
HPC I/O for Computational Scientists

Brent Welch
Panasas, Inc.
welch@panasas.com

William Gropp
University of Illinois
wgropp@illinois.edu

Katie Antypas
NERSC
kantypas@lbl.gov

Rusty Lusk
lusk@mcs.anl.gov

Rajeev Thakur
Argonne National Laboratory
thakur@mcs.anl.gov

Rob Latham and Rob Ross
Math and Computer Science Division
Argonne National Laboratory
robl@mcs.anl.gov, rross@mcs.anl.gov

Avery Ching
Facebook

Many thanks for their contributions go to:

Quincey Koziol
The HDF Group
koziol@hdfgroup.org

Rachana Ananthakrishnan
Computation Institute
ranantha@uchicago.edu

mailto:welch@panasas.com
mailto:wgropp@illinois.edu
mailto:kantypas@lbl.gov
mailto:kantypas@lbl.gov
mailto:kantypas@lbl.gov
mailto:lusk@mcs.anl.gov
mailto:thakur@mcs.anl.gov
mailto:robl@mcs.anl.gov
mailto:robl@mcs.anl.gov
mailto:rross@mcs.anl.gov
mailto:koziol@hdfgroup.org
mailto:ranantha@uchicago.edu

Computational Science

Á Use of computer simulation as a tool for
greater understanding of the real world
ï Complements experimentation and theory
Á Problems are increasingly computationally

expensive
ï Large parallel machines needed to perform

calculations
ï Critical to leverage parallelism in all phases
Á Data access is a huge challenge
ï Using parallelism to obtain performance
ï Finding usable, efficient, and portable

interfaces
ï Understanding and tuning I/O

Visualization of entropy in Terascale

Supernova Initiative application. Image from

Kwan-Liu Maôs visualization team at UC Davis.

IBM Blue Gene/Q system at Argonne

National Laboratory.

2

Goals and Outline

ÁGoals:
ï Share our view of HPC I/O hardware and software
ï Discuss interfaces that you can use to access I/O resources
ï Point to emerging and future trends in HPC I/O

ÁOutline (roughly)
ïWays of thinking about I/O systems
ï How It Works: HPC I/O Systems
ï Using I/O systems
ï Emerging and future trends

ÁNotes
ï¢ƘŜǊŜ ǿƛƭƭ ōŜ ǎƭƛŘŜǎ ǘƘŀǘ ŀǊŜ ƘƛŘŘŜƴΣ ŘƻƴΩǘ ōŜ ŀƭŀǊƳŜŘ
ï After the morning break, ǿŜΩƭƭ ōŜ ƭƻƻƪƛƴƎ ǘƘǊƻǳƎƘ ǎƻƳŜ ƻŦ ǘƘƛǎ ŎƻŘŜ:

http://www.mcs.anl.gov/mpi/tutorial/advmpi/mpi2tutorial.tar.gz

3

http://www.mcs.anl.gov/mpi/tutorial/advmpi/mpi2tutorial.tar.gz

About Us (Before Lunch)

ÁRob Latham
ï Principle Software Development Specialist, MCS Division, Argonne

National Laboratory
ï ROMIO MPI-IO implementation
ï Parallel netCDF high-level I/O library
ï Application outreach

ÁRob Ross
ï Computer Scientist, MCS Division, Argonne National Laboratory
ï Parallel Virtual File System
ï Deputy Director, Scientific Data Management, Analysis, and Visualization

Institute (SDAV)

4

About Us (After Lunch)

ÁQuincey Koziol
ï HDF5
ï Department of Energy Fast Forward: Exascale Storage

ÁAvery Ching
ï Facebook
ï (In past life) HPC I/O and wƻō[Ωǎ office-mate

ÁRachana Ananthakrishnan
ï Globus
ï Jointly at Argonne

5

Thinking about HPC I/O Systems

HPC I/O Systems

HPC I/O system is the hardware and software that assists in
accessing data during simulations and analysis and retaining
data between these activities.
ÁHardware: disks, disk enclosures, servers, networks, etc.
ÁSoftware: parallel file system, libraries, parts of the OS

Á¢ǿƻ άŦƭŀǾƻǊǎέ ƻŦ Lκh ŦǊƻƳ ŀǇǇƭƛŎŀǘƛƻƴǎΥ
ï Defensive: storing data to protect results from data loss due to system

faults
ï Productive: storing/retrieving data as part of the scientific workflow
ï Note: Sometimes these are combined (i.e., data stored both protects

from loss and is used in later analysis)

ÁάCƭŀǾƻǊέ ƛƴŦƭǳŜƴŎŜǎ ǇǊƛƻǊƛǘƛŜǎΥ
ï Defensive I/O: Spend as little time as possible
ï Productive I/O: Capture provenance, organize for analysis

7

Data Complexity in Computational Science

Á Applications have data models
appropriate to domain
ï Multidimensional typed arrays, images
ŎƻƳǇƻǎŜŘ ƻŦ ǎŎŀƴ ƭƛƴŜǎΣ Χ

ï Headers, attributes on data

Á I/O systems have very simple data

models
ï Tree-based hierarchy of containers
ï Some containers have streams of bytes

(files)
ï Others hold collections of other

containers (directories or folders)

Á Mapping from one to the other is

increasingly complex.

Right Interior

Carotid Artery

Platelet

Aggregation

Model complexity:

Spectral element mesh (top)

for thermal hydraulics

computation coupled with

finite element mesh (bottom)

for neutronics calculation.

Scale complexity:

Spatial range from

the reactor core in

meters to fuel pellets

in millimeters. Images from T. Tautges (ANL) (upper left), M. Smith

(ANL) (lower left), and K. Smith (MIT) (right).

8

Data Volumes in Computational Science

Science teams are routinely working with tens and hundreds of
terabytes (TBs) of data.

PI Project
On-line Data

(TBytes)
Off-line Data

(TBytes)

Lamb Supernovae Astrophysics 100 400

Khokhlov Combustion in Reactive Gases 1 17

Lester CO2 Absorption 5 15

Jordan Seismic Hazard Analysis 600 100

Washington Climate Science 200 750

Voth Energy Storage Materials 10 10

Vashista Stress Corrosion Cracking 12 72

Vary Nuclear Structure and Reactions 6 30

Fischer Reactor Thermal Hydraulic Modeling 100 100

Hinkel Laser-Plasma Interactions 60 60

Elghobashi Vaporizing Droplets in a Turbulent Flow 2 4

Data requirements for select 2012 INCITE applications at ALCF (BG/P)

9

Data Volumes in Computational Science

LǘΩǎ ƴƻǘ Ƨǳǎǘ ŎƘŜŎƪǇƻƛƴǘǎ ς scientists are reading large volumes
of data into HPC systems as part of their science.

Top 10 data producer/consumers instrumented with Darshan over the month of July, 2011.

10

Views of Data Access in HPC Systems

¢ǿƻ ǳǎŜŦǳƭ ǿŀȅǎ ƻŦ ǘƘƛƴƪƛƴƎ ŀōƻǳǘ Řŀǘŀ ŀŎŎŜǎǎ ŀǊŜ ǘƘŜ άƭƻƎƛŎŀƭέ
ǾƛŜǿΣ ŎƻƴǎƛŘŜǊƛƴƎ Řŀǘŀ ƳƻŘŜƭǎ ƛƴ ǳǎŜΣ ŀƴŘ ǘƘŜ άǇƘȅǎƛŎŀƭέ ǾƛŜǿΣ
the components that data resides on and passes through.

I/O Hardware

Application

Storage Data Model

Transformations

Application Data Model

I/O Hardware

Compute Node Memory

System Network Data

Movement

Logical (data model)

view of data access.
Physical (hardware)

view of data access.

11

Data Access in Past HPC Systems*

For many years, application teams wrote their own translations
from their data models into files, and hardware model was
relatively simple.

I/O Hardware

Application

Files (POSIX)

Hand-coded Formatting

Application Data Model

Servers with RAID

Compute Node Memory

Ethernet Switch Data

Movement

Logical (data model)

view of data access.
Physical (hardware)

view of data access.

ϝ ²ŜΩǊŜ ǎƛƳǇƭƛŦȅƛƴƎ ǘƘŜ ǎǘƻǊȅ ƘŜǊŜ ǎƻƳŜǿƘŀǘ Χ

12

Data Access in Current Large -scale Systems

Current systems have greater support on the logical side, more
complexity on the physical side.

I/O Hardware

Application

Files (POSIX)

I/O Transform Layer(s)

Data Model Library

SAN and RAID Enclosures

Compute Node Memory

Internal System Network(s)

Data

Movement

Logical (data model)

view of data access.
Physical (hardware)

view of data access.

I/O Gateways

External Sys. Network(s)

I/O Servers

13

Thinking about HPC I/O Systems

ÁTwo (intertwined) challenges when thinking about data
access:
ï Mapping application data model onto storage
ï5ǊƛǾƛƴƎ ŀƭƭ ǘƘŜ ŎƻƳǇƻƴŜƴǘǎ ǎƻ ȅƻǳ ŘƻƴΩǘ ƘŀǾŜ ǘƻ ǿŀƛǘ ǘƻƻ ƭƻƴƎ ŦƻǊ Lκh

ÁOften these two can be at odds
ïάwƛŎƘŜǊέ Řŀǘŀ ƳƻŘŜƭǎ ƳƛƎƘǘ ǊŜǉǳƛǊŜ ƳƻǊŜ Lκh
ï Transformations that make writing fast might make reading slow

(or vice versa)

ÁLots of computer science R&D has gone into tackling these
two problems

ÁNext we will dive down into some of the details of HPC I/O

14

How It Works: HPC I/O Systems

How It Works

ÁHPC I/O systems provide a
file system view of stored data
ï File (i.e., POSIX) model of access
ï Shared view of data across the system
ï Access to same data from the outside

(e.g., login nodes, data movers)

ÁTopics:
ï How is data stored and organized?
ïWhat support is there for application

data models?
ï How does data move from clients to

servers?
ï How is concurrent access managed?
ïWhat transformations are typically

applied?

File system view consists of

directories (a.k.a. folders) and files.

Files are broken up into regions

called extents or blocks.

16

Storing and Organizing Data: Storage Model

HPC I/O systems are built around a parallel file system that
organizes storage and manages access.

ÁParallel file systems (PFSes) are distributed systems that

provide a file data model (i.e., files and directories) to users
ÁMultiple PFS servers manage access to storage, while PFS

client systems run applications that access storage
ÁPFS clients can access storage resources in parallel!

17

Reading and Writing Data (etc.)

PFS servers manage local

storage, services incoming

requests from clients.

PFS client software

requests operations on

behalf of applications.

Requests are sent as

messages (RPC-like), often

to multiple servers.

Requests pass over the

interconnect, thus each

request incurs some

latency.

RAID enclosures protect

against individual disk

failures and map regions of

data onto specific devices.

18

Leadership Systems have an additional HW layer

Compute nodes run

application processes. Data

model software also runs

here, and some I/O

transformations are performed

here.

I/O forwarding nodes (or

I/O gateways) shuffle data

between compute nodes

and external resources,

including storage.

Storage nodes run the

parallel file system.

External

network
Disk

arrays

19

Request Size and I/O Rate

Interconnect latency has a significant impact on effective rate
of I/O. Typically I/Os should be in the O(Mbytes) range.

Tests run on 2K processes of IBM Blue Gene/P at ANL.
20

Data Distribution in Parallel File Systems

Distribution across multiple servers allows concurrent access.

21

Storing and Organizing Data: Application Model(s)

Application data models are supported via libraries that map
down to files (and sometimes directories).

22

HPC I/O Software Stack

The software used to provide data model support and to
ǘǊŀƴǎŦƻǊƳ Lκh ǘƻ ōŜǘǘŜǊ ǇŜǊŦƻǊƳ ƻƴ ǘƻŘŀȅΩǎ Lκh ǎȅǎǘŜƳǎ ƛǎ ƻŦǘŜƴ
referred to as the I/O stack.

Data Model Libraries map

application abstractions onto

storage abstractions and

provide data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes

accesses from many processes,

especially those using collective

I/O.

MPI-IO, GLEAN, PLFS

I/O Forwarding transforms I/O

from many clients into fewer,

larger request; reduces lock

contention; and bridges

between the HPC system and

external storage.

IBM ciod, IOFSL, Cray DVS

Parallel file system maintains

logical file model and provides

efficient access to data.

PVFS, PanFS, GPFS, Lustre I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

23

How It Works: HPC I/O Performance

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are
used to manage concurrent access:
ÁFiles are broken up into lock units
ÁClients obtain locks on units that they will access before

I/O occurs
ÁEnables caching on clients as well (as long as client has a lock,

it knows its cached data is valid)
ÁLocks are reclaimed from clients when others desire access

If an access touches any

data in a lock unit, the

lock for that region must

be obtained before access

occurs.

25

Implications of Locking in Concurrent Access

26

I/O Transformations

Software between the application and the PFS performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

ÁGoals of transformations:
ï Reduce number of operations to

PFS (avoiding latency)
ï Avoid lock contention

(increasing level of concurrency)
ï Hide number of clients (more on

this later)

Á²ƛǘƘ άǘǊŀƴǎǇŀǊŜƴǘέ
transformations, data ends
up in the same locations in
the file
ï i.e., the file system is still aware

of the actual data organization

When we think about I/O

transformations, we consider

the mapping of data between

application processes and

locations in file.

27

Reducing Number of Operations

Since most operations go over the network, I/O to a PFS incurs
more latency than with a local FS. Data sieving is a technique to
address I/O latency by combining operations:
ÁWhen reading, application process reads a large region

holding all needed data and pulls out what is needed
ÁWhen writing, three steps required (below)

Step 1: Data in region to be

modified are read into

intermediate buffer (1 read).

Step 2 : Elements to be

written to file are replaced

in intermediate buffer.

Step 3 : Entire region is

written back to storage with

a single write operation.

28

