“l have had my results for a long time, but | do not yet
Argonne'\ know how | am to arrive at them.”
—Carl Friedrich Gauss, 1777-1855

DIY Parallel Data Analysis

I'm sure my wife
will appreciate all
the DIY I'm doing
around the house

for her!
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Preliminaries
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Definition of Data Analysis

* Any data transformation, or a
network or transformations.

* Anything done to original data
beyond its original generation.

* Can be visual, analytical, statistical,
or data management.
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Common Denominators

Big science => big data, big machines
Most analysis algorithms are not up to speed

e Either serial, or

* Overheads kill scalability

Solutions

* Process data closer to the source

* Write scalable analysis algorithms

* Parallelize in various forms

* Build software stacks of useful and reusable layers
Usability and workflow

* Develop libraries rather than tools

* Users write small main programs and call into libraries




Abstractions Matter: Think Blocks, not Tasks

Block = unit of decomposition
Block size, shape can be configured

* From coarse to fine

* Regular, adaptive, KD-tree
Block placement is flexible, dynamic

* Blocks per task

* Tasks per block

 Memory / storage hierarchy
Data is first-class citizen

* Separate operations per block

* Thread safety

Parallel data analysis consists of decomposing a problem into blocks,
operating on them, and communicating between them.




You Have Two Choices to Parallelize Data Analysis

By hand With tools

Application Application

Analysis Algorithm Analysis Algorithm
Stochastic| Linear Algebra | Iterative |Nearest Neighbor q ( > Stochastic| Linear Algebra | Iterative [Nearest Neighbor
Interface

OS / Runtime ‘

OS / Runtime

void ParallelAlgorithm() {

MPI_Send(); void ParallelAlgorithm() {
MPI_Recv(); LocalAlgorithm();

MPI_Barrier(); DIY _Merge blocks();

MPI_File_write(); DIY_File_write()
}




DIY Concepts




DIY

helps the user write data-parallel analysis algorithms by decomposing a
problem into blocks and communicating items between blocks.

Features Library
Parallel I/O to/from storage Written in C++ with C bindings
Domain decomposition Autoconf build system (configure, make, make install)
Network communication Lightweight: libdiy.a 800KB

Utilities Maintainable: ~15K lines of code, including examples

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt I/O Decomposition Communication

| | Read
Analysis Library Data Blocking Neighbor
ITL, Osuflow, Qhull, VTK Whrite .
| Results Assignment Global

DIY
|

-y Parallel Datatype Parallel
M Pl Utilities Creation

DIY usage and library organization




Nine Things That DIY Does

. Separate analysis ops from data ops

. Group data items into blocks

. Assign blocks to processes

. Group blocks into neighborhoods

. Support multiple multiple instances of 2, 3, and 4
Handle time

. Communicate between blocks in various ways

Read data and write results
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Writing a DIY Program

Documentation
README for installation

User’s manual with description, examples
of custom datatypes, complete API
reference

Tutorial Examples

Block I/O: Reading data, writing analysis
results

Static: Merge-based, Swap-based reduction,
Neighborhood exchange

Time-varying: Neighborhood exchange
Spare thread: Simulation and analysis
overlap

MOAB: Unstructured mesh data model

VTK: Integrating DIY communication with
VTK filters

R: Integrating DIY communication with R
stats algorithms

Multimodel: multiple domains and
communicating between them

Initialize
|

Decompose domain
(regular grid &
postprocessing)

i

List decomposition
(irregular data or
in situ

Read data
from storage

Data exists in
memory

Local
analyze

Communicate

Merge Swap
Reduce | Reduce

Neighbor

. . L d
Write analysis el
to storage

User
[

' DIY
Finalize or user




Execution: Same Core and Spare Core

Initialize

Compute

for each time step

Compute

for each time step

Copy
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Access data
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Local
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Communicate
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Finalize

Same core
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Access data
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Local
analyze
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Write analysis

Finalize

Spare core




Time: Static and Time-Varying
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|
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Static
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Communication: Merge and Swap Reduction,
Neighbor Exchange

Initialize

Decompose domain

Initialize

Decompose domain

for each time block

Read data
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Read data
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reduction
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One Example in Greater Detail




Parallel Tessellation

We developed a prototype library for computing in situ Voronoi and Delaunay
tessellations from particle data and applied it to cosmology, molecular dynamics,
and plasma fusion.

Key ldeas

Mesh tessellations convert sparse point
data into continuous dense field data.

Meshing output of simulations is data-
intensive and requires supercomputing
resources

No large-scale data-parallel tessellation
tools exist.

We developed such a library, tess.

We achieved good parallel
performance and scalability.

Widespread GIS applicability in addition
to the datasets we tested.




Strong and weak scaling for up to
20483 synthetic particles and up to
128K processes (excluding I/O)
shows up to 90% strong scaling
and up to 98% weak scaling.

Scalability

Strong and Weak Scaling with CGAL
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Number of Cells

Appllcatlons n CosmOIOgy Feature statistics: Total

volume, surface area,
Histogram of Cell Density Contrastatt= 11 Histogram of Cell Density Contrast att = 21 Histogram of Cell Density Contrast att = 31 C u rvatu re , to P o I ogy of
connected components
of Voronoi cells classify

and quantify features.

Number of Cells
Number of Cells

496 0.046 0318 -0.13 052 084 1.16 148 1.80 212 245 . 233 385 538 690 842 995 11.47

Cell Density Contrast ((density ~ mean) / mean) Cell Density Contrast ((density ~ mean) / mean) Cell Density Contrast ((density ~ mean) / mean)

Temporal structure dynamics: As time progresses, the range of cell

volume and density expands, kurtosis and skewness increases. These
statistics are consistent with the governing physics of the formation
of high- and low-density structures over time and can perhaps be
used to summarize evolution at given time steps.

Density estimation:
Tessellations as
intermediate
representations enable
accurate regular grid
density estimators.



Recap

Block abstraction for parallelizing data analysis
Encapsulate data movement in a separate library

Define design patterns for data movement in HPC data analysis in
terms of:

* Execution
* Temporal behavior

¢ Communication pattern

The benefits are:
Abstraction, implementation independence
Reuse, programmer productivity
Standardization

Benchmarking
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Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large
Data Analysis and Visualization, LDAV'| 2, Seattle, WA.
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\ “The purpose of computing is insight, not numbers.”
Argonne® _Richard Hamming, 1962
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