/do
• teams distribute parallel for/do simd
• target teams distribute parallel for/do simd

 57

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 58

cancellation constructs

• in pre-4.0, a parallel region or
worksharing region cannot be
stopped at the middle of the
execution and continue the program

• it must execute to the end of the
region

• what if a computation (a search)
wants to exit the region after a
certain goal is achieved

 59

cancel construct

• cancels a region and causes the
execution jump to the end of the
canceled region

• applies to the innermost enclosing
OpenMP construct of the type
specified in the clause

#pragma omp cancel construct-type-clause[[,] if-clause] new-line

!$omp cancel construct-type-clause[[,] if-clause]

construct-type-clause:
• parallel
• sections
• for / do
• taskgroup

if-clause:
• if(scalar-expression)

int omp_get_cancellation(void);

logical function omp_get_cancellation()

• returns if cancellation is activated for the whole program

 60

cancel construct

cancel parallel

cancellation point parallel

cancellation point parallel

cancellation point parallel

parallel
{

}

• for parallel, sections or loop regions
– “cause the encountering task to continue to execute at the end of

the canceled construct”
– other threads check at cancellation points if cancellation has

been requested, jumps to the end of the cancelled construct

 61

cancel construct

• controls whether the effects of cancel construct and of
cancellation points are enabled and cancellation is activated

• allow implementations to bypass the expensive runtime
check to reduce the overhead of this feature

OMP_CANCELLATION=true|false

int omp_get_cancellation(void);

logical function omp_get_cancellation()

• returns if cancellation is activated for the whole program

 62

cancel construct

#pragma omp parallel
{
 ...
#pragma omp cancel parallel
 ...
#pragma omp sections
{
 ...
}
 ...
#pragma omp cancel sections
 ...
}

closely nested ...
can cancel the

enclosing
parallel region

invalid ... not
closely nested
in a sections
construct

closely nested inside an OpenMP construct that matches the clause(s) specified

 63

cancel construct

#pragma omp parallel
{
 ...
 #pragma omp parallel
 {
 ...
 }
 ...
 #pragma omp cancel parallel
 ...
}

may not be
canceled

effective to the
innermost
enclosing

parallel region

applies to the innermost enclosing OpenMP construct of the type specified in the
clause

 64

cancel construct
void compute()
{
 ...
#pragma omp cancel parallel
}

int main()
{
#pragma omp parallel
{
 ...
 compute();
 ...
}}

invalid ... must be
lexically nested
in the type of

construct
specified in the

clause

 65

cancellation point construct

• cancellation point – at which a check is done
if cancellation has been requested; if
cancellation has been requested,
cancellation is performed.
– implicit barriers (i.e. end of worksharing

or parallel regions)
– barrier regions
– cancel regions
– cancellation point regions

• allow users to define a cancellation point and
specify the construct type

#pragma omp cancellation point construct-type-clause new-line

!$omp cancellation point construct-type-clause

construct-type-clause:
• parallel
• sections
• for / do
• taskgroup

 66

cancel construct - example

#pragma omp parallel private(found)
{
 int id = omp_get_thread_num();
 for (int db=0; db<N; db++)
 {
#pragma omp cancellation point

parallel
 found = doSearch(id, db);

 if (found)
 {
#pragma omp cancel parallel
 ...
 }
 }
}

current
thread:

jump to the
end of the
parallel
region

other threads: check
if cancellation

has been
requested jumps
to the end of the
parallel region

 67

cancel construct

• for taskgroup
– the task that encountered the cancel taskgroup construct

continues execution at the end of its task region
– any task has already begun execution must run to completion or

until a cancellation point is reached
– any task that has not begun execution may be discarded

taskgroup

cancellation

task

task

task

 68

cancel construct

!$omp parallel
!$omp single
!$omp taskgroup
 do while (.true.)
!$omp task
 call search(found)
 if (found) then
!$omp cancel taskgroup
 endif
!$omp end task
 enddo
!$omp end taskgroup
!$omp end single
!$omp end parallel

• one thread generating tasks
• when the search routine

returns true and cancellation is
requested, cancellation of
tasks is activated

• the current task construct
continues execution at the end
of its task region

• the executing task will continue
to execute until completion or
encountering a cancellation
point

• the queued task can be
discarded

 69

cancel construct
#pragma omp taskgroup
{
 #pragma omp task // long running task
 {
 ...
 }
 #pragma omp task
 {
 if (done) {
 // clean up, print results etc.
 #pragma omp cancel taskgroup
 }
 ...
 }
 while (...) {
 #pragma omp task
 {
 #pragma omp cancellation point
 if (done) {
 #pragma omp cancel taskgroup
 }
 }
 }
}

continue to run to
completion or a
cancellation

point
encountered

skip if a
cancellation
is requested

 70

cancel construct

• barrier
“Each barrier region must be encountered by all threads or by none
at all, unless cancellation has been requested for the innermost
enclosing parallel region.”

• worksharing region
“Each worksharing construct must be encountered by all threads in
a team or by none at all, unless cancellation has been requested for
the innermost enclosing parallel region.”

 71

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 72

Thread affinity

• support thread affinity policy
• allow users to have finer control how and where the

OpenMP threads are bound
– better locality between OpenMP threads
– less false sharing
– more memory bandwidth

• in pre-4.0, it only supports true or false for the
environment variable OMP_PROC_BIND that is very
limited

• in 4.0, this feature extends to a full range of specification

Acknowledgement: slides adapted from Alex Eichenberger (IBM)

 73

Thread affinity

• OpenMP places
– one or more processors / hardware threads per place
– OpenMP threads are allowed to move within a place
– OpenMP threads are not allowed to move between places

• Affinity policies
– close: assign the threads to places close to the place of the

parent thread
– master: assign every thread in the team to the same place as

the master thread
– spread: create a sparse distribution of threads

 74

Thread affinity – clause and env var

• extend the OMP_PROC_BIND environment
variable to allow more policies
i.e. true, false, close, master, or spread

proc_bind(close | master | spread)

• add proc_bind clause to the parallel directive

OMP_PROC_BIND=policy[, policy ...]

 75

Thread affinity

• Master affinity
– for best data locality
– assign OpenMP threads in the same place as

the master
• parallel proc_bind(master)

– master 2

– master 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

 76

Thread affinity

• Close affinity
– for data locality, load-balancing, and more dedicated-

resources
– assign OpenMP threads near the place of the master

– wrap around once each place gets one thread

• parallel proc_bind(close)
– close 2
– close 4
– close 16

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

Just an example:
this is Nested
OpenMP

 77

Thread affinity

• Spread affinity
– for load balancing, most dedicated hardware

resources
– spread OpenMP threads as evenly as

possible among places
– create sub-partition of the place list

• subsequent threads will only be allocated within
sub-partition

 78

Thread affinity

• Examples of “parallel proc_bind(spread)”
– spread 2

– spread 4

– spread 8

– spread16

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

 79

Thread affinity

• Add OMP_PLACES environment variable

• A few examples
– OMP_PLACES=“{0},{1},{2},{3},...,{15}”
– OMP_PLACES=“{0:4},{4:4},{8:4},{12:4}”
– OMP_PLACES=“threads(16)”

 80

Thread affinity

• How to use Place list
• Consider a system with 2 chips, 4 cores and 8 hardware-threads

– One place per hardware-thread
• OMP_PLACES=“{0},{1},{2},...{15}”
• OMP_PLACES=“threads(16)” # 16 threads
• OMP_PLACES=“threads” # as many threads as available

– One place per core, including both hardware-threads
• OMP_PLACES=“{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}”
• OMP_PLACES=“{0:2}:8:2”
• OMP_PLACES=“cores(4)” # 4 cores
• OMP_PLACES=“cores” # as many cores as available

– One place per chip, excluding one hardware-thread per chip
• OMP_PLACES=“{1:7},{9:7}”

chip 0
core 0

t0 t1

core 1

t2 t3

core 2

t4 t5

core 3

t6 t7

chip 1
core 4

t8 t9

core 5

t10 t11

core 6

t12 t13

core 7

t14 t15

 81

New features

• device construct s(a.k.a. accelerator support)device construct s(a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 82

taskgroup construct

• for deep synchronization against
hierarchies of tasks
– “specifies a wait on completion of child

tasks of the current task and their
descendant tasks”

• note: taskwait construct is shallow –
just wait on the completion of the child
tasks of the current task (i.e. siblings not
their descendants)

• does not create a task region; only for
group and synchronization purpose

#pragma omp taskgroup new-line

!$omp taskgroup
structured-block
!$omp end taskgroup

#pragma omp task // T1
{
 #pragma omp task // T2
 {
 ...
 }
}
#pragma omp task // T3
{
 ...
}
#pragma omp taskwait

wait for T1
and T3 but
not T2

 83

taskgroup construct – example

!$omp taskgroup
!$omp task
!$omp task ! T1
 call sub1(i)
!$omp end task
...
!$omp task ! T2
 call sub2()
!$omp end task
!$omp taskwait
!$omp end task
!$omp end taskgroup

subroutine sub1(N)
 do i=1, N
!$omp task
 ...
!$omp end task
 end do
end subroutine

subroutine sub2()
!$omp task
 ...
!$omp end task
end subroutine

only wait
for T1
and T2

wait for T1,
T2 and all
the tasks
in sub1 and

sub2

 84

taskgroup construct - example
void compute_tree(tree_t tree)
{
 if (tree->left) {
 #pragma omp task
 compute(left);
 }

 if (tree->right) {
 #pragma omp task
 compute(right);
 }
}

int main() {
 int i;
 tree_t tree;
 init_tree(tree);

 #pragma omp parallel
 {
 #pragma omp task
 start_background_work();

 #pragma omp master
 for (i=0; i<max_steps; i++) {
 #pragma omp taskgroup
 {
 #pragma omp task
 compute(tree);
 } // wait on ALL tasks completed
 }
 } // only now is background work to
 // be complete
 print_results();
}

 85

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructSIMD construct
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 86

Task dependence

• a new clause for task construct
• list items – can be array sections and must be

identical storage or disjoint storage
• dependent task – cannot be executed until its

predecessor tasks have completed.
• predecessor task – a task that must complete

before its dependent tasks can be executed.
• dependence-type :

– in: the generated task will be a dependent task
of all previously generated sibling tasks that
reference at least one of the list items in an out
or inout clause

– out, inout: the generated task will be a
dependent task of all previously generated
sibling tasks that reference at least one of the
list items in an in, out, or inout clause

depend(dependece-type: list)

dependence-type:
• in
• out
• inout

task
(out:x) task

(inout:x)

task
(in:x)

task
(out:y)

 87

Task dependence – example
// x and y are shared
#pragma omp task depend(out: x,y)
{ ... } //

A
#pragma omp task depend(inout: x)
{ ... } //

B
#pragma omp task depend(inout: y)
{ ... } //

C
#pragma omp task depend(in: x,y)
{ ... } //

D

A -> B
A –> C
B,C -> D

// x and y are shared

#pragma omp task depend(out: x)

{ ... } // A

#pragma omp task depend(out: x)

{ ... } // B

A -> B

 88

Task dependence – example
// x and y are shared
#pragma omp task depend(out: x)
{ ... } // A
#pragma omp task depend(out: x)
{ ... } // B
#pragma omp task depend(in: x,y)
{ ... } // C

A -> B -> C

// x and y are shared

#pragma omp task depend(in: x)

{ ... } //
A

#pragma omp task depend(in: x)

{ ... } //
B

no dependency here

 89

Task dependence – example

void matmul_block(int N, int BS, float *A, float *B, float *C);
// BS divides perfecty N
void matmul(int N, int BS, float A[N][N], float B[N][N], float

C[N][N]) {
 int i, j, k;
 for (i = 0; i < N; i+=BS) {
 for (j = 0; j < N; j+=BS) {
 for (k = 0; k < N; k+=BS) {

#pragma omp task depend(in:A[i:BS][k:BS],B[k:BS][j:BS]) \
 depend inout:C[i:BS][j:BS])
 matmul_block(N, BS, &A[i][k], &B[k][j], &C[i][j]);
 }
 }
 }
}

 90

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 91

User-defined reduction

• in pre-4.0, reduction only applies to
intrinsic/builtin types and specific operators

• types
– (C/C++) char, int, float, double, ...
– (Fortran) integer, real, complex, ...

• operators
– min, max, +, -, etc

• a request from the user community – to have a
more flexible reduction construct that allows
users to define their own types etc.

 92

User-defined reduction

• 4.0 extends the reduction construct to allow
user-defined types and user-defined operators

• the feature didn’t make it to 3.1 due to various
issues

• add a declare reduction directive that
associates data type and its corresponding
reduction operation

• also include the initialization of the private copies
of the reduction variable

• enhance reduction clause for the user-defined
reduction identifier/operator

 93

User-defined reduction – declare
reduction directive

reduction-identifier: to identify a reduction on specific type(s) and operator (e.g.
myAdd, +)

type: user-defined types or intrinsic types (e.g. myType, float, int)
combiner: how the reduction variables combined to the final result (e.g. an

expression, omp_out=omp_out+omp_in; a routine,
myAddroutine(...))

initializer: how to initialize the private copies for the reduction variable (e.g. an
expression, omp_priv=0; or a routine, initMyType(omp_priv))

#pragma omp declare reduction(reduction-identifier:
typename-list: combiner) [initializer-clause] new-line

!$omp declare reduction(reduction-identifier:
type-list: combiner) [initializer-clause]

special variable identifiers:
• not actual variables
• omp_in, omp_out: used by the combiner to combine partial results to the final

value
• omp_priv: refer to the storage to be initialized

 94

User-defined reduction – example

typedef struct {
 double real;
 double imag;
} complex_t;

complex_t complex_add(complex_t a, complex_t b) {
 complex_t c;
 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;
 return c;
}
#pragma omp declare reduction(cmplxAdd: complex_t:

omp_out=complex_add(omp_out, omp_in)) initializer(
omp_priv={0.0, 0.0})

 95

User-defined reduction

• this example is equivalent to the reduction in 3.1

#pragma omp declare reduction(+: int, float: omp_out+=omp_in) \
 initializer(omp_priv=0)
#pragma omp declare reduction(*: int, float: omp_out=omp_out*omp_in) \
 initializer(omp_priv=1)
 ...
 int x;
 float z;
#pragma omp parallel reduction(+: x)
{
 x = x + 1;
}
#pragma omp parallel reduction(+: z)
{
 z = z*2.0;
}

 96

User-defined reduction – example

type dt
 integer :: i
 real :: x
end type
interface
 subroutine addDT(x, y)
 type(dt), intent(in) :: x
 type(dt), intent(inout) :: y
 end subroutine
end interface

!$omp declare reduction(dtAdd: dt :
addDT(omp_in, omp_out))
initializer(initDT(omp_priv))

 97

User-defined reduction – example

typedef struct {
 double real;
 double imag;
} complex_t;

complex_t complex_add(complex_t
a, complex_t b) {

 complex_t c;
 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;
 return c;
}

#pragma omp declare
reduction(cmplxAdd:
complex_t:
omp_out=complex_add(omp_out,
omp_in))
initializer(omp_priv={0.0,
0.0})

complex_t x, y;

#pragma omp parallel for
reduction(cmplxAdd: x)

 for (i=0; i<N; i++) {
 x = complex_add(x, y);
 }

x = (complex_t) {0.0, 0.0};
#pragma omp parallel

num_threads(48)
reduction(cmplxAdd: x)

{
 x = (complex_t) {1.0, -1.0};
}
// output: x={48., -48.}

 98

User-defined reduction – example

type dt
 integer :: i
 real :: x
end type

interface
 subroutine addDT(x, y)
 type(dt), intent(in) :: x
 type(dt), intent(inout) :: y
 end subroutine
end interface

!$omp declare reduction(dtAdd :
dt : addDT(omp_in, omp_out))
initializer(initDT(omp_priv)
)

type(dt) :: x, y

!$omp parallel for
reduction(dtAdd: x)

 do i=0, N
 call addDT(x, y)
 enddo

x = dt(0, 0.0)
!$omp parallel num_threads(48)

reduction(dtAdd: x)
{
 x = dtAdd(1, -1.0)
}
// output: x={48, -48.}

 99

New features

• device constructs (a.k.a. accelerator support)device constructs (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructsSIMD constructs
• cancellation constructs (a.k.a. error model)cancellation constructs (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extension
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 100

Atomic construct extension

• Support atomic swap
– using capture clause
– #pragma omp atomic capture
{
 v = x;
 x = expr;
}

• Support more forms
– x = expr binop x;

• [3.1] x = x binop expr;
– { v = x; x = expr binop x; }
– { x = expr binop x; v = x; }
– { v = x; x = expr; }
– v = x = x binop expr;
– v = x = expr binop x;

 101

Atomic construct extension

• Support sequentially consistent atomic constructs
• Provide the same semantic for C11/C++11
memory_order_seq_cst and
memory_order_relaxed atomic operations

• Add seq_cst clause
• “Any atomic construct with a seq_cst clause forces

the atomically performed operation to include an implicit
flush operation without a list.”

 102

New features

• device construct (a.k.a. accelerator support)device construct (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• SIMD constructSIMD construct
• cancel construct (a.k.a. error model)cancel construct (a.k.a. error model)
• thread affinitythread affinity
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• user-defined reductionuser-defined reduction
• atomic construct extensionatomic construct extension
• OMP_DISPLAY_ENV environment variable
• partial Fortran 2003 supportpartial Fortran 2003 support

 103

OMP_DISPLAY_ENV environment
variable

• display the OpenMP version number
• display the value of the ICV’s associated with

the environment variables
• useful for users to find out the default settings,

runtime version etc.

 104

OMP_DISPLAY_ENV environment
variable
OPENMP DISPLAY ENVIRONMENT BEGIN
 OMP_DISPLAY_ENV='TRUE'

 _OPENMP='201107'
 OMP_DYNAMIC='FALSE'
 OMP_MAX_ACTIVE_LEVELS='5'
 OMP_NESTED='FALSE'
 OMP_NUM_THREADS='80'
 OMP_PLACES='{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15},{16,17,18,19},

{20,21,22,23},{24,25,26,27},{28,29,30,31},{32,33,34,35},{36,37,38,39},
{40,41,42,43},{44,45,46,47},{48,49,50,51},{52,53,54,55},{56,57,58,59},
{60,61,62,63},{64,65,66,67},{68,69,70,71},{72,73,74,75},{76,77,78,79}'
cores

 OMP_PROC_BIND='FALSE'
 OMP_SCHEDULE='STATIC,0'
 OMP_STACKSIZE='4194304'
 OMP_THREAD_LIMIT='80'
 OMP_WAIT_POLICY='PASSIVE'
OPENMP DISPLAY ENVIRONMENT END

 105

OMP_DISPLAY_ENV environment
variable
OPENMP DISPLAY RUNTIME BEGIN
 LOMP_VERSION='0.31'
 BUILD_LEVEL='OpenMP Runtime Version: 13.01(C/C++) and 15.01(Fortran) Level: 130612 ID:

_Ld4lMtKrEeKCbrnTkssZtQ'
 BUILT='xlC, level=12.1.0.0'
 BUILDTIME='Jun 12 2013, 16:14:57'
 TARGET='Linux, 32 bit'
OPENMP DISPLAY RUNTIME END

OPENMP DISPLAY ENVIRONMENT BEGIN
 OMP_DISPLAY_ENV='VERBOSE'

 ...
 XLSMPOPTS=' DELAYS=1000'
 XLSMPOPTS=' NOSTACKCHECK'
 XLSMPOPTS=' PARTHDS=80'
 XLSMPOPTS=' PARTHRESHOLD= 0.02'
 XLSMPOPTS=' PROFILEFREQ=0'
 XLSMPOPTS=' SCHEDULE=STATIC=0'
 XLSMPOPTS=' SEQTHRESHOLD= 0.02'
 XLSMPOPTS=' SPINS=64'
 XLSMPOPTS=' STACK=4194304'
 XLSMPOPTS=' USRTHDS=0'
 XLSMPOPTS=' YIELDS=64'
OPENMP DISPLAY ENVIRONMENT END

 106

New features

• atomic construct extensionatomic construct extension
• taskgroup constructtaskgroup construct
• task dependencetask dependence
• cancel construct (a.k.a. error model)cancel construct (a.k.a. error model)
• OMP_DISPLAY_ENV environment variableOMP_DISPLAY_ENV environment variable
• thread affinitythread affinity
• user-defined reductionuser-defined reduction
• SIMD constructSIMD construct
• device construct (a.k.a. accelerator support)device construct (a.k.a. accelerator support)
• array section syntax for C/C++array section syntax for C/C++
• partial Fortran 2003 support

 107

Other changes

• move examples (appendix A) out of spec

• re-organize the ICV table (splitting it into
three tables)

	OpenMP 4.0 features
	Slide 2
	New features
	Slide 4
	device constructs
	device constructs – execution model
	Slide 7
	Slide 8
	device constructs – device data model
	target data construct
	target and target data constructs - clauses
	target data construct - example
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	target construct
	Slide 18
	Slide 19
	Slide 20
	target construct - example
	Slide 22
	target and target data construct - example
	target and target data constructs - example
	Slide 25
	array section syntax for C/C++
	C/C++ array section syntax - examples
	Slide 28
	Slide 29
	Slide 30
	target constructs - example
	Slide 32
	target update construct
	target update construct - example
	declare target construct
	declare target constructs - example
	Slide 37
	Slide 38
	target data and target constructs – Jacobi example
	teams construct
	teams construct – runtime routines
	teams construct – example
	Slide 43
	distribute construct
	distribute construct – example
	Slide 46
	simd construct
	Slide 48
	simd construct – clause
	Slide 50
	Slide 51
	declare simd construct
	declare simd construct – clause
	loop SIMD construct
	Slide 55
	device and SIMD constructs – combination of constructs
	Slide 57
	cancellation constructs
	cancel construct
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	cancellation point construct
	cancel construct - example
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Thread affinity
	Slide 73
	Thread affinity – clause and env var
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	taskgroup construct
	taskgroup construct – example
	taskgroup construct - example
	Slide 85
	Task dependence
	Task dependence – example
	Slide 88
	Slide 89
	Slide 90
	User-defined reduction
	Slide 92
	User-defined reduction – declare reduction directive
	User-defined reduction – example
	Slide 95
	Slide 96
	User-defined reduction – example
	Slide 98
	Slide 99
	Atomic construct extension
	Slide 101
	Slide 102
	OMP_DISPLAY_ENV environment variable
	Slide 104
	Slide 105
	Slide 106
	Other changes

