Workflow for extreme-scale systems

Presenter: Michael Wilde wilde@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory
University of Chicago/Argonne Computation Institute
Outline

- Overview – context of workflow for science and engineering
- Workflow environments
- Expressing workflows – tools and programming models
- Workflow issues for extreme scale
- IO performance envelopes for workflow
- Expressing workflows in Swift
- Hands-on workflow examples and exercises using Swift
 - Language basics using Swift/K
 - Running Swift/T on Blue Gene/Q
 - Running Swift/K on Tukey
Definitions

- **Workflow:** the execution of a set of application programs
 - Often for a diverse set of application programs
 - Often with logical and physical dependencies
 - Logical: data dependencies
 - Physical: resource dependencies (space, processor, solution priorities)
 - Scripting is one way to implement workflows (Ad-hoc, Parallel libraries, Swift)
 - Generation of engine-specific input is another (DAGMan, Pegasus, Galaxy, Kepler)

- **Scripting:** higher-level dynamic programming
 - J. Ousterhout: “Scripting: Higher level programming for the 21st century”

- **High throughput computing (HTC)**

- **Many-task computing (MTC)**

- **Dataflow**

- **Data parallel vs. task parallel**
 - Workflow is almost always task-parallel at its outer levels
 - SPMD: typified by MPI
 - MPMD: multiple programs, multiple data – more typical of workflow
Many-task Applications

- Many-task Computing applications assemble existing parallel or sequential programs
- Those programs read and write data to a filesystem (but this limitation is being overcome...)
- Applications often have multiple stages
- Task dependencies between stages are in the form of file production and consumption
- Can have very high rates (e.g., hundreds per second) of very short tasks (minutes down to sub-second)

Slide courtesy of Zhao Zhang
When do you need workflow?
Typical application: protein-ligand docking for drug screening

- $O(10)$ proteins implicated in a disease
- $O(100K)$ drug candidates
- Tens of fruitful candidates for wetlab & APS
- 1M compute jobs

Work of M. Kubal, T.A. Binkowski, And B. Roux

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm
Parallel BLAST as a workflow

Based on script of D. Matthog by Z.Zhang, L. Gahelha

<table>
<thead>
<tr>
<th>Stage</th>
<th># Tasks</th>
<th># In</th>
<th># Out</th>
<th>In (MB)</th>
<th>Out (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fastasplit</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>4039</td>
<td>4039</td>
</tr>
<tr>
<td>formatdb</td>
<td>N</td>
<td>N</td>
<td>3N</td>
<td>4039</td>
<td>4400</td>
</tr>
<tr>
<td>blastp</td>
<td>N*M</td>
<td>N+M</td>
<td>N*M</td>
<td>73NM</td>
<td>2.4NM</td>
</tr>
<tr>
<td>merge</td>
<td>M</td>
<td>N*M</td>
<td>M</td>
<td>2.4NM</td>
<td>4.8*M</td>
</tr>
</tbody>
</table>
Can workflow scale?
BLAST workflow lags MPI BLAST by \(\sim 5\% \)

Climate models are continuing to increase both their resolution and the number of variables resulting in multi-terabyte model outputs. This large volume of data overwhelms the series of processing steps used to derive climate averages and produce visualizations. Since many of the tasks in the post-processing sequence are independent, we have applied task-parallel scripting to speed up the post-processing. We have re-written portions of the complex shell script that process output from the Community Atmosphere Model in Swift, a high-level implicitly-parallel scripting language that uses data dependencies to automatically parallelize a workflow. This has resulted in valuable speedups in model analysis for this heavily-used procedure.

Work of: J Dennis, M Woitasek, S Mickelson, R Jacob

http://swift-lang.org
Spatial normalization of functional MRI runs

Dataset-level workflow

Expanded (10 volume) workflow

http://swift-lang.org
Numerous many-task workflow applications

- Simulation of super-cooled glass materials
- Protein folding using homology-free approaches
- Climate model analysis and decision making in energy policy
- Simulation of RNA-protein interaction
- Multiscale subsurface flow modeling
- Modeling of power grid for OE applications
TARGET RESOURCES

- System types
 - Clouds
 - Clusters (campus, department)
 - Petascale HPC systems
 - Grids (OSG, LCG, ...)
 - Multi/many-cores – 256 core nodes!

- Patterns
 - A single big HPC machine
 - HPC Machine with attached resources
 - Extend campus cluster with cloud
 - Many HPC machines
 - Many combinations of above

Clouds: Amazon EC2, XSEDE Wispy, ...
Diffuse scattering workflows

- **Sample**
- **Material composition**: La 60% Sr 40% → Simulated structure → Simulated scattering
- **Evolutionary optimization**
- **Knowledge base**: Past experiments; simulations; literature; expert knowledge
- **Knowledge-driven decision making**
- **Select experiments (mins—hours)**
- **Detect errors (secs—mins)**
- **Contribute to knowledge base**
- **Simulations driven by experiments (mins—days)**
- **Experimental scattering**
Architecture realization for APS experiments

- **Experiment hutch**: Data Capture Host
 - **S1dserv**: (200 TB)
 - **sector dservers**

- **User**: Swift
 - Swift-enabled Galaxy Portal

- **Data Transfer**
 - **Catalog**
 - **Globus SaaS services**
 - Swift and Globus paths for jobs, data, and metadata

- **GridFTP parallel data path**

- **1 PB**
 - **GridFTP**
 - APS Data Archive
 - petrel (1 PB)

- **GridFTP**
 - APS Experiment Data Server
 - clutch

- **5 TB**
 - **Swift**
 - Fast Skim Cluster
 - orthros (320)

- **External Compute resources**
 - ALCF
 - mira (768K), tukey (1,000)
 - LCRC
 - blues, fusion (10K)
 - Cloud
 - pads (160), EC2 (1,000s)
Workflow patterns and issues

- Parameter sweeps
- Ensembles
- Data analysis
- Scaling studies
- Specialized patterns: uncertainty quantification, branch and bound
- Programming an application from libraries of applications
- Dataflow vs control flow
 - Ultimately, workflow is essentially dataflow
 - The difference is who writes and thinks about the dataflow
- Pipelining and concurrency (and how dataflow is good at this)
- Workflow manager drives application (outer workflow, inner scripts)
- Workflow manager embedded in application (outer scripts, inner workflow)
PROGRAMMING MODELS

- MPI, OpenMP, Hybrid
- Map reduce
- Record processing (with functions) vs file processing (with apps)
- Generating workflows for other engines
- Dynamically interpret the workflow
- Script mode (for Blue Gene, Cray systems)
- Dependent job processing
A partial sampler of workflow tools

- **High throughput tools**
 - Condor
 - Cluster schedulers / local resource managers (PBS, SGE, Cobalt, LSF, LL, SLURM,..)

- **Workflow task dependency managers**
 - DAGMan
 - Schedulers with job dependencies

- **Integrated dependency and data management**
 - Pegasus

- **Dataflow languages**
 - Dryad, Ciel, Swift

- **Big data solutions**
 - Hadoop, Spark, Zookeeper, Uzi

- **Multicore tools**
 - GNU Parallel, iPython parallel support

- **Languages with parallel support**
 - Py_nnn, Java_nnn, Haskell, R, MATLAB => PSOM, Parallel BASH (Walker)
A *sampler of workflow tools* (con’t)

- Interactive workflow frameworks
 - Galaxy
 - Taverna
 - Kepler
 - LONI Pipeline (neuroscience)
 - Microsoft Workflow manager
 - Airivata

- Science gateways
Galaxy workflow portal

Data Management

Data Analysis

http://swift-lang.org
Two fundamental problems in scaling workflow

- **Task rate**
 - 60,000 cores / 60 sec/task = 1,000 tasks per second!

- **Data management**
 - 1K tasks / sec may generate 5GB/sec – not so bad if blocked efficiently
 - 1K tasks / sec may generate 2,000 files / sec – not so easy
Multi-level scheduling: pilot jobs can improve task rate performance

- Pilot jobs are long-running meta-jobs
 - allocate compute resources and run many smaller jobs
- PANDA
 - Widely used on OSG and LCG by the ATLAS physics collaboration
- GWMS using Condor Glide-Ins
 - A generalized solution widely deployed on OSG
- SAGA and Bigjob
 - Obtaining good results on XSEDE resources
- Java CoG Coasters
 - Allocates/frees resources based on demand
 - Peaks at 600 tasks per second
- Falkon
 - Research system reached 3,000 tasks per second and 1B tasks
Workflow patterns and data exchange

Filesystem Access Patterns:
- File Creation
- File Open
- 1-to-1 Read
- N-to-1 Read
- Few-to-1 Read
- 1-to-1 Write

Some engineering problems and research challenges for extreme workflow

- **Engineering**
 - Diversity of interfaces, hard to tame and test, hard to abstract
 - Inter-language bindings and data interchange – challenge to usability
 - Integration with extreme-scale networks, runtimes and language stacks

- **Research**
 - Economics and policy-based scheduling
 - Retry/recovery of large distributed task and data graphs
 - Power management
 - Load balancing
 - Programming models: integration of dataflow and big-data techniques and tools
Summary: Challenges of workflow at extreme scale

- Inter-resource coordination
- Hybrid programming tools
- The challenges of data motion
 - Data management strategies and system envelopes
- The challenges of task scheduling and dispatch
 - Task rates and task distribution
 - Resource utilization vs. time to solution
- Workflow expression and separation of concerns
- Provenance: tracking what was done
The Swift parallel scripting language

Presenter: Michael Wilde wilde@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory
University of Chicago/Argonne Computation Institute
- Parallel scripting language for clusters, clouds & grids
 - For writing loosely-coupled scripts of application programs and utilities linked by exchanging files
 - Can call scripts in shell, python, R, Octave, MATLAB, ...

- Swift does 3 important things for you:
 - Makes parallelism transparent – with functional dataflow
 - Makes basic failure recovery transparent
 - *Makes computing location transparent* – can run your script on multiple distributed sites and diverse computing resources (from desktop to petascale)
Swift programming model: all progress driven by concurrent dataflow

```swift
(int r) myproc (int i, int j) {
    int f = F(i);
    int g = G(j);
    r = f + g;
}
```

- \(F() \) and \(G() \) implemented in native code or external programs
- \(F() \) and \(G() \) run in concurrently in different processes
- \(r \) is computed when they are both done

- This parallelism is *automatic*
- Works recursively throughout the program’s call graph
Swift programming model

- **Data types**
 - `int i = 4;`
 - `int A[];`
 - `string s = "hello world";`

- **Mapped data types**
 - `file image<"snapshot.jpg">;`

- **Structured data**
 - `image A[]<array_mapper...>;`
 - `type protein {
 file pdb;
 file docking_pocket;
}
 protein p<ext; exec=protein.map>;`

- **Conventional expressions**
 - `if (x == 3) {
 y = x+2;
 s = @strcat("y: ", y);
 }

- **Parallel loops**
 - `foreach f,i in A {
 B[i] = convert(A[i]);
 }

- **Data flow**
 - `analyze(B[0], B[1]);`
 - `analyze(B[2], B[3]);`

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011
Language-driven: *Swift* parallel scripting

Swift runs parallel scripts on a broad range of parallel computing resources.
Programming model:
all execution driven by parallel data flow

```c
(int r) myproc (int i)
{
    j = f(i);
    k = g(i);
    r = j + k;
}
```

- f() and g() are computed in parallel
- myproc() returns r when they are done

- This parallelism is *automatic*
- Works recursively throughout the program’s call graph
Encapsulation enables distributed parallelism

Encapsulation is the key to transparent distribution, parallelization, and automatic provenance capture
app() functions specify cmd line argument passing

To run:
psim -s 1ubq.fas -pdb p -t 100.0 -d 25.0 >log

In Swift code:

```swift
app (PDB pg, File log) predict (Protein seq, Float t, Float dt)
{
    psim "-c" "-s" @pseq.fasta "-pdb" @pg "–t" temp "-d" dt;
}

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
File log;

(structure, log) = predict(p, 100., 25.);
```
Large scale parallelization with simple loops

1000 Runs of the “predict” application

```plaintext
foreach sim in [1:1000] {
    (structure[sim], log[sim]) = predict(p, 100., 25.);
}
result = analyze(structure)
```

Analyze()
Nested parallel prediction loops in Swift

```swift
1. Sweep( )
2. {
3.    int nSim = 1000;
4.    int maxRounds = 3;
5.    Protein pSet[ ] <ext; exec="Protein.map">;
6.    float startTemp[ ] = [ 100.0, 200.0 ];
7.    float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 ];
8.    foreach p, pn in pSet {
9.        foreach t in startTemp {
10.           foreach d in delT {
11.              ItFix(p, nSim, maxRounds, t, d);
12.           }
13.        }
14.    }
15.}
16. Sweep();
```

10 proteins x 1000 simulations x
3 rounds x 2 temps x 5 deltas x
= 300K tasks
Spatial normalization of functional run

Dataset-level workflow

Expanded (10 volume) workflow

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm
Complex scripts can be well-structured
programming in the large: fMRI spatial normalization script example

(Run snr) **functional** (Run r, NormAnat a,
Air shrink)
{
 Run yroRun = reorientRun(r, "y");
 Run roRun = reorientRun(yroRun, "x");
 Volume std = roRun[0];
 Run rndr = random_select(roRun, 0.1);
 AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");
 Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");
 Volume meanRand = softmean(reslicedRndr, "y", "null");
 Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
 Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);
 Run nr = reslice_warp_run(boldNormWarp, roRun);
 Volume meanAll = strictmean(nr, "y", "null")
 Volume boldMask = binarize(meanAll, "y");
 snr = gsmoothRun(nr, boldMask, "6 6 6");
}
Dataset mapping example: fMRI datasets

```swift
// On-Disk Data Layout

// Dataset mapping example: fMRI datasets

// Swift’s in-memory data model

type Study {
    Group g[ ];
}

type Group {
    Subject s[ ];
}

type Subject {
    Volume anat;
    Run run[ ];
}

type Run {
    Volume v[ ];
}

type Volume {
    Image img;
    Header hdr;
}
```

Mapping function or script
Nested loops can generate massive parallelism

Protein folding example:

Sweep()
{
 int nSim = 1000;
 int maxRounds = 3;
 Protein pSet[] <ext; exec="Protein.map">;
 float startTemp[] = [100.0, 200.0];
 float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];
 foreach p, pn in pSet {
 foreach t in startTemp {
 foreach d in delT {
 ItFix(p, nSim, maxRounds, t, d);
 }
 }
 }
}

Sweep();

10 proteins x 1000 simulations x
3 rounds x 2 temps x 5 deltas
= 300K tasks
Flexible worker-node agents for execution and data transport

- Main role is to efficiently run Swift tasks on allocated compute nodes, local and remote
- Handles short tasks efficiently
- Runs over Grid infrastructure: Condor, GRAM
- Also runs with few infrastructure dependencies
- Can optionally perform data staging
- Provisioning can be automatic or external (manually launched or externally scripted)

http://swift-lang.org
Worker architecture handles diverse environments

Submit site

Swift

```swift
file a = compute(b, c);
```

Karajan

```xml
<execute task="compute"/>
```

API

Coaster Client

socket

Remote site

Coaster Service

Worker

Worker

Worker

Worker

sockets

sockets
Implementation: The job packing problem (II) (also not to scale)

- Commit jobs to blocks and adjust as necessary based on actual walltime

- The actual packing problem is NP-complete
- Solved using a greedy algorithm: always pick the largest job that will fit in a block first
Swift is a parallel scripting system for grids, clouds and clusters
- for loosely-coupled applications - application and utility programs linked by exchanging files

Swift is easy to write: simple high-level C-like functional language
- Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one Java application
- Untar and run – acts as a self-contained Grid client

Swift is fast: uses efficient, scalable and flexible “Karajan” execution engine.
- Scaling close to 1M tasks – .5M in live science work, and growing

Swift usage is growing:
- applications in neuroscience, proteomics, molecular dynamics, biochemistry, economics, statistics, and more.

Try Swift! http://swift-lang.org (Swift/K) and www.mcs.anl.gov/exm (Swift/T)