“l have had my results for a long time, but | do not yet
Argonne'\ know how | am to arrive at them.”
—Carl Friedrich Gauss, 1777-1855

DIY Parallel Data Analysis

I'm sure my wife
will appreciate all
the DIY I'm doing
around the house

for her!

e Tom Peterka
Image courtesy pigtimes.com

tpeterka@mcs.anl.gov

ATPESC Talk 8/11/14 Mathematics and Computer Science Division

Preliminaries

Data Analysis
Cluster

Moving from Postprocessing to

Compwe 10 00 =
Nodes gyicch E; % Run-Time Scientific Data
%E T Analysis in HPC
Hgll

R -5
UEE m
u

Parallel File System ﬁg?g;te Klod |
©des Switch
Postprocessing analysis witc

and visualization

SN gg ¢

Run-time analysis and _D@_@

visualization

Parallel File System

Definition of Data Analysis

* Any data transformation, or a
network or transformations.

* Anything done to original data
beyond its original generation.

* Can be visual, analytical, statistical,
or data management.

Particles

Source

Multiple
heterogeneous
data cee
sources

ParaView

Tessellation

ID Densnty

Hatogam of Parie Densty

Exploranon

Multiple
ee e collaborator:

Explorat|on

Examples

surfaces
Streamline

‘Information entropy Ptychography

Morse-Smale complex Voronoi and Delaunay tessellation

Common Denominators

Big science => big data, big machines
Most analysis algorithms are not up to speed

e Either serial, or

* Overheads kill scalability

Solutions

* Process data closer to the source

* Write scalable analysis algorithms

* Parallelize in various forms

* Build software stacks of useful and reusable layers
Usability and workflow

* Develop libraries rather than tools

* Users write small main programs and call into libraries

Abstractions Matter: Think Blocks, not Tasks

Block = unit of decomposition
Block size, shape can be configured

* From coarse to fine

* Regular, adaptive, KD-tree
Block placement is flexible, dynamic

* Blocks per task

* Tasks per block

 Memory / storage hierarchy
Data is first-class citizen

* Separate operations per block

* Thread safety

Parallel data analysis consists of decomposing a problem into blocks,
operating on them, and communicating between them.

You Have Two Choices to Parallelize Data Analysis

By hand With tools

Application Application

Analysis Algorithm Analysis Algorithm
Stochastic| Linear Algebra | Iterative |Nearest Neighbor q (> Stochastic| Linear Algebra | Iterative [Nearest Neighbor
Interface

OS / Runtime ‘

OS / Runtime

void ParallelAlgorithm() {

MPI_Send(); void ParallelAlgorithm() {
MPI_Recv(); LocalAlgorithm();

MPI_Barrier(); DIY _Merge blocks();

MPI_File_write(); DIY_File_write()
}

DIY Concepts

DIY

helps the user write data-parallel analysis algorithms by decomposing a
problem into blocks and communicating items between blocks.

Features Library
Parallel I/O to/from storage Written in C++ with C bindings
Domain decomposition Autoconf build system (configure, make, make install)
Network communication Lightweight: libdiy.a 800KB

Utilities Maintainable: ~15K lines of code, including examples

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt I/O Decomposition Communication

| | Read
Analysis Library Data Blocking Neighbor
ITL, Osuflow, Qhull, VTK Whrite .
| Results Assignment Global

DIY
|

-y Parallel Datatype Parallel
M Pl Utilities Creation

DIY usage and library organization

Nine Things That DIY Does

. Separate analysis ops from data ops

. Group data items into blocks

. Assign blocks to processes

. Group blocks into neighborhoods

. Support multiple multiple instances of 2, 3, and 4
Handle time

. Communicate between blocks in various ways

Read data and write results

I

2
3
4
5
6.
7
8.
9.

Integrate with other libraries and tools

R
"

()
9

o
t,/:

//

"("
NANANANA

INAVAANA

8 processes 4 processes rocess

Writing a DIY Program

Documentation
README for installation

User’s manual with description, examples
of custom datatypes, complete API
reference

Tutorial Examples

Block I/O: Reading data, writing analysis
results

Static: Merge-based, Swap-based reduction,
Neighborhood exchange

Time-varying: Neighborhood exchange
Spare thread: Simulation and analysis
overlap

MOAB: Unstructured mesh data model

VTK: Integrating DIY communication with
VTK filters

R: Integrating DIY communication with R
stats algorithms

Multimodel: multiple domains and
communicating between them

Initialize
|

Decompose domain
(regular grid &
postprocessing)

i

List decomposition
(irregular data or
in situ

Read data
from storage

Data exists in
memory

Local
analyze

Communicate

Merge Swap
Reduce | Reduce

Neighbor

. . L d
Write analysis el
to storage

User
[

' DIY
Finalize or user

Execution: Same Core and Spare Core

Initialize

Compute

for each time step

Compute

for each time step

Copy

Get Decomposition

Access data

for each round

Local
analyze

Communicate

Write analysis

Finalize

Same core

Initialize

Get Decomposition

Access data

for each round

Local
analyze

Communicate

Write analysis

Finalize

Spare core

Time: Static and Time-Varying

Initialize

Decompose domain

Read data
|

for each round

Local
analyze

Communicate

Write analysis

Finalize

Static

Initialize

Decompose domain

for each time block

Read data

for each round

Local
analyze

Communicate

Write analysis

Finalize

Time-varying

Communication: Merge and Swap Reduction,
Neighbor Exchange

Initialize

Decompose domain

Initialize

Decompose domain

for each time block

Read data

Local
analyze

for each time block

Read data

Merge or Swap
Reduction

exchange

for each round |

reduce

Merge and swap
reduction

Write analysis

Finalize

for

rach round

Local
analyze

each item

Enqueue

Exchange

Flush

Write analysis

Neighbor
exchange

Finalize

One Example in Greater Detail

Parallel Tessellation

We developed a prototype library for computing in situ Voronoi and Delaunay
tessellations from particle data and applied it to cosmology, molecular dynamics,
and plasma fusion.

Key ldeas

Mesh tessellations convert sparse point
data into continuous dense field data.

Meshing output of simulations is data-
intensive and requires supercomputing
resources

No large-scale data-parallel tessellation
tools exist.

We developed such a library, tess.

We achieved good parallel
performance and scalability.

Widespread GIS applicability in addition
to the datasets we tested.

Strong and weak scaling for up to
20483 synthetic particles and up to
128K processes (excluding I/O)
shows up to 90% strong scaling
and up to 98% weak scaling.

Scalability

Strong and Weak Scaling with CGAL

2048"3 Partic

10243 Particles

512”3 Particles ~
256"3 Particles .
128"3 Particles >,
Perfect Strong Scaling ~_

Perfect Weak Scaling ~,

|
64 256 1K 4K

Number of Processes

|
16K

|
64K

Number of Cells

Appllcatlons n CosmOIOgy Feature statistics: Total

volume, surface area,
Histogram of Cell Density Contrastatt= 11 Histogram of Cell Density Contrast att = 21 Histogram of Cell Density Contrast att = 31 C u rvatu re , to P o I ogy of
connected components
of Voronoi cells classify

and quantify features.

Number of Cells
Number of Cells

496 0.046 0318 -0.13 052 084 1.16 148 1.80 212 245 . 233 385 538 690 842 995 11.47

Cell Density Contrast ((density ~ mean) / mean) Cell Density Contrast ((density ~ mean) / mean) Cell Density Contrast ((density ~ mean) / mean)

Temporal structure dynamics: As time progresses, the range of cell

volume and density expands, kurtosis and skewness increases. These
statistics are consistent with the governing physics of the formation
of high- and low-density structures over time and can perhaps be
used to summarize evolution at given time steps.

Density estimation:
Tessellations as
intermediate
representations enable
accurate regular grid
density estimators.

Recap

Block abstraction for parallelizing data analysis
Encapsulate data movement in a separate library

Define design patterns for data movement in HPC data analysis in
terms of:

* Execution
* Temporal behavior

¢ Communication pattern

The benefits are:
Abstraction, implementation independence
Reuse, programmer productivity
Standardization

Benchmarking

Further Reading

DIY
* Peterka,T., Ross, R, Kendall, W, Gyulassy, A., Pascucci,V., Shen, H.-WV, Lee, T.-Y., Chaudhuri,A.:
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and
Visualization Symposium (LDAV'I), IEEE Visualization Conference, Providence RI, 201 I.
* Peterka,T., Ross, R.:Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special
Session on Improving MPI User and Developer Interaction IMUDI'| 2,Vienna, AT.

DIY applications
* Peterka, T, Ross, R., Nouanesengsey, B, Lee, T.-Y,, Shen, H.-W,, Kendall, W,, Huang, J.: A Study of
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'I I,
Anchorage AK, May 201 I.
* Gyulassy,A., Peterka, T, Pascucci,V., Ross, R.:The Parallel Computation of Morse-Smale
Complexes. Proceedings of IPDPS'1 2, Shanghai, China, 2012.
* Nouanesengsy, B, Lee, T.-Y,, Lu, K., Shen, H.-WV,, Peterka, T.: Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT.
* Peterka,T., Kwan, ., Pope, A, Finkel, H., Heitmann, K., Habib, S.,Wang,]., Zagaris, G.: Meshing the
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT.
* Chaudhuri,A,, Lee-T.-Y,, Zhou, B.,Wang, C., Xu, T, Shen, H.-W,, Peterka, T., Chiang,Y.-).: Scalable
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large
Data Analysis and Visualization, LDAV'| 2, Seattle, WA.

NERGY

\ “The purpose of computing is insight, not numbers.”
Argonne® _Richard Hamming, 1962

NATIONAL LABORATORY

Acknowledgments:

Facilities
Argonne Leadership Computing Facility (ALCF)
Oak Ridge National Center for Computational Sciences (NCCS)

Funding
DOE SDMAV Exascale Initiative
DOE Exascale Codesign Center
DOE SciDAC SDAV Institute

https://bitbucket.org/diatomic/diy

Tom Peterka
tpeterka@mcs.anl.gov

ATPESC Talk 8/11/14 Mathematics and Computer Science Division

