AAAAAAAAAAAAAAAAAA

Workflow for extreme-scale systems

Presenter: Michael Wilde wilde@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory
University of Chicago/Argonne Computation Institute

|‘ ’»)J U.S. DEPARTMENT OF
.9/ ENERGY

Outline

= Qverview — context of workflow for science and engineering

= Workflow environments

= Expressing workflows — tools and programming models

= Workflow issues for extreme scale

= |0 performance envelopes for workflow

= Expressing workflows in Swift

= Hands-on workflow examples and exercises using Swift

Language basics

Running on a cluster

Running on a cloud

Running on a supercomputer

Multi-machine workflows

Scaling up with Swift/Turbine: in memory and inter-language
More advanced (self-paced) workflows exercises and experiments

Definitions

= Workflow: the execution of a set of application programs
— Often for a diverse set of application programs

— Often with logical and physical dependencies
e Logical: data dependencies
e Physical: resource dependencies (space, processor, solution priorities)

— Scripting is one way to implement workflows (Ad-hoc, Parallel libraries, Swift)
— Generation of engine-specific input is another (DAGMan, Pegasus, Galaxy, Kepler)
= Scripting: higher-level dynamic programming
— J. Ousterhout: “Scripting: Higher level programming for the 215t century”
= High throughput computing (HTC)
= Many-task computing (MTC)
= Dataflow
= Data parallel vs. task parallel

— Workflow is almost always task-parallel at its outer levels
— SPMD: typified by MPI
— MPMD: multiple programs, multiple data — more typical of workflow

Definition of MTC Applications

= Many-task Computing applications assemble existing parallel or sequential
programs

= Those programs read and write data to a filesystem
= Applications often have multiple stages

= Task dependencies between stages are in the form of file production and
consumption

= Can have very high rates (eg hundreds per second) of very short tasks
(minutes seconds)

Slide courtesy of Zhao Zhang

When do you need workflow?

Typical application: protein-ligand docking for drug screening

0(10) O(100K) e G
proteins X drug O ¥ O
implicated candidates | .. e

in a disease

im
compute
jobs

g Tens of fruitful

P78 9 a0 ,N/:/ No~g-CHs3 Q candidates for

Lo s Q m Q wetlab & APS
F

[na' g .- Work of M. Kubal, T.A.Binkowski,
s D03361 And B. Roux °

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

O 0 © © 60

Numerous many-task workflow applications

T0623, 25 res., 8.2A to 6.3A
(excluding tail)

L S W e T S

Simulation of super- '
cooled glass materials [

— KALJ]||
— IPL
— WCA |1

O = N W &

Protein folding using
homology-free approaches

Climate model analysis and
decision making in energy
policy

Simulation of RNA-protein =
interaction -

I Initial
I Predicted
I Native

S
=

Multiscale subsurface
flow modeling

° Latitude N
F Y
o

[~
©

(3
©

Modeling of power grid
for OE applications

-90 -88
° Longitude W

TARGET RESOURCES

= System types
— Clouds
— Clusters (campus, department)
— Petascale HPC systems
— Grids (OSG, LCG, ...)
— Multi/many-cores — 256 core nodes! <\/)>

= Patterns
— A ssingle big HPC machine

-7 THE UNIVERSITY OF

< CHICAGO

— HPC Machine with attached resources
— Extend campus cluster with cloud
— Many HPC machines

— Many combinations of above

Example of multi-resource workflow

-

@plicatiog E Input j

Cluster file server

~

J

/

~ :
\i(ﬁlﬁ[Workﬂow client
v

EOutputj

Workflow client can send HPC work to Cray
and analysis work to campus cluster and/or resource
aggregator

\ Cluster interactive node /

Cray XE 24-core nodes]

_

Beagle Cray

~N

J

/

UC3 seeder nodes

v

Midwest ATLAS nodes

D

OSG nodes

\ S

r ™

\ UChicago UC3 /

o

Shared nodes

Department nodes

)

_ UChicago RCC)

Workflow patterns and issues

= Parameter sweeps

= Ensembles

= Data analysis

= Scaling studies

= Specialized patterns: uncertainty quantification, branch and bound
= Programming an application from libraries of applications

= Dataflow vs control flow
— Ultimately, workflow is essentially dataflow
— The difference is who writes and thinks about the dataflow

= Pipelining and concurrency (and how dataflow is good at this)
= Workflow manager drives application (outer workflow, inner scripts)
= Workflow manager embedded in application (outer scripts, inner workflow)

PROGRAMMING MODELS

= MPI, OpenMP, Hybrid

= Map reduce

= Record processing (with functions) vs file processing (with apps)
= Generating workflows for other engines

= Dynamically interpret the workflow

= Script mode (for Blue Gene, Cray systems)

= Dependent job processing

10

\
A partial sampler of workflow tools

= High throughput tools
— Condor
— Cluster schedulers / local resource managers (PBS, SGE, Cobalt, LSF, LL, SLURM,..)
= Workflow task dependency managers
— DAGMan
— Schedulers with job dependencies
= |ntegrated dependency and data management
— Pegasus
= Dataflow languages
— Dryad, Ciel, Swift
= Big data solutions
— Hadoop, Spark, Zookeeper, Uzi
= Multicore tools
— GNU Parallel
= Languages with parallel support
— Py _nnn, Java_nnn, Haskell, R, MATLAB => PSOM, Parallel BASH (Walker)

11

A sampler of workflow tools - part Il

= Interactive workflow frameworks
— Galaxy
— Taverna
— Kepler
— LONI Pipeline (neuroscience)
— Microsoft Workflow manager
— Airivata

= Science gateways

12

Parallel BLAST as a workflow

Based on
script of

D. Matthog
by Z.Zhang,
L. Gahelha

b

database

query?2

M queryM

Original script by
D. R. Mathog,
Parallel BLAST on
split databases.
Bioinformatics, 19
(14), 2003.

BLAST STAGE TASKS, INPUTS, OUTPUTS, AND INPUT AND OUTPUT SIZE

Stage # Tasks # In # Out In (MB) Out (MB)
fastasplitn | 1 1 N 4039 4039
formatdb N N 3N 4039 4400
blastp N*M N+M N*M 73*N*M 2.4*N*M
merge M N*M M 2.4*N*M 4.8*M

Can workflow scale?
BLAST workflow lags MPI BLAST by ~ 5%

B mpiblast [mtcblast | improvement

800 8%
)
-
S 600 6% m
Q =
< :
S =z
= 400 4% g
=)
(o] | .
Ird o
: £
o =
N 200 2%
E
-
0 0%

256 1024 4096 16384 32768

Scale (Number of Cores)

Z. Zhang, D. S. Katz, J. Wozniak, A. Espinosa, I. Foster. “Design and Analysis of Data Management
in Scalable Parallel Scripting”, Supercomputing 2012.

b

Two fundamental problems in scaling workflow

= Task rate
— 60,000 cores / 60 sec/task = 1,000 tasks per second!

= Data management
— 1K tasks / sec may generate 5GB/sec — not so bad if blocked efficiently
— 1K tasks / sec may generate 2,000 files / sec — not so easy

15

Multi-level scheduling: pilot jobs can improve
task rate performance

= Pilot jobs are long-running meta-jobs
— allocate compute resources and run many smaller jobs
= PANDA
— Widely used on OSG and LCG by the ATLAS physics collaboration
= GWMS using Condor Glide-Ins
— A generalized solution widely deployed on OSG
= SAGA and Bigjob
— Obtaining good results on XSEDE resources
= Java CoG Coasters
— Allocates/frees resources based on demand
— Peaks at 600 tasks per second
= Falkon
— Research system reached 3,000 tasks per second and 1B tasks

16

Workflow patterns and data exchange

wesiens] (v] [svims] [svsims] [svsimes | [swimes | [swcomes | [rwcom|

/ AV Filesystem Access Patterns:

* File Creation

" / * File Open
[s [Stoom] [_oerac] |g'/| e 1-to-1 Read
H * N-to-1 Read
* Few-to-1 Read
* 1-to-1 Write

,D.S. ~M-Wilde, J-Wozniak, |. Foster. MTC Envelope: Defining the Capability of Large

Scale Computers in the Context of Parallel Scripting Applications, HPDC 2013.
s

Measuring MTC Envelope:

= Target platform
— GPFS deployed with ANL Intrepid BlueGene/P
— Several metadata servers, but only one for each directory

— 128 IBM x3545 file servers, each with two 2.6-GHx Dual Core CPUs and 8 GB
RAM

— We use I/O nodes as GPFS clients. (Ratio between 1/O nodes and CPU cores —
1:256)
= Experimental setup
— Metadata operation: {create, open} x {1, 2, 4, 8, 16, 32, 64, 128, 256} clients

— 1/0: {read, write} x {1 KB, 128 KB, 1 MB, 16 MB}x {1, 2, 4, 8, 16, 32, 64, 128,
256} clients

— Total number of operations fixed at 8192 at each scale
— All files are in one directory

Performance envelope research and slides by Zhao Zhang

Measuring MTC Envelope

= Metadata Operation Throughput

2000 : : ,
OPEN +\
— CREATE —m—
=
S 1500 +
=
o
=
=y
c 1000 ¢
=
—
(e
.S
% 500 | 1
£ _ -
0

1 2 4 8 16 32 64 128 256
Scale (Number of GPFES Clients)

Measuring MTC Envelope

=]-to-1 Read
2000 . . 100000 . .
1KB —x— IKB —x—
= 128KB —m— > 10000 | 128KB —m—
3, 1IMB —eo— [=a) IMB —eo—
S 1500 | 16MB 4 S 1000 | 16MB — 4
= =
2 S 100 |
o0 2
= o
2 1000 g 10 L
s [aa]
F
5 E Ly
£ 500 | - 01 |
2 8
° X 0.01 |
0 A ‘ ' : : ‘ 0.001 L : ' ‘ : ' ‘ ‘ '
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Scale (Number of GPFS Clients) Scale (Number of GPFS Clients)

MTC Envelope vs. Scale

Creation ughput

N-to-1 Read Bandwidth Open Throughput
N-to-1 Read Throughput \ g 1-to-1 Read Throughput
=
i ‘
7E %
—
Write Bandwidth 1-to-1 Read Bandwidth
Write ghput
1 client 2 clients 4 clients 8clients =16 clients

~—=32clients ~——64clients — 128 clients 256 clients

Write File Size

Performance guide for workflows

= MTC Envelope expressed as heat maps: (shown here for write ops)

16MB

1IMB

128KB

1KB

1 2 4 8 16 32 64 128 256
Scale (Number of GPFS Clients)

4000
3500 _
3000 &
2500 2
20005

)

16MB

IMB

Write File Size

15002 128KB
10002
500 2 IKB

0 1 2 4 8 16

32 64 128 256

Scale (Number of GPFS Clients)

= Use throughput heat map when files are small, and use bandwidth heat

map when files are large.

1-to-1 Read Performance

= |/O Performance Prediction: =1client ®2Clients = 4Clients 8 Clients

800
700 _
6005,
5002
400 2.
300?
200 2
100E

800

600

400

200

Bandwidth (MB/s)

0

1KB 128KB 1MB

Some engineering problems

and research challenges for extreme workflow

= Engineering

Diversity of interfaces, hard to tame and test, hard to abstract
Inter-language bindings and data interchange — challenge to usability
Integration with extreme-scale networks, runtimes and language stacks

= Research

Economics and policy-based scheduling

Retry/recovery of large distributed task and data graphs
Power management

Load balancing

Programming models: integration of dataflow and big-data techniques and
tools

23

GEMTC: GPU Enabled Many-Task Computing

f —
. Host
SWg Scheduler

o j t
Motivation: Support Many-Task Computing on Accelerators
Goals: Approach:
1) MTC support Design, implement middleware:
2) Improved programmability 1) manages GPU
3) MTC efficiency 2) spread host/device
4) MIMD on SIMD 3) Workflow system
5) Increase concurrency 12X (16 -> support (Swift/T)
192 (12x)

B Grimmer, S Krieder, | Raicu. Enabling Dynamic Memory Management Support for MTC on NVIDIA GPUs,
EuroSys 2013 poster.

SWITG»

= Parallel scripting language for clusters, clouds & grids

— For writing loosely-coupled scripts of application programs
and utilities linked by exchanging files

— Can call scripts in shell, python, R, Octave, MATLAB, ...

= Swift does 3 important things for you:

— Makes parallelism transparent — with functional dataflow
— Makes basic failure recovery transparent

— Makes computing location transparent — can run your script
on multiple distributed sites and diverse computing
resources (from desktop to petascale)

- this is what we’ll show today

25

http://swift-lang.org

Language-driven: Swift parallel scripting 1018

‘ Data server <:>
A

/

Swift ,
script
— %]
E pplication
Programs

@bmlt host (login node, laptop, Linux server)

Swift runs parallel scripts on a broad range
of parallel computing resources.

26

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Programming model:
all execution driven by parallel data flow

(int r) myproc (int 1)

{
J = £(1);
k = g(i);
r = j + k;
}

= f() and g() are computed in parallel
= myproc() returns r when they are done

= This parallelism is automatic
= Works recursively throughout the program’s call graph

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

27

Encapsulation enables distributed
parallelism

Application program

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution, parallelization, and automatic
provenance capture

a\\=_*» "

A www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

app() functions specify cmd line argument passing

To run:
psim -s 1ubg.fas -pdb p -t 100.0 -d 25.0 >log

100.0 3 25.0 In Swift code:

app (PDB pg, File log) predict (Protein seq,
Float t, Float dt)
{
psim "-c" "-s" @pseq.fasta "-pdb" @pg
ll_tll temp ll_dll dt;
PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
File log;

(structure, log) = predict(p, 100., 25.);

A0 www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Large scale parallelization with simple loops

1000 -

”predict” M M M M
application , :
. -::'.E;.'.i;';:i
Ana lyZ e () -.*.:";E-;::'.,:'\:;-:::t g:g}
A e, e 3
ge - LY
foreach sim in [1:1000] { s
(structure[sim], log[sim]) = predict(p, 100., 25.);

}

result = analyze(structure)
) 30
o ¢ www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Nested parallel prediction loops in Swift

Sweep()
{
int nSim = 1000;
int maxRounds = 3;
Protein pSet[] <ext; exec="Protein.map">;
float startTemp[] =[100.0, 200.0 |;
float delT[]=[1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach tin startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

) 10 proteins x 1000 simulations x

} 3 rounds x 2 temps x 5 deltas
Sweep(); = 300K tasks

31

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Spatial normalization of functional run

Qataset-level workflow
o\-’?
&

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_war :
p ¢4%?§§§\

reslice_war < (
strictmean p iﬁ§i é %i’
binarize /%7 ‘\§\

gsmooth

Expanded (10 volume) workflow
32

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun (Run ir, string direction)
(Run snr) functional (Run r, NormAnat a, {
Air shrink)

{ RunyroRun = reorientRun(r,"y");< }
Run roRun = reorientRun(yroRun , "x");)

foreach Volume iv, i in ir.v {
or.v[i] = reorient(iv, direction);

Volume std = roRun][0];

Run rndr = random_select(roRun, 0.1);

AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");
Run reslicedRndr = resliceRun(rndr, rndAirVec, "0", "k");

Volume meanRand = softmean(reslicedRndr, "y", "null");

Air mnQAAIr = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);

Run nr = reslice_warp_run(boldNormWarp, roRun);

Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6"),
}; 33

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Dataset mapping example: fMRI datasets

—

On-Disk
Data -
Layout

3 DBIC
=45 Study
- =88 Group
=8 Subject
ok Anat

- =EyRUN
=9 Subject
: =8 Subject
#-4F Study
#-4F Study

Viapping function
or script

type Study {
Group g[|;
}
type Group {
Subject s[];
}
type Subject {
Volume anat;
Run run[|;
}
type Run {
Volume v[|;
}

type Volume {

Image img;
Header hdr;
}

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

—

Swift’s
~ in-memory
data model

34

Nested loops can generate massive parallelism

Protein folding example:

sSweep()

{
int nSim = 1000;
int maxRounds = 3;

Protein pSet[] <ext; exec="Protein.map'">;
float startTemp[] = [100.0, 200.0 7];
float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0 7J;
foreach p, pn in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} } 10 proteins x 1000 simulations x

b 3 rounds x 2 temps x 5 deltas

} _
Sweep () ; = 300K tasks

35

Centralized evaluation can be a bottleneck

¥ .
ad- this For extreme prog
(Swift/K): scale, we need
prog this (Swift/T): RS
J +

500 lask/sec |

Centralized evaniabon

Dlslrbutcu oy aluahcn

36

Parallel evaluation of Swift/T in ExM

4)
rules

ariable IDs

Evaluator Rule engine
and values

notificajions
Variable
I store I
Task pool / dispatcher (ADLB)

_ Turbine)

Swift/T: Large-scale application composition via distributed-memory data flow processing
J.M. Wozniak, T.G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, I. Foster Proc. CCGrid 2013.

Swift/T programs run as an SPMD MPI program
using ADLB

Shared State

Data Store

Task Queue

7Y VYV B - - Y
Server Processes - / L y \ y

\/\/\

Execution

/\/\/\/\/\/\/\/\/\/\
\ |

> < / ControI/Worker Processes 3 > <

\/\/\/\/\/\/\/\/\/\/

38

Swift/T: High-level model

= Script-like global-view programming with “leaf tasks”- function calls in C, C++, Fortran,
Python, R, or Tcl

= Leaf tasks can be MPI programs, etc.

= Distributed, scalable runtime manages tasks, load balancing, data movement

= User function calls to external code run on 1000’s of workers

Like master-worker but with the expressive Swift language to control progress

- — Swift worker process
Swift P P
control < >
orocess € > C C++ Fortran

python

A

powered

MPI process architecture for parallel evaluation
in Swift/T

——

Control ~ Load | | Task | Legend
Flow ~ Balancing | | Execution Process
I i i E i - o = i
Rule o —
Engine H Server . Task flow
ko kr .\»‘.“‘
AU ('
Rule H Server
Engine §

.\ 40

Parallel evaluation in action

Start
Outer Loop
int X = 100, Y = 100; Bodies
int A[][];
int B[]; Inner Loop
foreach x in [0:X-1] { Bodies
foreach y in [0:¥-1] {
if (check(x, y)) { check
Alx][y]l = g(f(x), £(y));
} else { if-then-else
Alx][y] = O;
} f
}
B[x] = sum(A[Xx]); g
}
sum

(To simplify diagram, array references

Seo
-

..

~
~
~
-~
~
~
..
~

~
.~ ~ ~
~

S==

—s Data
wait/write

are not shown for the loops above)

41

[u—
OO0 I N W —

(NS T YO T NS T NG Y NG TN (G Y S Uy gy G GG
NHE W= OOV IAWUN KW —

Pervasive implicit parallelism with
automatic pipelining

blob models([], res[]I[];

foreach m in [1:N_models] {
models[m] = load(sprintf ("model%i.data", m));

}

foreach i in [1:M] { evaluate() summarize()

foreach j in [1:N] { /\]
// initial quick evaluation of parameters B >Q‘ N
p, m = evaluate (i, J); % :

if (p > 0) {
// run ensemble of simulations
blob res2[];
foreach k in [1:S5] {

res2[k] = simulate (models[m], i, 3Jj);
res[i] [J] = summarize (res2);
}

}
}
// Summarize results to file
foreach i in [1:M] { , , load() simulate() analyze()

file out<sprintf ("output%i.txt", 1i)>;

out = analyze(res[i]);
}

(a) Declarative Swift/T code (b) Visualization of parallel execution for M =2 N =25 =3
42

Swift/T toolchain and runtime environment

Swift
Script

Data
| Definitions

Data Flow
Expressions

External
Functions

STC

Semantic
Analysis

Flattening &

Optimization

Code
Generation

ST e

/

Turbine
Code

Task / Data
Dependency

Memory
' Management .

Library
Access

e g

L

Turbine

_\

Execution

mpiexec

» Interpreter

Turbine
libraries

ADLB

User
Libraries

i

43

Inside the Swift/T “stc” compiler

STC Compiler
IR-2 |R-2 Post-processing:
» Optimization » Ref. Counting & Distributed
Value. Passing Executor
Normalization IR-3 T
IR-1 * Tcl Script
Swift/T Script » Frontend Code Generator - wi runtime
- — library calls

44

Operation reduction optimizations by stc

ORefcount MWArmay Insert B Array Lookup O Scalar Store
® Scalar Load & Data Subscribe @ Data Create M Task Get/Put

’('é‘ 80 fg\ 5
2 60 o 4
2 40 s 3
%) n 2
8 20 - §
EEEERN = E
ADLB O0 O1 02 03 ADLB 00 02 03
(a) Sweep (107 combinations) (b) Fibonacci (n = 24)
12
’(},‘700 5 1.0
2600 =08
%500 206
2400 204
£300 O
»200 ’ =
2100 0.0
o™ = = = ADLB 00 03

ADLB 00 Ol 02 03 (q4) Wavefront (100x100 ar-

(¢) Sudoku (100x100 board) ray)
25

c

© 2.0

S 15

n 1.0

Q.

Qo5
0.0

ADLB OO0

(e) Simulated Annealing (125 iterations, 100-way objective func-

tion parallelism) 45

| a = fl1(); b = f2(a);
2 c, d = f3(a, b); e = f4(£f5(c);
3 f = £4(£5(d); = foe (e, f);

(a) Swift code fr%gment

W s sl
PSPl T
~ AL PR T
. . LR Se
. ' LU SR .~
’ . .~
] . .
g 1 - -~
* LAY -~
1 . s -~
’ M LR
. LSRR
V

........
~~~~~~

- -~ -
~~~~~~

'''''

(b) Unoptimized version, relying on shared data flow variables
to pass data and runtime data dependency tracking

value of e

o Va’a“stLa s) S e
' ' ' value Aof‘ -- |
passed ‘
(c) After wait pushdown and elimination of shared variables in
favor of parent-to-child data passing

value of e

46

(d) After pipeline fusion merges tasks

Task priority can be specified to
reduce tail effects

= Variable-sized tasks produce trailing tasks:
addressed by exposing task priorities at language level

30

N N
o

load (processes)
e
o (o)

()

0! . : . , . : , ,
1,400 1,425 1,450 1,475 1,500 1,525 1,550 1,575 1,600

time (seconds)

— Load without priorities - Load with priorities

Performance results:

10 Cray XE MC-12 24-Core nodes,
2 control nodes, 8 worker nodes (240 cores total)

14 08 400
=12 = 3 a0
S10 Sos g
208 ® ~ 60
7] w04 B
206 g @
@ @ x 40
=04 =02 8 0
£02 x I
20_0 Il §0_0 . - § .
ADLB 00 O1 02 03 ADIB 00 O1 02 03 ADLB 00 O1 02 03
(a) Sweep: 107 x Os (b) Sweep: 10”x 0.2ms (c) Fibonacci: n = 34,
tasks tasks 0.2ms tasks

~30

(Thou
NN
o o,

-
o o,

ADLB O0 O1 02 O3

(d) Wavefront: 100x100,
0.2ms tasks

Work Tasks/s

-
[&]

—— 00
—— 01
02
—&— 03
— ldeal

Y
o

Iters/sec
(4]

00 1000 2000 3000 4000
Cores
(e) Simulated Annealing: 10 pa-
rameters x 25 iters x 1000
~ 0.25s tasks

Fig. 11: Throughput at different optimization levels measured in application terms: tasks/sec, or annealing iterations/sec.

48

Example execution

Code

Engines: evaluate dataflow operations

Workers: execute tasks Task put

Notification

Task put

49

ADLB: Asynchronous Dynamic Load Balancer

= Developed previously by Lusk and Butler

= Pure MPI task distributor

= Uses client-server model with multiple servers for scalability
= Servers can share work

= QOriginally, supported just Put() and Get() on tasks

= We added Store(), Retrieve(), Subscribe(), etc. on data
for data-dependent processing

= Lusk, Pieper, and Butler. More scalability, less pain: A simple programming model
and its implementation for extreme computing. SciDAC Review 17, 2010.

50

Supports calls to native libraries

Top-level dataflow script

sweep.swift
[useri.c user2.f user3.cpp
wrapper wrapper wrapper

Swift/T runtime
Task distribution / Data store

MPI

= |ncluding MPI libraries

51

Application: Power Grid Modeling (PIPS)

Prior work Swift/T work
| | |
T
v 5
PIPS otential scenario ||} _
massively 20|ution evaluation > analysis
parallel — _
numerics o massive
~—N A
A . task
(SC'11) sScenarios parallelism
— —) results

Swift/T (and the many-task, dataflow model) complements
existing application workflows

52

Application: Branch-and-Bound (Minotaur)

Initial
Problem

~ Relaxation

N Solver

T— Branch/Prune ‘4{ Solutions \

Branches

Creates task
parallelism

in Swift

Minimize some function via recursive search,

allow only for integer solutions

Builds a new, scalable application from pre-existing components

53

N]
Visualization of Swift/T execution

= User writes and runs Swift script
= Notices that native application code is called with nonsensical inputs
= Turns on MPE logging — visualizes with MPE

Process rank

| | | | | | | | | | | | |
79.93 79.935 79.94 79.945 79.95 79.955 79.96 79.965 79.97 79.975 79.93 79.985 79.93

Time >
Jumpshot view of PIPS application run

— PIPS task computation Store variable
Blue: Get next task

Server process (handling of control task is highlighted in yellow)

= Simpler than visualizing messaging pattern (which is not the user’s code!)
= Represents Von Neumann computing model — load, compute, store 54

Debugging Swift/T execution

= Starting from GUI, user can identify erroneous task
— Uses time and rank coordinates from task metadata

= Can identify variables used as task inputs

= Can trace provenance of those variables back in reverse dataflow

[

b)

T
—
erroneous task
|

B E— S —
S —— T —
—— S —— T —

Aha! Found script defect. & & & (searching backwards)
o 55

Swift is a parallel scripting system for grids, clouds and clusters
— for loosely-coupled applications - application and utility programs linked by
exchanging files
Swift is easy to write: simple high-level C-like functional language
— Small Swift scripts can do large-scale work
Swift is easy to run: contains all services for running Grid workflow - in one
Java application
— Untar and run — acts as a self-contained Grid client
Swift is fast: uses efficient, scalable and flexible “Karajan” execution
engine.
— Scaling close to 1M tasks —.5M in live science work, and growing
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, and more.

Try Swift! http://swift-lang.org (Swift/K) and www.mcs.anl.gov/exm
(Swift/T)

56

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Summary: Challenges of workflow at extreme
scale

Inter-resource coordination

Hybrid programming tools

The challenges of data motion

— Data management strategies and system envelopes

The challenges of task scheduling and dispatch

— Task rates and task distribution
— Resource utilization vs. time to solution

Workflow expression and separation of concerns
Provenance: tracking what was done

57

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Workflow references

= Workflows for e-Science Book
= VderA patterns
= Pegasus patterns

= Paper on characterization (Lavana,
Gannon et al)

= Bibliography ... ???

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Workflow; for
e-Science

58

Parallel Computing 37 (2011) 633-652

Contents lists available at ScienceDirect

PARALLEL
COMPUTING

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Swift: A language for distributed parallel scripting

Michael Wilde *>*, Mihael Hategan ?, Justin M. Wozniak®, Ben Clifford ¢, Daniel S. Katz?,
lan Foster #P¢

2 Computation Institute, University of Chicago and Argonne National Laboratory, United States
> Mathematics and Computer Science Division, Argonne National Laboratory, United States
¢Department of Computer Science, University of Chicago, United States

4 Department of Astronomy and Astrophysics, University of Chicago, United States

ARTICLE INFO ABSTRACT

Article history: Scientists, engineers, and statisticians must execute domain-specific application programs
Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-
Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but

Swift) their use further increases programming complexity. The Swift parallel scripting language
gar_a”?l programming reduces these complexities by making file system structures accessible via language con-
Dzrgfftlglﬁ structs and by allowing ordinary application programs to be composed into powerful par-

allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift's implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

Parallel Computing, Sep 2011

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Acknowledgments

Swift is supported in part by NSF grants OCI-1148443 and PHY-636265, NIH DC08638,
and the UChicago SCI Program

ExM is supported by the DOE Office of Science, ASCR Division
Structure prediction supported in part by NIH

The Swift team:

— Tim Armstrong, lan Foster, Mihael Hategan, Dan Katz, David Kelly, Ketan Maheshwari, Justin Wozniak, Mike Wilde, Justin
Wozniak, Zhao Zhang

Swift/T:

— Justin Wozniak and Tim Armstrong, with Yadu Nand and Scott Krieder
GeMTC (IIT):

— loan Raicu, Scott Krieder, Ben Grimmer
ExM:

— Tim Armstrong, lan Foster, Rusty Lusk, Ketan Maheshwari, Todd Munson, Matei Ripeanu, Sameer Al-Kiswani, Hao, Mike Wilde

Java CoG Kit used by Swift developed by:
— Mihael Hategan, Gregor Von Laszewski, and many collaborators

Scientific application collaborators and usage described in this talk:
— U. Chicago Open Protein Simulator Group (Karl Freed, Tobin Sosnick, Glen Hocky, Joe Debartolo, Aashish Adhikari, Mark Parisien)
— U.Chicago Radiology and Human Neuroscience Lab, (Dr. S. Small, Sarah Kenny, Uri Hasson)
— RDCEP / CIM-EARTH: Joshua Elliott, David Kelly
— ParVis and FOAM: Rob Jacob, Sheri Mickelson (Argonne); John Dennis, Matthew Woitaszek (NCAR)
— UColumbia Chemistry, David Reichman, Glen Hocky

— Argonne Power Grid Simulator, V. Zavala, K. Maheshwari, M. Hereld

60

swift-lang.org www.mcs.anl.gov/exm

Exercise views and supplemental slides

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

61

Exercise - MODIS satellite image processing

" |nput: tiles of earth land cover (forest, ice, water, urban, etc)

e QOuput: regions with maximal specific land types

h —>

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2

0 O N OO O s W N - O

10
1"

12

13

14

15

16

17

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

\ |
Goal: Run MODIS processing pipeline in cloud

FRERLLEE analyzelLandUse i markMap

o x317
g colorMODIS
L . . assemble
MODIS script is automatically run
in parallel:

tLandU
i e500000080000000888008 " mr
SEEBEEBEEEEEEEEEEEnERES (i

Each loop level analyzeLandUse

can process tens
to thousands of
image files.

assemble

63

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Swift/T example: Part 11

Overview: Find biggest parallelepiped volume via Python and R

— Construct several matrices according to simple arithmetic
— Compute determinants in parallel in Python (via Numpy)
— Fix maximal determinant in R (reduction step)

— Python reference code is included (dets.py == dets.swift)

Construct matrices (in Swift arithmetic)
— Matrices stored in

distributed global store
Determinant (Numpy/Python) /x/ \\

— Cf. numpy.swift
Find maximum (in R)

Could call to C, C++, Fortran, instead

Normally would call to application components,
not numerical libraries

MODIS script in Swift: main data flow

foreach g,1 in geos {
land[i] = (g,1);
}
(topSelected, selectedTiles) =
(land, landType, nSelect);

foreach g, i in geos {
colorImage[i] = colorMODIS(g);
}
gridMap = markMap (topSelected);
montage =
assemble(selectedTiles,colorImage,webDir);

65

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Swift can send work to multiple sites

-

~
GRAM
J
Remote campus cluster j
)
Qny remote
. GRAM
A A&
_ J
Data server R |
(GridFTP, scp, ...) \emote campus cluster j

Simple campus Swift usage: running locally on a cluster login host

° 66

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

User first tests a new script on a local login host

==l
~

Swift
script swift command Logs
—
\/-

v
config
Lﬁl} E Output j
\ Laptop, desktop, login host /

Swift script is location-independent —
debug locally then run distributed

www.ci.uchicago.edu/swift

MODIS script excerpt used in this demo

S cat modis.swift

type imagefile;
type landuse;
type perlscript;

User’s Perl app is
passed as data

perlscript getlanduse_pl <"getlanduse.pl">;

app (landuse output) getLandUse (imagefile input, perlscript ps)

{
perl @ps @filename(input) stdout=@filename(output);

}

Input dataset is a
script parameter

Constants and command line arguments
string MODISdir = @arg("modisdir", "../data/modis/2002");

Output filenames
are based on inputs

Input Dataset
imagefile geos[] <filesys_mapper; location=MODISdir, suffix=".rgb">;

Compute the land use summary of each MODIS tile
landuse land[] <structured_regexp_mapper; source=geos, match="(h..v..)",
transform=@strcat("landuse/\\1.landuse.byfreq")>;

Iteration over the
dataset is
implicitly parallel

foreach g,i in geos {
land[i] = getLandUse(g, getlanduse_pl);
}

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

User runs on a campus or department cluster

Swift config
script files

_/- .
K Cluster file server

4 N
Epplicatior; E Input j

J

-

)
-

v
E Output j

Cluster interactive node

~

J

Cluster node

Cluster node

Cluster node

o

Cluster
Compute
Nodes

Single-node script scales easily to local cluster

www.ci.uchicago.edu/swift

69

User runs on a campus cluster: what’s inside

o

4)
Epplicati@ E Input j

Swift
script

config
files

Cluster file server /

-

v
E Output j

Cluster interactive node

4 : N
-)

//

\ Cluster node /

J

o

Cluster
Compute

Nodes /

Multiple data streams of data moved from client to worker local FS

b

www.ci.uchicago.edu/swift

70

Campus or XSEDE supercomputer access is same

Epplicatior; E Input j /
Cluster node

Swift config .
script files r
Cluster node

K _ﬂter file server /)

Swift] Cluster node
v
Cray XE
Output “Beagle”

\ Cluster interactive node / \ 18K cores

Same script runs unchanged between campus research cluster and Cray XE systems

www.ci.uchicago.edu/swift

S swift -sites.file sites.xml -tc.file tc.data -config beagle-ssh.cf modis02.swift \
-modisdir=/home/wilde/osgdemo/modis/svn/data/modis/2002/ examp le

Swift trunk swift-r6362 cog-r3637 (cog modified locally)

RunID: 20130311-0159-gayhuq86

Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:

Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:

time:
time:
time:
time:
time:
time:
time:
time:
time:
time:

time:
time:
time:
time:
time:
time:
time:

Mon, 11 Mar 2013 01:59:55 +0000

Mon, 11 Mar 2013 02:00:07 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:14 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:15 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:18 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:19 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:20 +0000 Selecting site:239
Mon, 11 Mar 2013 02:00:21 +0000 Selecting site:221
Mon, 11 Mar 2013 02:00:22 +0000 Selecting site:221
Mon, 11 Mar 2013 02:00:23 +0000 Selecting site:218

Submitting:47 Submitted:1

Stage in:1 Submitted:47

Stage in:25 Submitted:23

Stage in:47 Active:l

Stage in:29 Active:15 Stage out:4

Stage in:24 Submitting:6 Stage out:17 Finished successfully:31
Stage in:36 Submitting:11 Stage out:1 Finished successfully:48
Stage in:44 Active:1 Stage out:2 Finished successfully:49
Stage in:43 Submitting:3 Stage out:2 Finished successfully:51

Mon, 11 Mar 2013 02:00:43 +0000 Selecting site:30 Stage in:41 Submitted:3 Active:3 Finished successfully:240

Mon, 11 Mar 2013 02:00:44 +0000 Selecting site:29 Stage in:36 Submitting:1 Active:4 Stage out:7 Finished successfully:240
Mon, 11 Mar 2013 02:00:45 +0000 Selecting site:23 Stage in:28 Submitting:6 Active:1 Stage out:12 Finished successfully:247
Mon, 11 Mar 2013 02:00:46 +0000 Selecting site:9 Stage in:39 Submitting:7 Active:1 Stage out:1 Finished successfully:260
Mon, 11 Mar 2013 02:00:47 +0000 Selecting site:7 Stage in:21 Submitting:2 Active:5 Stage out:20 Finished successfully:262
Mon, 11 Mar 2013 02:00:48 +0000 Stage in:28 Submitted:1 Stage out:1 Finished successfully:287

Mon, 11 Mar 2013 02:00:49 +0000 Stage in:15 Active:4 Stage out:7 Finished successfully:291

Final status: Mon, 11 Mar 2013 02:00:50 +0000 Finished successfully:317

real
user
sys

$

0m57.478s
0m32.923s
0m1.248s

Simple script runs
300+ apps in
under a minute

72

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

S cat beagle-ssh.cf

Swift moves user’s
wrapperlog.always.transfer=true

sitedir.keep=true dataset from campus
execution.retries=0 server direct to Cray
status.mode=provider

use.provider.staging=true compute nodes

provider.staging.pin.swiftfiles=false

#site beagle-ssh WALLTIME=00:55:00
#app perl=/usr/bin/perl
midway001$

S

S cat sites.xml
<config>
<pool handle="beagle">
<execution provider="coaster" jobmanager="ssh-cl:pbs" url="login4.beagle.ci.uchicago.e¢
<profile namespace="globus" key="jobsPerNode">24</profile>
<profile namespace="globus" key="lowOverAllocation">100</profile>
<profile namespace="globus" key="highOverAllocation">100</profile>

<profile namespace="globus" key="providerAttributes">pbs.aprun;pbs.mpp;depth=24</profile>

<profile namespace="globus" key="maxtime">3600</profile>
<profile namespace="globus" key="maxWalltime">00:55:00</profile>

<profile namespace="globus" key="userHomeOverride">/lustre/beagle/{env.USER}/swiftwork</profile>

<profile namespace="globus" key="slots">2</profile>
<profile namespace="globus" key="maxnodes">1</profile>
<profile namespace="globus" key="nodeGranularity">1</profile>
<profile namespace="karajan" key="jobThrottle">.47</profile>
<profile namespace="karajan" key="initialScore">10000</profile>
<filesystem provider="local"/>
<workdirectory>/tmp/{env.USER}/swiftwork</workdirectory>
</pool>
</config>

s

example

...and passes
Cray-specific PBS
parameters

...but most of the
site spec is the
same as for the
campus cluster

example

midway001S$ Is landuse
hOOv08.landuse.byfreq h11v10.landuse.byfreq h17v06.landuse.byfreq h21v10.landuse.byfreq h27v10.landuse.byfreq
hOOv09.landuse.byfreq h11lvill.landuse.byfreq h17v07.landuse.byfreq h21vil1.landuse.byfreq h27v11.landuse.byfreq

h11v06.landuse.byfreq h17v02.landuse.byfreq h21v06.landuse.byfreq h27v06.landuse.byfreq h35v10.landuse.byfreq
h11v07.landuse.byfreq h17v03.landuse.byfreq h21v07.landuse.byfreq h27v07.landuse.byfreq
h11v08.landuse.byfreq h17v04.landuse.byfreq h21v08.landuse.byfreq h27v08.landuse.byfreq
h11v09.landuse.byfreq h17v05.landuse.byfreq h21v09.landuse.byfreq h27v09.landuse.byfreq

midway001$

midway001$ cat landuse/h03v07.landuse.byfreq .
211094 0 00 Input is MODIS

5348 101 satellite raster

4376202 .
3236303 image dataset
3196 4 04

1242 505 :
731606 Output is

405707 histogram of land
292 808

925909 use codes
83 10 0a

61110b

43 12 Oc

39 13 0d

25 14 Oe

4 15 of

midway001$

UChicago campus “collective” adds OSG resources

b

Epplicatiorg E Input j
Swift config
script files

\/- .
K Cluster file server

~

J

4)
-

-

v
E Output j

Cluster interactive node

-~

\

g

UC3 seeder nodes

\

Midwest T2 nodes

OSG VO nodes

\

UChicago
UC3
Campus
Computing
Collective

/

UC3 architecture abstracts all the Condor resource flocking issues;
Swift accesses local, MWT2, and OSG as a unified Condor facility using campus user identity

www.ci.uchicago.edu/swift

75

midway001S$ pwd

/home/wilde/osgdemo/modis/svn/run051

midway001S$ cat sites.xml
<config>
<pool handle="uc3">

<profile namespace="karajan" key="jobThrottle">3.99</profile>
<profile namespace="karajan" key="initialScore">10000</profile>

<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"

example
<execution provider="coaster" url="uc3-sub.uchicago.edu" jobmanager="ssh-cl:condor"/>
key="jobsPerNode">1</profile>
key="maxWalltime">3600</profile>
key="highOverAllocation">100</profile> Swift forwards
key="lowOverAllocation">100</profile>
key="slots">400</profile> Condor para meters

<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"

key="maxNodes">1</profile>

key="nodeGranularity">1</profile>
key="condor.+AccountingGroup">"group_friends.{env.USER}"</profile>
key="jobType">nonshared</profile>

<filesystem provider="local" url="none" />
<workdirectory>.</workdirectory>

</pool>

</config>
midway001$

Example of running 1,000 MODIS jobs on just the UC3 collective: local UC3 resources full but work routed to Midwest Tier 2 and OSG

S showsites

midway O
beagle 0
uc3 O
mwt2 256
0OSG 744
Total 1000

When local UC3 “seeder”

resource full, UC3 flocks
to other resources

Now user runs on multiple resources:

Swift config
script files

_/- .
\ Cluster file server

4 N
Epplicatior; E Input j \

- ,

(

~N

Cray XE 24-core nodes]

Beagle Cray

J

-

4 N
N

E Output j

Cluster interactive node

J

UC3 seeder nodes

Midwest T2 nodes

OSG VO nodes

\ S

\ UChicago UC3 /

y
\

7

Sandybridge nodes

Westmere nodes

Department nodes

_ UChicago RCC Y,

N

Same script runs on broad range of resources; separate throttles can be set for each site.

www.ci.uchicago.edu/swift

77

<config>
example
<pool handle="uc3">
<execution provider="coaster" url="uc3-sub.uchicago.edu" jobmanager="ssh-cl:condor"/>) .
<profile namespace="karajan" key="jobThrottle">10.00</profile> Multi p|e site
<profile namespace="karajan" key="initialScore">10000</profile> RS
<profile namespace="globus" key="jobsPerNode">1</profile> deﬁnltlons, managed
by support staff
<profile namespace="globus" key="jobType">nonshared</profile>
<!-- <profile namespace="globus" key="condor.+Requirements">isUndefined(GLIDECLIENT_Name) == FALSE</profile> -->
<workdirectory>.</workdirectory>
</pool>
<pool handle="beagle"> User can Specify

<execution provider="coaster" jobmanager="ssh-cl:pbs" url="login4.beagle.ci.uchicago.edu"/>
<profile namespace="globus" key="jobsPerNode">24</profile>

<profile namespace="globus" key="lowOverAllocation">100</profile>

<profile namespace="globus" key="highOverAllocation">100</profile>

<profile namespace="globus" key="providerAttributes">pbs.aprun;pbs.mpp;depth=24;pbs.resource_list=advres=wilde.1768</profile>

custom parameters

<workdirectory>/tmp/{env.USER}/swiftwork</workdirectory>
</pool>

App list selects

<pool handle="sandyb">

<execution provider="coaster" jobmanager="local:slurm"/> where app() run
<workdirectory>/tmp/{env.USER}</workdirectory>

</pool>

<pool handle="westmere"> $ cat tc

<execution provider="coaster" jobmanager="local:slurm"/> uc3 perl Jusr/bin/perl null null null

. _ beagle perl /usr/bin/perl null null null
<workdirectory>/tmp/{env.USER}</workdirectory> #sandyb perl /usr/bin/perl null null null

</pool> westmere perl /usr/bin/perl null null null

</config>

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Swift’s location-independent scripting
lets the user focus on science

Example of running 3,000 jobs to 3 hosts including the UC3 campus

collective: '
$./showsites

midway 289
beagle 1070

uc3 1011
mwt2 295
0SG 335

Total 3000

= The user started on a basic login host processing 10 files and moved up to a
3,000 file dataset, changing only the dataset name and a site-specification
list to get to the resources above

= Expanded the scope of their computations from one node to hundreds or
thousands of cores

= User didn’t need to look at what sites were busy, or adjust arcane scripts,
to get to these resources.

79

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

