ATPESC A

(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP*)

James.Reinders. Intel
August 4, 2014, Pheasant Run, St Charles, IL

10:30 =11:15 (l@

ATPESC

(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP*)

James.Reinders. Intel
August 4, 2014, Pheasant Run, St Charles, IL

OS50 =41 1:195 (inte|®>

Software

ar

)
1
et

LLT R S

R
e

Using A Single Vector Lane Can Inhibit Performance

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

@ What Maximum Performance Can Look Like With Permission
To Use All Lanes And Resources

Software

Modernized Software Delivers Significant Performance Advantages

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software

Following up on “data parallelism is KEY"

+ dive into the topic of vectorization
» explicit vectorization in OpenMP 4.0
» consider a few other programming considerations along the way

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Software

Summary

We need to embrace explicit vectorization
In our programming.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed Zs t

Software

How many of us here today...

have ever worried about vectorization for

your application?

Software

Shouldn't we solve with better tools?

What is vectorization?

Could we just ignore it?

Software

Vectors Instructions (SIMD instructions)
Make things Faster

(that’s the premise)

Up to 4x Performance

with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

4x - Significant leap to 512-bit SIMD support for processors

- Intel® Compilers and Intel® Math Kernel Library
include AVX-512 support

- Strong compatibility with AVX
2X
- Added EVEX prefix enables additional functionality

1X - - - Appears first in future Intel® Xeon Phi™ coprocessor,
code named Knights Landing

SSE2 AVX / AVX2 AVX-512

’ Higher performance for the most demanding computational tasks

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& és t

Performance with Explicit Vectorization

SIMD Speedup using C/C++ Vector Extensions built with SSE4.2
a0
4. .00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00
& & o <& S & % 5
& =& 7 & ST & F =S
_30{\{) @ X2 q"S \}&%qga &
Cﬁ?"} W Serial m MNormalized SIMD Speedup 4&

Configuration: Intel® Core™ i7 CPU X980 system (6 cores with Hyper-Threading On), running at 3.33GHz, with 4.0GB RAM, 12M smart cache, 64-bit Windows Server 2008 R2
Enterprise SP1. For more information go to http://www.intel.com/performance

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& @s t

http://www.intel.com/performance

Parallel first

Vectorize second MOTITHREADING o VISUAL EEFECTS

Martin Watt ® Erwin Coumans © George ElKoura © Ronald Henderson
Manuel Kraemer e Jeff Lait ® James Reinders

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& 35 t

Software

Whatis a Vector?

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& 45 t

Vector of numbers

4.4 11 3.1 -85 -13 1.7 7.5 5.6 -3.2 3.6 4.8

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& 55 t

Vector addition

4.4 11 3.1 -85 -13 1.7 7.5 5.6 -3.2 3.6 4.8

+ -0.3 -0.5 0.5 0 0.1 0.8 0.9 0.7 1 0.6 -0.5

— 4.1 0.6 3.6 -8.5 -1.2 2.5 8.4 6.3 -2.2 4.2 4.3

L

..and Vector multiplication

4.4 11 3.1 -85 -13 1.7 7.5 5.6 -3.2 3.6 4.8

X -0.3 -0.5 0.5 0 0.1 0.8 0.9 0.7 1 0.6 -0.5

— -1.32 -0.55 1.55 0 -0.13 136 675 392 -32 216 -24

Software

An example

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime& 85 t

G

vector data operations:
data operations done in parallel

void v_add (float *c,
float *a,
float *b)

for (int i=0; i<= MAX; i++)
c[i]=a[i]+b[1i];

vector data operations: A
data operations done in parallel

void v_add (float *c,

foat o) Loop:
U s iae 120s 1ce wAxs 1em 1. LOAD 3[i] -> Ra
clil=alil+b[il; 2. LOAD D[i] -> Rb
ADD Ra, Rb -> Rc
STORE Rc -> c[i]

ADDi+1->1i

3.
4.
5.

vector data operations: A
data operations done in parallel

Loop:
1. LOADv4 a[i:i+3]
2. LOADv4 b[iii+3

Loop:
->Rva 1. LOAD 3[i]-> Ra
->Rvb 2. LOAD b[i]-> Rb

3. ADDv4 Rva, Rv
4,
5.

S
ADDi+4->|

b ->Rvc 3. ADD Ra, Rb -> Rc

TOREvV4 Rvc -> c[ii+3] 4. STORE Rc -> ([i]

5. ADDi+1->1

~Cal L

We call this “vectorization”

Loop:
1. LOADv4 a[i:i+3]
2. LOADv4 b[iii+3

Loop:
->Rva 1. LOAD a[i
->Rvb 2. LOAD Db[i]

-> Ra
->Rb

3. ADDv4 Rva, Rv
4,
5.

S
ADDi+4->|

TOREV4 Rvc -> c[iii+3] 4. ST

b ->Rvc 3. ADD Ra,

5. ADDi+1

Rb -> Rc

"ORE Rc -> [i]

_>i

G

vector data operations:
data operations done in parallel

void v_add (float *c, float *a, float *b)
{

for (int i=0; i<= MAX; i++)
c[i]=a[1]+b[1];

L

vector data operations:
data operations done in parallel

void v_add (float *c, float *a, float *b)

{
for (int i=0; i<= MAX; i++)
cl[i]=a[i]+b[1];
}
PROBLEM:

This LOOP is NOT LEGAL to (automatically) VECTORIZE
in C / C++ (without more information).

re trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed4s t

Phi a

tel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon

Choice 1:
use a compiler switch for
auto-vectorization

(and hope it vectorizes)

Choice 2:
give your compiler hints

and hope it vectorizes

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimegés t

C99 restrict keyworad

void v_add (float *restrict c,
float *restrict a,
float *restrict b)

for (int i=0; i<= MAX; i++)
c[i]=a[i]+b[1i];

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime&Zs t

IVDEP (ignore assumed vector dependencies)

void v_add (float *c,
float *a,
float *b)
{
#pragma ivdep
for (int i1=0; i<= MAX; i++)
c[i]l=a[i]l+b][i];

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

Choice 3;
code explicitly for vectors

mandatory vectorization

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

OpenMP* 4.0: #pragma omp simd

void v_add (float *c,
float *a,
float *b)
{
#pragma omp simd
for (int i1=0; i<= MAX; i++)
c[i]l=a[i]l+b][i];

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeags t

ﬁi%ﬁ
OpenMP* 4.0: #pragma omp declare simd

#pragma omp declare simd
void vl add (float *c,
float *a,
float *b)

*c=*a+*b;

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other

names and brands may be claimed &s t

SIMD Instruction intrinsics

void v_add (float *c,
float *a,
float *b)

Hard coded to 4 wide !

__ml28* pSrcl = (_ ml28%*) a;
__ml28* pSrc2 = (_ ml28%*) b;
__ml28* pDest = (_ ml28%*) c;
for (int i=0; i<= MAX/4; i++)
*pDest++ = mm add ps (*pSrcl++, *pSrc2++);

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeé@s t

array operations (Cilk™

void v_add (float *c,
float *a,
float *Db)

{
c[0:MAX]=a[0:MAX]+b[0:MAX] ;

}

Challenge: long vector slices
can cause cache issues; fix is to
keep vector slices short.

Plus)

vectorization solutions

1. auto-vectorization (use a compiler switch and hope it vectorizes)
= sequential languages and practices gets in the way
2. give your compiler hints and hope it vectorizes
= C99 restrict (implied in FORTRAN since 1956)
= #pragma ivdep
3. code explicitly
* OpenMP 4.0 #pragma omp simd
= Cilk™ Plus array notations
= SIMD instruction intrinsics

= Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA
kernel functions

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeaés t

vectorization solutions

1. auto-vectorization (use a compiler switch and hope it vectorizes)
= sequential languages and practices gets in the way

2. give your compiler hints and hope it vectorizes
= C99 restrict (implied in FORTRAN since 1956)
= #pragma ivdep

3. code explicitly

= OpenMP 4.0 #pragma omp simd
= Cilk™ Plus array notations
= SIMD instruction intrinsics

= Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA
kernel functions

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be claimed@as

Software

Explicit parallelism

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeaés t

parallelization

Try auto-parallel capability
-parallel (Linux* or OS X¥)
-Qparallel (Windows®)

PROGRAM TEST
PARAMETER (N=18000008)
REAL A, C(N)

DOI =1, N
A=2*1-1

C(I) = SQRT(A)

ENDDO

PRINT*, N, C(1), C(N)
END

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xe

on, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or

other cou

ntries

. *Other na

mes and brands may be claimed &s t

Ll

parallelization

licitl cSOMP PARALLEL DO
Orexp icitly use... DO I=1,N B(I) = (A(I) + A(I-1)) / 2.0
OpenMP END DO

Intel® Threading Building Blocks (] ¢¥OMP END PARALLEL DO

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeé@s t

O p e n M P 4] O Based on a proposal from Intel based on

customer success with the
Intel® Cilk™ Plus features in Intel compilers.

simd construct

sSummary

The simd construct can be applied to a loop to indicate that the loop can be transformed
imnto a SIMD loop (that 1s. multiple iterations of the loop can be executed concurrently

using SIMD instructions).

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeags t

OpenMP 4.0

Based on a proposal from Intel based on
customer success with the
Intel® Cilk™ Plus features in Intel compilers.

simd construct

#pragma omp simd reduction(+:val) reduction(+:val2)
for(int pos = O; pos < RAND_N; pos++) {
float callValue=
expectedCall(Sval,Xval,MuByT,VBySqrtT,|_Random[pos]);

val += callValue;
valZ += callValue * callValue;

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimeé@s t

imd truct
O menMP 4.0) YES - VECTORIZE THIS I

Summary

The simd construct can be apphed to a loop to indicate that the loop can be transformed Fortran

into a SIMD loop (that is, multiple iterations of the loop can be executed concurrently
using SIMD instructions).

!3omp simd [clausef],] clause . .]
do-loops

CIC++ ['$omp end simd]

where clause 1s one of the following:
#ipragma omp simd [clausef[] clause] ...J] new-line
Jor-loops

safelen (length)

where clause is one of the following: linear (list:linear-step])

aligned (listf-alignment])

safelen (length)
private (list)

linear (lisif linear-step])
lastprivate (list)

aligned (list/-alignment])
reduction (reduction-identifier:list)

private (list)
collapse (n)

lastprivate (list)
reduction (reduction-identifier:list) If an end simd directive is not specified, an end saimd directive is assumed at the end

f the do-I .
collapse (1) o fhe do-foops

All associated do-loops must be do-constructs as defined by the Fortran standard. If an
The simd directive places restrictions on the structure of the associated for-loops. end simd directive follows a do-consfruct in which several loop statements share a DO
Specifically, all associated for-loops must have canonical loop form (Section 2.6 on termination statement, then the directive can only be specified for the outermost of these
page 51). D@statementhe OpenMP standard, the “for-loop” must have canonical loop form.

C/C++ Fortran

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeélas t

declare simd construct : .)
(OpenMP 4.0) Make VECTOR versions of this function.

Summary

The declare simd construct can be applied to a function (C, C++ and Fortran) or a
subroutine (Foriran) to enable the creation of one or more versions that can process
multiple arguments using SIMD instructions from a single invocation from a SIMD
loop. The declare simd directive 1s a declarative directive. There may be multiple
declare simd diurectives for a function (C, C++, Fortran) or subroutine (Fortran).

C/C++

#ipragma omp declare simd [clause[[,] clause] ...] new-line
[#pragma omp declare simd [clause[],] clause] ..] new-line]
[J

Junction definition or declaration

where clause 1s one of the following:

simdlen (length)

linear (argument-list|:constant-linear-step])
aligned (argument-list[:alignment])
uniform (argument-list)

inbranch

notinbranch

C/IC++

Fortran

‘ !$omp declare simd(proc-name) [clause[[,] clause]..]

where clause is one of the following::

simdlen (length)

linear (argument-list[:constant-linear-step])
aligned (argument-list{ -alignment])

uni form (argument-list)

inbranch

notinbranch

Fortran

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime@gs t

Loop SIMD construct Parallelize and Vectorize.

(OpenMP 4.0)

Summary

The loop SIMD construct specifies a loop that can be executed concurrently using SIMD
mstructions and that those iterations will also be executed in parallel by threads in the

team.
Syntax
C/C++ Fortran
#ipragma omp for simd [clausef[] clausef .. [new-line l$omp do simd [clausef].] clause] ._.J
for-loops do-loops
[1$omp end do simd [nowait]]

where clause can be any of the clauses accepted by the for or simd directives with
identical meanings and restrictions. where clause can be any of the clauses accepted by the simd or do directives, with
C/IC++ identical meanings and restrictions.

If an end do simd directive is not specified, an end do simd directive is
assumed at the end of the do-loop.

Fortran

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

You like
directives?

y Use
®s™\ OpenMP 4.0

MNo

You are
not alone.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Software

for your consideration:
Intel 15.0 Compilers (in beta now) support
keywords as an alternative

« Keyword versions of SIMD pragmas added:
~Simd, Safelen, Reductilon
. intel simd lane () intrinsic for SIMD enabled functions

Keywords / library interfaces being discussed for SIMD constructs in C and C++ standards

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Software

History of Intel vector instructions

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Intel Instruction Set Vector Extensions from 1997-2008

1997 1998 1999 2004 2006 2007 2008
Inte' ® ® ® ® ® ®
MMX™ Intel Intel Intel Intel Intel Intel
technology SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2
57 new_ 70 new. 144 new 13 new, 32 new. 47 new, 7 new
instructions instructions instructions instructions instructions instructions instructions
64 bits 128 bits 128 bits 128 bits 128 bits 128 bits 128 bits
Overload FP 4 single- 2 double- FP vector enhanced packed integer string (XML)
stack Brecmon vector Erecmon vector calculation packed integer calculation processing
P P , calculation conversion
Integer only x87 integer POP-Count
. scalar FP 8/16/32/64 conversion better,
media instructions vector integer " vectorization CRC32
extensions N o 128-bit integer by compiler
cacheability 128-bit integer unaligned load
instructions load with
control & power
conversion management
instructions
media
extensions

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimeégs t

Intel Instruction Set Vector Extensions since 20711

2011 2011 2012 2013 TBD
Intel® Co-processor only “AVX-1.5" Intel® Intel®
AVX A AVX-2 AVX-512
Promotion of Coprocessor 7 new Promotion of Promotion of
128 bit FP predecessor to instructions integer vector
vector AVX-512.New . instruction to instructions to
instructions to 512 bit vector 16 bit FP 56 bit 512 bits
6 bit instructions for support :
MIC RDRAND - FMA Xeon Phi: Fl,
architecture, - Gather CDI, €RI, PFI
binary compt. Xeon: Fl, CDI
not supported - TSX/RTM BWI, DQI, VLE

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

by processors -
mostly source
compatible with
AVX-512

Reinders blogs announced -
July 2013, and June 2014.

width

S
-t
W
©
O
©

1997 MMX | 64 v

1999 SSE 128 v V(x4)

2001 SSE2 128 v v v(x)
2004 SSE3 128 v v
2006 SSSE 3 128 v v
2006 SSE 4.1 128 v v
2008 SSE 4.2 128 v v
2011 AVX 256 v v(x8) v(x4)
2013 AVX2 256 v v

<
X
)
9
X
=
@

future AVX-512 512

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be claimetas

Growth is In vector instructions

3K

Disclaimer: Counting/attributing instructions is in inexact science. The
exact numbers are easily debated, the trend is quite real regardless.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime&@s t

Motivation for AVX-512 Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to
race conditions

for(i=0; i<16; i++) { A[B[i]]++; }

Consider the “histogram” problem: l

index = &B[1] // Load 16 B[1i]

old val A, index // Grab A[B[i]]

new_val old val, +1.0 // Compute new values
A, index, new_val // Update A[B[i]]

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Motivation for AVX-512 Conflict Detection

Sparse computations are common in HPC, but hard to vectorize due to
race conditions

for(i=0; i<16; i++) { A[B[i]]++; }

Consider the “histogram” problem: l

index = vload &B[i] // Load 16 B[1i]
old_val = vgather A, index // Grab A[B[i]]

new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

= Code above is wrong if any values within B[i] are duplicated
— Only one update from the repeated index would be registered!

= A solution to the problem would be to avoid executing the sequence
gather-op-scatter with vector of indexes that contain conflicts

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Conflict Detection Instructions in AVX-512 W

Improve vectorization!
VPCONFLICT instruction detects elements with

previous conflicts in a vector of indexes VPCONFLICT{D.Q} zmm1{kT}, zmme/mem
VPBROADCASTM{W2D,B2Q} zmm1, k2

» Allows to generate a mask with a subset of elements that VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem
are guaranteed to be conflict free VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

» The computation loop can be re-executed with the remaining elements until all the indexes have
been operated upon

index = &B[1i] // Load 16 B[1i]
pending elem = OXFFFF; // all still remaining
do {

curr_elem = (index, pending_elem)

old val = {curr_elem} A, index // Grab A[B[i]]
new_val = old val, +1.0 // Compute new values
A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ~ curr_elem // remove done idx
} while (pending_elem)

for illustration: this not even the fastest version

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeglgs t

Software

-vec-report

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

“Dear compiler, did you vectorize my loop?” %
We heard your feedback......

-vec-report output was hard to understand;
Messages were too cryptic to understand;
Information about one loop showing up at many places of report;

Was easy to be confused about multiple versions of one loop created
by the compj

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime®3s t

Optimization Report Redesign

= Old functionality implemented under —opt-report, -vec-report,
—openmp-report, -par-report _ _
replaced by unified —opt-report compiler options

. [vec,openmp,par]-report options deprecated and map to equivalent opt-report-phase

= Can still select phase with —opt-report-phase option.
For example, to only get vectorization reports,
use —opt-report-phase=vec

= Qutput now defaults to a <name>.optrpt file where <name>
corresponds to the output object name. This can be changed with
-opt-report-file=[<name>|stdout|stderr]

= Windows*: /Qopt-report, /Qopt-report-phase=<phase> etc.

= Optimization report integration with Microsoft* Visual Studio
planned to appear in beta update 1

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Software

Summary

We need to embrace explicit vectorization
In our programming.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Vectorization today uses
“Not your father's vectorizer”

— —

/f{?/e Z Da/e Wﬂ% 7he //

LOWISEARICED “ROCKET“MYDRA MATIC CA/

PAWED PRCEAGE FOR PLES PERFIRMANCE- - » . ; - 0 !

OLDSMOB BRE vocor o ane syera-mane onie)

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaimeégs t

Vectorization solved in 19787 W

The CRAY-1’s Fortran compiler (cFr) is designed
Communications of the ACM to give the scientific user immediate access to the
The CRAY-1 computer system , -
By Richard M. Russell benefits of the CRAY-1’s vector processing
Cray Research, Inc, Minneapolis, MN architecture. An optimizing compiler, cFr,
Communications of the ACM, y . as = 1 ith
January 1978 (Vol. 21 No. 1), Pages 63-72 - vectorizes™ innermost DO loops. Compatible wit
the ANs1I 1966 Fortran Standard and with many
commonly supported Fortran extensions, cFT does not
require any source program modifications or the use
of additional nonstandard Fortran statements to
achieve vectorization. Thus the user’s investment of
hundreds of man months of effort to develop Fortran
programs for other contemporary computers is
protected.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéas t

| Communications of the ACM |

October 1978 (Vol. 21, No. 10), Pages 806-820
Fortran 77

There 15 a new standard Fortran. The official title is “American National Standard

Programming Language Fortran, X3.9-1978,” but it is more commonly referred to as

“Fortran 77,” since its development was completed in 1977. It ...
Walt Brainerd

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime@@s t

Livermore loop #1
C

C***

c*** KERNEL 1 HYDRO FRAGMENT

C***

C
cdir$ ivdep
1001 DO 1 k = 1,n
1 X(k)y=0 + Y(k) * (R * zZX(k+10) + T * ZX(k+11))
C

VVector code generation straightforward
Emphasis on analysis and disambiguation

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

Software

[t's messy today

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claime@@s t

Vectorization yesterday

DO1Tk=1,n
1 A(k) = B(k) + C(k)
K=1 K=2 K=1..2
@ Wde(l) W)
Ld B(1) Ld B(2) LdB(1) LdB(2)
Add Add Add Add
StA(1) StAQR) StA(1) StAQR)
Scalar code Vector code

Vector code generation was straightforward
Emphasis on analysis and disambiguation

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other col

untries

. ¥Other names and brands may be claime®3s t

Vectorization today

#pragma omp simd reduction(+:.... p=1 p=0.1
for(p=0; p<N; p++) { 1
/] Blue work ﬁ)
I(..) {
}else {
// Red work
Are all
lanes done?

}
while(...) {
/1 Purple work

y = foo (x);
Pink work

Two fundamental problems L
Data divergence

Hoe) ehEgEme Vector code generation has become a more difficult problem

Increasing need for user guided explicit vectorization
Explicit vectorization maps threaded execution to simd hardware

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeéés t

#pragma omp simd
for (x = 0; x < w; x++) {
for (v = 0; v < nsubsamples; v++) {
for (u = 0; u < nsubsamples; u++) {
float px = (x + (u / (float)nsubsamples) - (w / 2.0f)) / (w / 2.0f);
Ray ray; Isect isect;

ray.dir.x = px;

vnormalize(&(ray.dir));

ray_sphere_intersect(&isect, &ray, &spheres[0]);

ray_plane_intersect (&isect, &ray, &plane); Conditionals

if (isect.hit) {
vec col;

ambient_occlusion_simd(&col, &isect); Conditional
fimg[3 * (v * w + x) + 0] += col.x; .
Function calls

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

Motivational Example

//foo.c

float in_vals[];

for(int x = 0; x < Width; ++x) {
count[x] = lednam(in_vals

 //bar.c
int lednam(float c)
{ // Compute n >= 0 such that c*n > LIMIT
float z = 1.0f;
int iters = 0;
while (z < LIMIT) {
) z =2z * ¢c; iters++;

return iters;

What are the simplest changes required for the program to utilize today's
multicore and simd hardware?

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. * er names and brands may be claime®@s

float in_vals[];

for(int x = 0; x < Width; ++x) {
count[x] = lednam(in_vals[x]);

#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0@ such that c*n > LIMIT
float z = 1.0f; int iters = 0;
while (z < LIMIT) {
zZ =z * c; iters++;

return iters;

0 X =1 3
zi*c z=\z’*c Z=2%cC Z=2%cC
z2=7*%C Z=7%C z%*c zﬁc

iters = 2 iters = 23 iters = 255 iters = 37

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeégs t

Mandelbrot

#pragma omp parallel for
for (int y = 0; y < ImageHeight; ++y) {
#pragma omp *simd
for (int x = @; x < ImageWidth; ++x)
count[y][x] = mandel%ln vals[y][x]

#pragma omp declare simd
int mandel(fcomplex c)
// Computes number of iterations for c to escape
fcomplex z = c;
for (1nt 1t$rs =0; (cabsf(z) < 2.0f) & (iters < LIMIT); iters++)
=z * z + c;

return iters;

Mandelbrot Normalized Speedup with OpenMP* on Intel® Xeon Phi™ Coprocessor

ics0.03
W Serial B OpenhfMMP PAR COpenhAP S D M COpenhfMP PARASIMD
585.56
60z 1502 PR Gp— IS 7615 ssul-:a ST IST6IE - =5 ';”15 1= e E——
100 099 16 X 100 778 1601 " 100 15 - - 100 5L - X X 100

1 Thread 8 Threads 16 Threads 32 Threads 61 Threads 122 Threads 244 Threads

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be cIaime@gs t

Software

Summary

We need to embrace explicit vectorization
In our programming.

But, generally use parallelism first

(tasks, threads, MPI, etc.)

Questions?

tel.

James.r.reinders@intel.com

°2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Software

James Reinders. Parallel Programming Evangelist. Intel.

James is involved in multiple engineering, research and educational efforts to increase
use of parallel programming throughout the industry. He joined Intel Corporation in
1989, and has contributed to numerous projects including the world's first TeraFLOP/s
supercomputer (ASCI Red) and the world's first TeraFLOP/s microprocessor (Intel® Xeon
Phi™ coprocessor). James been an author on numerous technical books, including
VTune™ Performance Analyzer Essentials (Intel Press, 2005), Intel® Threading Building
Blocks (O'Reilly Media, 2007), Structured Parallel Programming (Morgan Kaufmann,
2012), Intel® Xeon Phi™ Coprocessor High Performance Programming (Morgan
Kaufmann, 2013), and Multithreading for Visual Effects (A K Peters/CRC Press, 2014).
James is working on a project to publish a book of programming examples featuring Intel
Xeon Phi programming scheduled to be published in late 2014.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as t

@ed Legal Disclaimer & Optimization Notice

Software

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Notice revision #20110804

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimeggs t

