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“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	



	

–Carl Friedrich Gauss, 1777-1855 



Preliminaries	
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Moving from Postprocessing to 
Run-Time Scientific Data 

Analysis in HPC ���
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Analyze!

Postprocessing analysis 
and visualization	



Run-time analysis and  
visualization 	





Example of a data flow network 

Definition of Data Analysis	



•  Any data transformation, or a 
network or transformations.	


•  Anything done to original data 
beyond its original generation.	


•  Can be visual, analytical, statistical, 
or data management.	
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Examples	
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Streamlines and pathlines 
Stream surfaces 

FTLE Information entropy 

Morse-Smale complex Voronoi and Delaunay tessellation 

Ptychography 



Common Denominators	
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•  Big science => big data, big machines	


•  Most analysis algorithms are not up to speed	



•  Either serial, or 	



•  Overheads kill scalability	



•  Solutions	



•  Process data closer to the source	


•  Write scalable analysis algorithms	



•  Parallelize in various forms	



•  Build software stacks of useful and reusable layers	



•  Usability and workflow	



•  Develop libraries rather than tools	


•  Users write small main programs  and call into libraries	





Abstractions Matter: Think Blocks, not Tasks	
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•  Block = unit of decomposition	


•  Block size, shape can be configured	



•  From coarse to fine	



•  Regular, adaptive, KD-tree	



•  Block placement is flexible, dynamic	



•  Blocks per task	


•  Tasks per block	



•  Memory / storage hierarchy	



•  Data is first-class citizen	



•  Separate operations per block	



•  Thread safety	



Parallel data analysis consists of decomposing a problem into blocks, 
operating on them, and communicating between them.	





You Have Two Choices to Parallelize Data Analysis	
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or	

By hand	

 With tools	



void ParallelAlgorithm() {	


   …	


   MPI_Send();	


   …	


   MPI_Recv();	


   …	


   MPI_Barrier();	


   …	


   MPI_File_write();	


}	



void ParallelAlgorithm() {	


   …	


   LocalAlgorithm();	


   …	


   DIY_Merge_blocks();	


   …	


   DIY_File_write()	


}	





DIY Concepts	
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Library	



Written in C++ with C bindings	


Autoconf build system (configure, make, make install)	


Lightweight: libdiy.a 800KB	


Maintainable: ~15K lines of code, including examples	



DIY usage and library organization	



Features	



Parallel I/O to/from storage	


Domain decomposition	


Network communication	


Utilities	
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DIY���
helps the user write data-parallel analysis algorithms by decomposing a 

problem into blocks and communicating items between blocks. ���



Nine Things That DIY Does	
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1. Separate analysis ops from data ops	



2. Group data items into blocks	



3. Assign blocks to processes	



4. Group blocks into neighborhoods	



5. Support multiple multiple instances of 2, 3, and 4	



6. Handle time	



7. Communicate between blocks in various ways	



8. Read data and write results	



9. Integrate with other libraries and tools	
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Usage	
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Writing a DIY Program	
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Tutorial Examples	


•  Block I/O: Reading data, writing analysis 

results	


•  Static: Merge-based, Swap-based reduction, 

Neighborhood exchange	



•  Time-varying: Neighborhood exchange	


•  Spare thread: Simulation and analysis 

overlap	


•  MOAB: Unstructured mesh data model	


•  VTK: Integrating DIY communication with 

VTK filters	


•  R: Integrating DIY communication with R 

stats algorithms	


•  Multimodel: multiple domains and 

communicating between them	



Documentation	


•  README for installation	


•  User’s manual with description, examples 

of custom datatypes, complete API 
reference	





Execution: Same Core and Spare Core	
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Same core	

 Spare core	





Time: Static and Time-Varying	
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Static	

 Time-varying	





Communication: Merge and Swap Reduction, 
Neighbor Exchange	
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Merge and swap 
reduction	



Neighbor 
exchange	





One Example in Greater Detail	
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Parallel Tessellation ���

We developed a prototype library for computing in situ Voronoi and Delaunay 
tessellations from particle data and applied it to cosmology, molecular dynamics, 

and plasma fusion. ���

Key Ideas	



•  Mesh tessellations convert sparse point 
data into continuous dense field data.	



•  Meshing output of simulations is data-
intensive and requires supercomputing 
resources	



•  No large-scale data-parallel tessellation 
tools exist.	



•  We developed such a library, tess.	



•  We achieved good parallel 
performance and scalability.	



•  Widespread GIS applicability in addition 
to the datasets we tested.	
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Scalability	
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Strong and weak scaling for up to 
20483 synthetic particles and up to 
128K processes (excluding I/O) 
shows up to 90% strong scaling 
and up to 98% weak scaling.	





Applications in Cosmology	
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Histogram of Cell Density Contrast at t =  11

Cell Density Contrast ((density − mean) / mean)
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Histogram of Cell Density Contrast at t =  21

Cell Density Contrast ((density − mean) / mean)
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Histogram of Cell Density Contrast at t =  31

Cell Density Contrast ((density − mean) / mean)
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Temporal structure dynamics: As time progresses, the range of cell 
volume and density expands, kurtosis and skewness increases. These 
statistics are consistent with the governing physics of the formation 
of high- and low-density structures over time and can perhaps be 
used to summarize evolution at given time steps.	



Feature statistics: Total 
volume, surface area, 
curvature, topology of 
connected components 
of  Voronoi cells classify 
and quantify features. 	



Density estimation: 
Tessellations as 
intermediate 
representations enable 
accurate regular grid 
density estimators.	





Recap	



Block abstraction for parallelizing data analysis	



Encapsulate data movement in a separate library	



Define design patterns for data movement in HPC data analysis in 
terms of:	



•  Execution	


•  Temporal behavior	



•  Communication pattern	



The benefits are:	



•  Abstraction, implementation independence	


•  Reuse, programmer productivity	



•  Standardization	



•  Benchmarking	
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Further Reading	
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“The purpose of computing is insight, not numbers.”	


	

–Richard Hamming, 1962 


