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Computational Science  

Á Use of computer simulation as a tool for 
greater understanding of the real world 
ï Complements experimentation and theory 
Á Problems are increasingly computationally 

expensive 
ï Large parallel machines needed to perform 

calculations 
ï Critical to leverage parallelism in all phases 
Á Data access is a huge challenge 
ï Using parallelism to obtain performance 
ï Finding usable, efficient, and portable 

interfaces 
ï Understanding and tuning I/O 

Visualization of entropy in Terascale 

Supernova Initiative application. Image from 

Kwan-Liu Maôs visualization team at UC Davis. 

IBM Blue Gene/Q system at Argonne 

National Laboratory. 

2 



Goals and Outline  

ÁGoals: 
ï Share our view of HPC I/O hardware and software 
ï Discuss interfaces that you can use to access I/O resources 
ï Point to emerging and future trends in HPC I/O 

 

ÁOutline (roughly) 
ïWays of thinking about I/O systems 
ï How It Works: HPC I/O Systems 
ï Using I/O systems 
ï Emerging and future trends 

 

ÁNotes 
ï¢ƘŜǊŜ ǿƛƭƭ ōŜ ǎƭƛŘŜǎ ǘƘŀǘ ŀǊŜ ƘƛŘŘŜƴΣ ŘƻƴΩǘ ōŜ ŀƭŀǊƳŜŘ 
ï After the morning break, ǿŜΩƭƭ ōŜ ƭƻƻƪƛƴƎ ǘƘǊƻǳƎƘ ǎƻƳŜ ƻŦ ǘƘƛǎ ŎƻŘŜ: 

http://www.mcs.anl.gov/mpi/tutorial/advmpi/mpi2tutorial.tar.gz 
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About Us (Before Lunch)  

ÁRob Latham 
ï Principle Software Development Specialist, MCS Division, Argonne 

National Laboratory 
ï ROMIO MPI-IO implementation 
ï Parallel netCDF high-level I/O library 
ï Application outreach 

ÁRob Ross 
ï Computer Scientist, MCS Division, Argonne National Laboratory 
ï Parallel Virtual File System 
ï Deputy Director, Scientific Data Management, Analysis, and Visualization 

Institute (SDAV) 
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About Us (After Lunch)  

ÁQuincey Koziol 
ï HDF5 
ï Department of Energy Fast Forward: Exascale Storage 

ÁAvery Ching 
ï Facebook 
ï (In past life) HPC I/O and wƻō[Ωǎ office-mate 

ÁRachana Ananthakrishnan 
ï Globus 
ï Jointly at Argonne 
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Thinking about HPC I/O Systems  



HPC I/O Systems 

HPC I/O system is the hardware and software that assists in 
accessing data during simulations and analysis and retaining 
data between these activities. 
ÁHardware: disks, disk enclosures, servers, networks, etc. 
ÁSoftware: parallel file system, libraries, parts of the OS 

 
Á¢ǿƻ άŦƭŀǾƻǊǎέ ƻŦ Lκh ŦǊƻƳ ŀǇǇƭƛŎŀǘƛƻƴǎΥ 
ï Defensive: storing data to protect results from data loss due to system 

faults 
ï Productive: storing/retrieving data as part of the scientific workflow 
ï Note: Sometimes these are combined (i.e., data stored both protects 

from loss and is used in later analysis) 

ÁάCƭŀǾƻǊέ ƛƴŦƭǳŜƴŎŜǎ ǇǊƛƻǊƛǘƛŜǎΥ 
ï Defensive I/O: Spend as little time as possible 
ï Productive I/O: Capture provenance, organize for analysis 
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Data Complexity in Computational Science  

Á Applications have data models 
appropriate to domain 
ï Multidimensional typed arrays, images 
ŎƻƳǇƻǎŜŘ ƻŦ ǎŎŀƴ ƭƛƴŜǎΣ Χ 

ï Headers, attributes on data 

 
Á I/O systems have very simple data 

models 
ï Tree-based hierarchy of containers 
ï Some containers have streams of bytes 

(files) 
ï Others hold collections of other 

containers (directories or folders) 

 
Á Mapping from one to the other is 

increasingly complex. 

Right Interior 

Carotid Artery 

Platelet 

Aggregation 

Model complexity: 

Spectral element mesh (top) 

for thermal hydraulics 

computation coupled with 

finite element mesh (bottom) 

for neutronics calculation. 

Scale complexity: 

Spatial range from 

the reactor core in 

meters to fuel pellets 

in millimeters. Images from T. Tautges (ANL) (upper left), M. Smith 

(ANL) (lower left), and K. Smith (MIT) (right). 
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Data Volumes in Computational Science  

Science teams are routinely working with tens and hundreds of 
terabytes (TBs) of data. 

PI Project 
On-line Data 

(TBytes) 
Off-line Data 

(TBytes) 

Lamb Supernovae Astrophysics 100 400 

Khokhlov Combustion in Reactive Gases 1 17 

Lester CO2 Absorption 5 15 

Jordan Seismic Hazard Analysis 600 100 

Washington Climate Science 200 750 

Voth Energy Storage Materials 10 10 

Vashista Stress Corrosion Cracking 12 72 

Vary Nuclear Structure and Reactions 6 30 

Fischer Reactor Thermal Hydraulic Modeling 100 100 

Hinkel Laser-Plasma Interactions 60 60 

Elghobashi Vaporizing Droplets in a Turbulent Flow 2 4 

Data requirements for select 2012 INCITE applications at ALCF (BG/P) 
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Data Volumes in Computational Science  

LǘΩǎ ƴƻǘ Ƨǳǎǘ ŎƘŜŎƪǇƻƛƴǘǎ ς scientists are reading large volumes 
of data into HPC systems as part of their science. 

Top 10 data producer/consumers instrumented with Darshan over the month of July, 2011.  
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Views of Data Access in HPC Systems 

¢ǿƻ ǳǎŜŦǳƭ ǿŀȅǎ ƻŦ ǘƘƛƴƪƛƴƎ ŀōƻǳǘ Řŀǘŀ ŀŎŎŜǎǎ ŀǊŜ ǘƘŜ άƭƻƎƛŎŀƭέ 
ǾƛŜǿΣ ŎƻƴǎƛŘŜǊƛƴƎ Řŀǘŀ ƳƻŘŜƭǎ ƛƴ ǳǎŜΣ ŀƴŘ ǘƘŜ άǇƘȅǎƛŎŀƭέ ǾƛŜǿΣ 
the components that data resides on and passes through. 

I/O Hardware 

Application 

Storage Data Model 

Transformations 

Application Data Model 

I/O Hardware 

Compute Node Memory 

System Network Data 

Movement 

Logical (data model) 

view of data access. 
Physical (hardware) 

view of data access. 
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Data Access in Past HPC Systems* 

For many years, application teams wrote their own translations 
from their data models into files, and hardware model was 
relatively simple. 

I/O Hardware 

Application 

Files (POSIX) 

Hand-coded Formatting 

Application Data Model 

Servers with RAID 

Compute Node Memory 

Ethernet Switch Data 

Movement 

Logical (data model) 

view of data access. 
Physical (hardware) 

view of data access. 

ϝ ²ŜΩǊŜ ǎƛƳǇƭƛŦȅƛƴƎ ǘƘŜ ǎǘƻǊȅ ƘŜǊŜ ǎƻƳŜǿƘŀǘ Χ 
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Data Access in Current Large -scale Systems 

Current systems have greater support on the logical side, more 
complexity on the physical side. 

I/O Hardware 

Application 

Files (POSIX) 

I/O Transform Layer(s) 

Data Model Library 

SAN and RAID Enclosures 

Compute Node Memory 

Internal System Network(s) 

Data 

Movement 

Logical (data model) 

view of data access. 
Physical (hardware) 

view of data access. 

I/O Gateways 

External Sys. Network(s) 

I/O Servers 
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Thinking about HPC I/O Systems  

ÁTwo (intertwined) challenges when thinking about data 
access: 
ï Mapping application data model onto storage 
ï5ǊƛǾƛƴƎ ŀƭƭ ǘƘŜ ŎƻƳǇƻƴŜƴǘǎ ǎƻ ȅƻǳ ŘƻƴΩǘ ƘŀǾŜ ǘƻ ǿŀƛǘ ǘƻƻ ƭƻƴƎ ŦƻǊ Lκh 

ÁOften these two can be at odds 
ïάwƛŎƘŜǊέ Řŀǘŀ ƳƻŘŜƭǎ ƳƛƎƘǘ ǊŜǉǳƛǊŜ ƳƻǊŜ Lκh 
ï Transformations that make writing fast might make reading slow  

(or vice versa) 

ÁLots of computer science R&D has gone into tackling these 
two problems 
 

ÁNext we will dive down into some of the details of HPC I/O 
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How It Works: HPC I/O Systems 



How It Works  

ÁHPC I/O systems provide a  
file system view of stored data 
ï File (i.e., POSIX) model of access 
ï Shared view of data across the system 
ï Access to same data from the outside  

(e.g., login nodes, data movers) 
 

ÁTopics: 
ï How is data stored and organized? 
ïWhat support is there for application 

data models? 
ï How does data move from clients to 

servers? 
ï How is concurrent access managed? 
ïWhat transformations are typically 

applied? 

 

File system view consists of 

directories (a.k.a. folders) and files. 

Files are broken up into regions 

called extents or blocks. 
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Storing and Organizing Data: Storage Model  

HPC I/O systems are built around a parallel file system that 
organizes storage and manages access. 
 
ÁParallel file systems (PFSes) are distributed systems that 

provide a file data model (i.e., files and directories) to users 
ÁMultiple PFS servers manage access to storage, while PFS 

client systems run applications that access storage 
ÁPFS clients can access storage resources in parallel! 
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Reading and Writing Data (etc.)  

PFS servers manage local 

storage, services incoming 

requests from clients. 

PFS client software 

requests operations on 

behalf of applications. 

Requests are sent as 

messages (RPC-like), often 

to multiple servers. 

Requests pass over the 

interconnect, thus each 

request incurs some 

latency. 

RAID enclosures protect 

against individual disk 

failures and map regions of 

data onto specific devices. 
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Leadership Systems have an additional HW layer  

Compute nodes run 

application processes. Data 

model software also runs 

here, and some I/O 

transformations are performed 

here. 

I/O forwarding nodes (or 

I/O gateways) shuffle data 

between compute nodes 

and external resources, 

including storage.  

Storage nodes run the 

parallel file system. 

External 

network 
Disk 

arrays 
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Request Size and I/O Rate  

Interconnect latency has a significant impact on effective rate 
of I/O. Typically I/Os should be in the O(Mbytes) range. 

Tests run on 2K processes of IBM Blue Gene/P at ANL. 
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Data Distribution in Parallel File Systems  

Distribution across multiple servers allows concurrent access.  
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Storing and Organizing Data: Application Model(s)  

Application data models are supported via libraries that map 
down to files (and sometimes directories). 
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HPC I/O Software Stack 

The software used to provide data model support and to 
ǘǊŀƴǎŦƻǊƳ Lκh ǘƻ ōŜǘǘŜǊ ǇŜǊŦƻǊƳ ƻƴ ǘƻŘŀȅΩǎ Lκh ǎȅǎǘŜƳǎ ƛǎ ƻŦǘŜƴ 
referred to as the I/O stack. 

Data Model Libraries map 

application abstractions onto 

storage abstractions and 

provide data portability. 
 

HDF5, Parallel netCDF,  ADIOS 

I/O Middleware organizes 

accesses from many processes, 

especially those using collective  

I/O. 
 

MPI-IO, GLEAN, PLFS 

 

I/O Forwarding transforms I/O 

from many clients into fewer, 

larger request; reduces lock 

contention; and bridges 

between the HPC system and 

external storage. 
 

IBM ciod, IOFSL, Cray DVS 

 

Parallel file system maintains 

logical file model and provides 

efficient access to data. 
 

PVFS, PanFS, GPFS, Lustre I/O Hardware 

Application 

Parallel File System 

Data Model Support 

Transformations 

23 



How It Works: HPC I/O Performance  



Managing Concurrent Access  

Files are treated like global shared memory regions. Locks are 
used to manage concurrent access: 
ÁFiles are broken up into lock units 
ÁClients obtain locks on units that they will access before 

I/O occurs 
ÁEnables caching on clients as well (as long as client has a lock, 

it knows its cached data is valid) 
ÁLocks are reclaimed from clients when others desire access  

If an access touches any 

data in a lock unit, the 

lock for that region must 

be obtained before access 

occurs. 
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Implications of Locking in Concurrent Access  
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I/O Transformations  

Software between the application and the PFS performs 
transformations, primarily to improve performance. 

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

ÁGoals of transformations: 
ï Reduce number of operations to 

PFS (avoiding latency) 
ï Avoid lock contention 

(increasing level of concurrency) 
ï Hide number of clients (more on 

this later) 

Á²ƛǘƘ άǘǊŀƴǎǇŀǊŜƴǘέ 
transformations, data ends 
up in the same locations in 
the file 
ï i.e., the file system is still aware 

of the actual data organization 

When we think about I/O 

transformations, we consider 

the mapping of data between 

application processes and 

locations in file. 
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Reducing Number of Operations  

Since most operations go over the network, I/O to a PFS incurs 
more latency than with a local FS. Data sieving is a technique to 
address I/O latency by combining operations: 
ÁWhen reading, application process reads a large region 

holding all needed data and pulls out what is needed 
ÁWhen writing, three steps required (below) 

Step 1: Data in region to be 

modified are read into 

intermediate buffer (1 read). 

Step 2 : Elements to be 

written to file are replaced 

in intermediate buffer. 

Step 3 : Entire region is 

written back to storage with 

a single write operation. 
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