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Definitions

=  Workflow: the execution of a set of application programs
— Often for a diverse set of application programs

— Often with logical and physical dependencies
e Logical: data dependencies
e Physical: resource dependencies (space, processor, solution priorities)

— Scripting is one way to implement workflows (Ad-hoc, Parallel libraries, Swift)
— Generation of engine-specific input is another (DAGMan, Pegasus, Galaxy, Kepler)
=  Scripting: higher-level dynamic programming
— J. Ousterhout: “Scripting: Higher level programming for the 215t century”
= High throughput computing (HTC)
= Many-task computing (MTC)
= Dataflow
= Data parallel vs. task parallel

— Workflow is almost always task-parallel at its outer levels
— SPMD: typified by MPI
— MPMD: multiple programs, multiple data — more typical of workflow



Definition of MTC Applications

=  Many-task Computing applications assemble existing parallel or sequential
programs

= Those programs read and write data to a filesystem
= Applications often have multiple stages

= Task dependencies between stages are in the form of file production and
consumption

= Can have very high rates (eg hundreds per second) of very short tasks
(minutes seconds)

Slide courtesy of Zhao Zhang



When do you need workflow?

Typical application: protein-ligand docking for drug screening
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Numerous many-task workflow applications
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TARGET RESOURCES

=  System types
— Clouds
— Clusters (campus, department)
— Petascale HPC systems
— Grids (OSG, LCG, ...)
— Multi/many-cores — 256 core nodes! <\/)>

= Patterns
— A ssingle big HPC machine
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— HPC Machine with attached resources
— Extend campus cluster with cloud
— Many HPC machines

— Many combinations of above




Example of multi-resource workflow
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Workflow patterns and issues

= Parameter sweeps

= Ensembles

= Data analysis

= Scaling studies

= Specialized patterns: uncertainty quantification, branch and bound
= Programming an application from libraries of applications

= Dataflow vs control flow
— Ultimately, workflow is essentially dataflow
— The difference is who writes and thinks about the dataflow

= Pipelining and concurrency (and how dataflow is good at this)
=  Workflow manager drives application (outer workflow, inner scripts)
= Workflow manager embedded in application (outer scripts, inner workflow)



PROGRAMMING MODELS

= MPI, OpenMP, Hybrid

= Map reduce

= Record processing (with functions) vs file processing (with apps)
= Generating workflows for other engines

=  Dynamically interpret the workflow

= Script mode (for Blue Gene, Cray systems)

= Dependent job processing

10



\
A partial sampler of workflow tools

= High throughput tools
— Condor
— Cluster schedulers / local resource managers (PBS, SGE, Cobalt, LSF, LL, SLURM,..)
=  Workflow task dependency managers
— DAGMan
— Schedulers with job dependencies
= |ntegrated dependency and data management
— Pegasus
= Dataflow languages
— Dryad, Ciel, Swift
= Big data solutions
— Hadoop, Spark, Zookeeper, Uzi
=  Multicore tools
— GNU Parallel
= Languages with parallel support
— Py _nnn, Java_nnn, Haskell, R, MATLAB => PSOM, Parallel BASH (Walker)

11



A sampler of workflow tools - part Il

= Interactive workflow frameworks
— Galaxy
— Taverna
— Kepler
— LONI Pipeline (neuroscience)
— Microsoft Workflow manager
— Airivata

= Science gateways

12



Parallel BLAST as a workflow

Based on
script of

D. Matthog
by Z.Zhang,
L. Gahelha

b

database

query?2

M queryM

Original script by
D. R. Mathog,
Parallel BLAST on
split databases.
Bioinformatics, 19
(14), 2003.

BLAST STAGE TASKS, INPUTS, OUTPUTS, AND INPUT AND OUTPUT SIZE

Stage # Tasks # In # Out In (MB) Out (MB)
fastasplitn | 1 1 N 4039 4039
formatdb N N 3N 4039 4400
blastp N*M N+M N*M 73*N*M 2.4*N*M
merge M N*M M 2.4*N*M 4.8*M




Can workflow scale?
BLAST workflow lags MPI BLAST by ~ 5%
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Two fundamental problems in scaling workflow

= Task rate
— 60,000 cores / 60 sec/task = 1,000 tasks per second!

= Data management
— 1K tasks / sec may generate 5GB/sec — not so bad if blocked efficiently
— 1K tasks / sec may generate 2,000 files / sec — not so easy

15



Multi-level scheduling: pilot jobs can improve
task rate performance

= Pilot jobs are long-running meta-jobs
— allocate compute resources and run many smaller jobs
= PANDA
— Widely used on OSG and LCG by the ATLAS physics collaboration
= GWMS using Condor Glide-Ins
— A generalized solution widely deployed on OSG
= SAGA and Bigjob
— Obtaining good results on XSEDE resources
= Java CoG Coasters
— Allocates/frees resources based on demand
— Peaks at 600 tasks per second
= Falkon
— Research system reached 3,000 tasks per second and 1B tasks

16



Workflow patterns and data exchange
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Measuring MTC Envelope:

= Target platform
— GPFS deployed with ANL Intrepid BlueGene/P
— Several metadata servers, but only one for each directory

— 128 IBM x3545 file servers, each with two 2.6-GHx Dual Core CPUs and 8 GB
RAM

— We use I/O nodes as GPFS clients. (Ratio between 1/O nodes and CPU cores —
1:256)
= Experimental setup
— Metadata operation: {create, open} x {1, 2, 4, 8, 16, 32, 64, 128, 256} clients

— 1/0: {read, write} x {1 KB, 128 KB, 1 MB, 16 MB}x {1, 2, 4, 8, 16, 32, 64, 128,
256} clients

— Total number of operations fixed at 8192 at each scale
— All files are in one directory

Performance envelope research and slides by Zhao Zhang



Measuring MTC Envelope

= Metadata Operation Throughput
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Measuring MTC Envelope

= ]-to-1 Read
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MTC Envelope vs. Scale

Creation ughput
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Write File Size

Performance guide for workflows

= MTC Envelope expressed as heat maps: (shown here for write ops)
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Some engineering problems

and research challenges for extreme workflow

= Engineering

Diversity of interfaces, hard to tame and test, hard to abstract
Inter-language bindings and data interchange — challenge to usability
Integration with extreme-scale networks, runtimes and language stacks

=  Research

Economics and policy-based scheduling

Retry/recovery of large distributed task and data graphs
Power management

Load balancing

Programming models: integration of dataflow and big-data techniques and
tools

23



GEMTC: GPU Enabled Many-Task Computing

f —
. Host
SWg Scheduler

o j t
Motivation: Support Many-Task Computing on Accelerators
Goals: Approach:
1) MTC support Design, implement middleware:
2) Improved programmability 1) manages GPU
3) MTC efficiency 2) spread host/device
4) MIMD on SIMD 3) Workflow system
5) Increase concurrency 12X (16 -> support (Swift/T)
192 (12x)

B Grimmer, S Krieder, | Raicu. Enabling Dynamic Memory Management Support for MTC on NVIDIA GPUs,
EuroSys 2013 poster.



SWITG»

= Parallel scripting language for clusters, clouds & grids

— For writing loosely-coupled scripts of application programs
and utilities linked by exchanging files

— Can call scripts in shell, python, R, Octave, MATLAB, ...

= Swift does 3 important things for you:

— Makes parallelism transparent — with functional dataflow
— Makes basic failure recovery transparent

— Makes computing location transparent — can run your script
on multiple distributed sites and diverse computing
resources (from desktop to petascale)

- this is what we’ll show today

25
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Language-driven: Swift parallel scripting 1018

‘ Data server <:>
A

/

Swift ,
script
— %]
E pplication
Programs

@bmlt host (login node, laptop, Linux server)

Swift runs parallel scripts on a broad range
of parallel computing resources.
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Programming model:
all execution driven by parallel data flow

(int r) myproc (int 1)

{
J = £(1);
k = g(i);
r = j + k;
}

= f() and g() are computed in parallel
= myproc() returns r when they are done

= This parallelism is automatic
= Works recursively throughout the program’s call graph

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm
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Encapsulation enables distributed
parallelism

Application program

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution, parallelization, and automatic
provenance capture

a\\=_*» "

A www.ci.uchicago.edu/swift www.mcs.anl.gov/exm



app( ) functions specify cmd line argument passing

To run:
psim -s 1ubg.fas -pdb p -t 100.0 -d 25.0 >log

100.0 3 25.0 In Swift code:

app (PDB pg, File log) predict (Protein seq,
Float t, Float dt)
{
psim "-c" "-s" @pseq.fasta "-pdb" @pg
ll_tll temp ll_dll dt;
PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
File log;

(structure, log) = predict(p, 100., 25.);

A0 www.ci.uchicago.edu/swift www.mcs.anl.gov/exm



Large scale parallelization with simple loops

1000 -

”predict” M M M M
application , :
. -::'.E;.'.i;';:i
Ana lyZ e ( ) -.*.:";E-;::'.,:'\:;-:::t g:g}
A e, e 3
ge - LY
foreach sim in [1:1000] { s
(structure[sim], log[sim]) = predict(p, 100., 25.);

}

result = analyze(structure)
) 30
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Nested parallel prediction loops in Swift

Sweep( )
{
int nSim = 1000;
int maxRounds = 3;
Protein pSet[ ] <ext; exec="Protein.map">;
float startTemp[ ] =[ 100.0, 200.0 |;
float delT[]=[ 1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach tin startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

) 10 proteins x 1000 simulations x

} 3 rounds x 2 temps x 5 deltas
Sweep(); = 300K tasks

31
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Spatial normalization of functional run

Qataset-level workflow
o\-’?
&

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_war :
p ¢4%?§§§\

reslice_war < (
strictmean p iﬁ§i é %i’
binarize /%7 ‘\§\

gsmooth

Expanded (10 volume) workflow
32
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Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun ( Run ir, string direction)
(Run snr) functional ( Run r, NormAnat a, {
Air shrink )

{ RunyroRun = reorientRun(r,"y" );< }
Run roRun = reorientRun( yroRun , "x"); )

foreach Volume iv, i in ir.v {
or.v[i] = reorient(iv, direction);

Volume std = roRun][0];

Run rndr = random_select( roRun, 0.1 );

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" );
Run reslicedRndr = resliceRun( rndr, rndAirVec, "0", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mnQAAIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr = reslice_warp_run( boldNormWarp, roRun );

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" ),
}; 33
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Dataset mapping example: fMRI datasets

—

On-Disk
Data -
Layout

3 DBIC
=45 Study
- =88 Group
=8 Subject
ok Anat

- =EyRUN
=9 Subject
: =8 Subject
#-4F Study
#-4F Study

Viapping function
or script

type Study {
Group g[ |;
}
type Group {
Subject s[ ];
}
type Subject {
Volume anat;
Run run[ |;
}
type Run {
Volume v[ |;
}

type Volume {

Image img;
Header hdr;
}

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

—

Swift’s
~ in-memory
data model
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Nested loops can generate massive parallelism

Protein folding example:

sSweep( )

{
int nSim = 1000;
int maxRounds = 3;

Protein pSet[ ] <ext; exec="Protein.map'">;
float startTemp[ ] = [ 100.0, 200.0 7];
float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 7J;
foreach p, pn in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} } 10 proteins x 1000 simulations x

b 3 rounds x 2 temps x 5 deltas

} _
Sweep () ; = 300K tasks

35



Centralized evaluation can be a bottleneck

¥ .
ad- this For extreme prog
(Swift/K): scale, we need
prog this (Swift/T): RS
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500 lask/sec |

Centralized evaniabon
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Parallel evaluation of Swift/T in ExM

4 )
rules

ariable IDs

Evaluator Rule engine
and values

notificajions
Variable
I store I
Task pool / dispatcher (ADLB)

\_ Turbine )

Swift/T: Large-scale application composition via distributed-memory data flow processing
J.M. Wozniak, T.G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, I. Foster Proc. CCGrid 2013.



Swift/T programs run as an SPMD MPI program
using ADLB

Shared State

Data Store

Task Queue

7Y VYV B - - Y
Server Processes - / L y \ y

\/\/\

Execution

/\/\/\/\/\/\/\/\/\/\
\ |

> < / ControI/Worker Processes 3 > <

\/\/\/\/\/\/\/\/\/\/
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Swift/T: High-level model

= Script-like global-view programming with “leaf tasks”- function calls in C, C++, Fortran,
Python, R, or Tcl

= Leaf tasks can be MPI programs, etc.

= Distributed, scalable runtime manages tasks, load balancing, data movement

= User function calls to external code run on 1000’s of workers

Like master-worker but with the expressive Swift language to control progress

- — Swift worker process
Swift P P
control < >
orocess € > C C++ Fortran

python

A

powered




MPI process architecture for parallel evaluation
in Swift/T

————————————————————————————————————————————————————————————————————————————————————————————————————————

Control ~ Load | | Task | Legend
Flow ~ Balancing | | Execution Process
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Engine H Server . Task flow
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Parallel evaluation in action

Start
Outer Loop
int X = 100, Y = 100; Bodies
int A[][];
int B[]; Inner Loop
foreach x in [0:X-1] { Bodies
foreach y in [0:¥-1] {
if (check(x, y)) { check
Alx][y]l = g(f(x), £(y));
} else { if-then-else
Alx][y] = O;
} f
}
B[x] = sum(A[Xx]); g
}
sum

(To simplify diagram, array references

Seo
-

..

~
~
~
-~
~
~
..
~

~
.~ ~ ~
~

S==

—s Data
wait/write

are not shown for the loops above)
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Pervasive implicit parallelism with
automatic pipelining

blob models([], res[]I[];

foreach m in [1:N_models] {
models[m] = load(sprintf ("model%i.data", m));

}

foreach i in [1:M] { evaluate() summarize()

foreach j in [1:N] { /\]
// initial quick evaluation of parameters B >Q‘ N
p, m = evaluate (i, J); % :

if (p > 0) {
// run ensemble of simulations
blob res2[];
foreach k in [1:S5] {

res2[k] = simulate (models[m], i, 3Jj);
res[i] [J] = summarize (res2);
}

}
}
// Summarize results to file
foreach i in [1:M] { , , load() simulate() analyze()

file out<sprintf ("output%i.txt", 1i)>;

out = analyze(res[i]);
}

(a) Declarative Swift/T code (b) Visualization of parallel execution for M =2 N =25 =3
42



Swift/T toolchain and runtime environment

Swift
Script

Data
| Definitions

Data Flow
Expressions

External
Functions

STC

Semantic
Analysis

Flattening &

Optimization

Code
Generation

ST e

/

Turbine
Code

Task / Data
Dependency

Memory
' Management .

Library
Access

e g

L

Turbine

\_\

Execution

mpiexec

» Interpreter

Turbine
libraries

ADLB

User
Libraries

i
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Inside the Swift/T “stc” compiler

STC Compiler
IR-2 |R-2 Post-processing:
» Optimization » Ref. Counting & Distributed
Value. Passing Executor
Normalization IR-3 T
IR-1 * Tcl Script
Swift/T Script » Frontend Code Generator - wi runtime
- — library calls

44



Operation reduction optimizations by stc
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| a = fl1(); b = f2(a);
2 c, d = f3(a, b); e = f4(£f5(c);
3 f = £4(£5(d); = foe (e, f);

(a) Swift code fr%gment
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(b) Unoptimized version, relying on shared data flow variables
to pass data and runtime data dependency tracking
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favor of parent-to-child data passing
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Task priority can be specified to
reduce tail effects

= Variable-sized tasks produce trailing tasks:
addressed by exposing task priorities at language level

30

N N
o

load (processes)
e
o (o)

()

0! . : . , . : , ,
1,400 1,425 1,450 1,475 1,500 1,525 1,550 1,575 1,600

time (seconds)

— Load without priorities - Load with priorities




Performance results:

10 Cray XE MC-12 24-Core nodes,
2 control nodes, 8 worker nodes (240 cores total)
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Fig. 11: Throughput at different optimization levels measured in application terms: tasks/sec, or annealing iterations/sec.
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Example execution

Code

Engines: evaluate dataflow operations

Workers: execute tasks Task put

Notification

Task put

49



ADLB: Asynchronous Dynamic Load Balancer

= Developed previously by Lusk and Butler

= Pure MPI task distributor

= Uses client-server model with multiple servers for scalability
= Servers can share work

= QOriginally, supported just Put() and Get() on tasks

= We added Store(), Retrieve(), Subscribe(), etc. on data
for data-dependent processing

= Lusk, Pieper, and Butler. More scalability, less pain: A simple programming model
and its implementation for extreme computing. SciDAC Review 17, 2010.

50



Supports calls to native libraries

Top-level dataflow script

sweep.swift
[ useri.c user2.f user3.cpp
wrapper wrapper wrapper

Swift/T runtime
Task distribution / Data store

MPI

= |ncluding MPI libraries

51



Application: Power Grid Modeling (PIPS)

Prior work Swift/T work
| | |
T
v 5
PIPS otential scenario ||} _
massively 20|ution evaluation > analysis
parallel — _
numerics o massive
~—N A
A . task
(SC'11) sScenarios parallelism
— —) results

Swift/T (and the many-task, dataflow model) complements
existing application workflows
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Application: Branch-and-Bound (Minotaur)

Initial
Problem

~ Relaxation

N Solver

T— Branch/Prune ‘4{ Solutions \

Branches

Creates task
parallelism

in Swift

Minimize some function via recursive search,

allow only for integer solutions

Builds a new, scalable application from pre-existing components
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N ]
Visualization of Swift/T execution

= User writes and runs Swift script
= Notices that native application code is called with nonsensical inputs
= Turns on MPE logging — visualizes with MPE

Process rank

| | | | | | | | | | | | |
79.93 79.935 79.94 79.945 79.95 79.955 79.96 79.965 79.97 79.975 79.93 79.985 79.93

Time >
Jumpshot view of PIPS application run

— PIPS task computation Store variable
Blue: Get next task

Server process (handling of control task is highlighted in yellow)

= Simpler than visualizing messaging pattern (which is not the user’s code!)
=  Represents Von Neumann computing model — load, compute, store 54



Debugging Swift/T execution

= Starting from GUI, user can identify erroneous task
— Uses time and rank coordinates from task metadata

= Can identify variables used as task inputs

= Can trace provenance of those variables back in reverse dataflow

[

b )

T
—
erroneous task
|

B E— S —
S —— T —
—— S —— T —

Aha! Found script defect. & & & (searching backwards)
o 55



Swift is a parallel scripting system for grids, clouds and clusters
— for loosely-coupled applications - application and utility programs linked by
exchanging files
Swift is easy to write: simple high-level C-like functional language
— Small Swift scripts can do large-scale work
Swift is easy to run: contains all services for running Grid workflow - in one
Java application
— Untar and run — acts as a self-contained Grid client
Swift is fast: uses efficient, scalable and flexible “Karajan” execution
engine.
— Scaling close to 1M tasks —.5M in live science work, and growing
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, and more.

Try Swift! http://swift-lang.org (Swift/K) and www.mcs.anl.gov/exm
(Swift/T)
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Summary: Challenges of workflow at extreme
scale

Inter-resource coordination

Hybrid programming tools

The challenges of data motion

— Data management strategies and system envelopes

The challenges of task scheduling and dispatch

— Task rates and task distribution
— Resource utilization vs. time to solution

Workflow expression and separation of concerns
Provenance: tracking what was done
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Workflow references

=  Workflows for e-Science Book
= VderA patterns
= Pegasus patterns

= Paper on characterization (Lavana,
Gannon et al)

= Bibliography ... ???

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Workflow; for
e-Science
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Parallel Computing 37 (2011) 633-652

Contents lists available at ScienceDirect

PARALLEL
COMPUTING

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Swift: A language for distributed parallel scripting

Michael Wilde *>*, Mihael Hategan ?, Justin M. Wozniak®, Ben Clifford ¢, Daniel S. Katz?,
lan Foster #P¢

2 Computation Institute, University of Chicago and Argonne National Laboratory, United States
> Mathematics and Computer Science Division, Argonne National Laboratory, United States
¢Department of Computer Science, University of Chicago, United States

4 Department of Astronomy and Astrophysics, University of Chicago, United States

ARTICLE INFO ABSTRACT

Article history: Scientists, engineers, and statisticians must execute domain-specific application programs
Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-
Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but

Swift ) their use further increases programming complexity. The Swift parallel scripting language
gar_a”?l programming reduces these complexities by making file system structures accessible via language con-
Dzrgfftlglﬁ structs and by allowing ordinary application programs to be composed into powerful par-

allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift's implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

Parallel Computing, Sep 2011
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Exercise views and supplemental slides
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Exercise - MODIS satellite image processing

" |nput: tiles of earth land cover (forest, ice, water, urban, etc)

e QOuput: regions with maximal specific land types

h —>

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2

0 O N OO O s W N - O

10
1"

12

13

14

15

16

17
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\ |
Goal: Run MODIS processing pipeline in cloud

FRERLLEE analyzelLandUse i markMap

o x317
g colorMODIS
L . . assemble
MODIS script is automatically run
in parallel:

tLandU
i e500000080000000888008 " mr
SEEBEEBEEEEEEEEEEEnERES (i

Each loop level analyzeLandUse

can process tens
to thousands of
image files.

assemble
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Swift/T example: Part 11

Overview: Find biggest parallelepiped volume via Python and R

— Construct several matrices according to simple arithmetic
— Compute determinants in parallel in Python (via Numpy)
— Fix maximal determinant in R (reduction step)

— Python reference code is included (dets.py == dets.swift)

Construct matrices (in Swift arithmetic)
— Matrices stored in

distributed global store
Determinant (Numpy/Python) /x/ \\

— Cf. numpy.swift
Find maximum (in R)

Could call to C, C++, Fortran, instead

Normally would call to application components,
not numerical libraries




MODIS script in Swift: main data flow

foreach g,1 in geos {
land[i] = (g,1);
}
(topSelected, selectedTiles) =
(land, landType, nSelect);

foreach g, i in geos {
colorImage[i] = colorMODIS(g);
}
gridMap = markMap (topSelected);
montage =
assemble(selectedTiles,colorImage,webDir);
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Swift can send work to multiple sites

-

~
GRAM
J
Remote campus cluster j
)
Qny remote
. GRAM
A A&
\_ J
Data server R |
(GridFTP, scp, ...) \emote campus cluster j

Simple campus Swift usage: running locally on a cluster login host

° 66
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User first tests a new script on a local login host

==l
~

Swift
script swift command Logs
—
\/-

v
config
Lﬁl} E Output j
\ Laptop, desktop, login host /

Swift script is location-independent —
debug locally then run distributed

www.ci.uchicago.edu/swift



MODIS script excerpt used in this demo

S cat modis.swift

type imagefile;
type landuse;
type perlscript;

User’s Perl app is
passed as data

perlscript getlanduse_pl <"getlanduse.pl">;

app (landuse output) getLandUse (imagefile input, perlscript ps)

{
perl @ps @filename(input) stdout=@filename(output);

}

Input dataset is a
script parameter

# Constants and command line arguments
string MODISdir = @arg("modisdir", "../data/modis/2002");

Output filenames
are based on inputs

# Input Dataset
imagefile geos[] <filesys_mapper; location=MODISdir, suffix=".rgb">;

# Compute the land use summary of each MODIS tile
landuse land[] <structured_regexp_mapper; source=geos, match="(h..v..)",
transform=@strcat("landuse/\\1.landuse.byfreq")>;

Iteration over the
dataset is
implicitly parallel

foreach g,i in geos {
land[i] = getLandUse(g, getlanduse_pl);
}

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm



User runs on a campus or department cluster

Swift config
script files

\_/- .
K Cluster file server

4 N
Epplicatior; E Input j

J

-

)
-

v
E Output j

Cluster interactive node

~

J

Cluster node

Cluster node

Cluster node

o

Cluster
Compute
Nodes

Single-node script scales easily to local cluster

www.ci.uchicago.edu/swift
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User runs on a campus cluster: what’s inside

o

4 )
Epplicati@ E Input j

Swift
script

config
files

Cluster file server /

-

v
E Output j

Cluster interactive node

4 : N
- )

//

\ Cluster node /

J

o

Cluster
Compute

Nodes /

Multiple data streams of data moved from client to worker local FS

b

www.ci.uchicago.edu/swift
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Campus or XSEDE supercomputer access is same

Epplicatior; E Input j /
Cluster node

Swift config .
script files r
Cluster node

K \_ﬂter file server / )

Swift ] Cluster node
v
Cray XE
Output “Beagle”

\ Cluster interactive node / \ 18K cores

Same script runs unchanged between campus research cluster and Cray XE systems

www.ci.uchicago.edu/swift



S swift -sites.file sites.xml -tc.file tc.data -config beagle-ssh.cf modis02.swift \
-modisdir=/home/wilde/osgdemo/modis/svn/data/modis/2002/ examp le

Swift trunk swift-r6362 cog-r3637 (cog modified locally)

RunID: 20130311-0159-gayhuq86

Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:

Progress:
Progress:
Progress:
Progress:
Progress:
Progress:
Progress:

time:
time:
time:
time:
time:
time:
time:
time:
time:
time:

time:
time:
time:
time:
time:
time:
time:

Mon, 11 Mar 2013 01:59:55 +0000

Mon, 11 Mar 2013 02:00:07 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:14 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:15 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:18 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:19 +0000 Selecting site:269
Mon, 11 Mar 2013 02:00:20 +0000 Selecting site:239
Mon, 11 Mar 2013 02:00:21 +0000 Selecting site:221
Mon, 11 Mar 2013 02:00:22 +0000 Selecting site:221
Mon, 11 Mar 2013 02:00:23 +0000 Selecting site:218

Submitting:47 Submitted:1

Stage in:1 Submitted:47

Stage in:25 Submitted:23

Stage in:47 Active:l

Stage in:29 Active:15 Stage out:4

Stage in:24 Submitting:6 Stage out:17 Finished successfully:31
Stage in:36 Submitting:11 Stage out:1 Finished successfully:48
Stage in:44 Active:1 Stage out:2 Finished successfully:49
Stage in:43 Submitting:3 Stage out:2 Finished successfully:51

Mon, 11 Mar 2013 02:00:43 +0000 Selecting site:30 Stage in:41 Submitted:3 Active:3 Finished successfully:240

Mon, 11 Mar 2013 02:00:44 +0000 Selecting site:29 Stage in:36 Submitting:1 Active:4 Stage out:7 Finished successfully:240
Mon, 11 Mar 2013 02:00:45 +0000 Selecting site:23 Stage in:28 Submitting:6 Active:1 Stage out:12 Finished successfully:247
Mon, 11 Mar 2013 02:00:46 +0000 Selecting site:9 Stage in:39 Submitting:7 Active:1 Stage out:1 Finished successfully:260
Mon, 11 Mar 2013 02:00:47 +0000 Selecting site:7 Stage in:21 Submitting:2 Active:5 Stage out:20 Finished successfully:262
Mon, 11 Mar 2013 02:00:48 +0000 Stage in:28 Submitted:1 Stage out:1 Finished successfully:287

Mon, 11 Mar 2013 02:00:49 +0000 Stage in:15 Active:4 Stage out:7 Finished successfully:291

Final status: Mon, 11 Mar 2013 02:00:50 +0000 Finished successfully:317

real
user
sys

$

0m57.478s
0m32.923s
0m1.248s

Simple script runs
300+ apps in
under a minute
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S cat beagle-ssh.cf

Swift moves user’s
wrapperlog.always.transfer=true

sitedir.keep=true dataset from campus
execution.retries=0 server direct to Cray
status.mode=provider

use.provider.staging=true compute nodes

provider.staging.pin.swiftfiles=false

#site beagle-ssh WALLTIME=00:55:00
#app perl=/usr/bin/perl
midway001$

S

S cat sites.xml
<config>
<pool handle="beagle">
<execution provider="coaster" jobmanager="ssh-cl:pbs" url="login4.beagle.ci.uchicago.e¢
<profile namespace="globus" key="jobsPerNode">24</profile>
<profile namespace="globus" key="lowOverAllocation">100</profile>
<profile namespace="globus" key="highOverAllocation">100</profile>

<profile namespace="globus" key="providerAttributes">pbs.aprun;pbs.mpp;depth=24</profile>

<profile namespace="globus" key="maxtime">3600</profile>
<profile namespace="globus" key="maxWalltime">00:55:00</profile>

<profile namespace="globus" key="userHomeOverride">/lustre/beagle/{env.USER}/swiftwork</profile>

<profile namespace="globus" key="slots">2</profile>
<profile namespace="globus" key="maxnodes">1</profile>
<profile namespace="globus" key="nodeGranularity">1</profile>
<profile namespace="karajan" key="jobThrottle">.47</profile>
<profile namespace="karajan" key="initialScore">10000</profile>
<filesystem provider="local"/>
<workdirectory>/tmp/{env.USER}/swiftwork</workdirectory>
</pool>
</config>

s

example

...and passes
Cray-specific PBS
parameters

...but most of the
site spec is the
same as for the
campus cluster



example

midway001S$ Is landuse
hOOv08.landuse.byfreq h11v10.landuse.byfreq h17v06.landuse.byfreq h21v10.landuse.byfreq h27v10.landuse.byfreq
hOOv09.landuse.byfreq h11lvill.landuse.byfreq h17v07.landuse.byfreq h21vil1.landuse.byfreq h27v11.landuse.byfreq

h11v06.landuse.byfreq h17v02.landuse.byfreq h21v06.landuse.byfreq h27v06.landuse.byfreq h35v10.landuse.byfreq
h11v07.landuse.byfreq h17v03.landuse.byfreq h21v07.landuse.byfreq h27v07.landuse.byfreq
h11v08.landuse.byfreq h17v04.landuse.byfreq h21v08.landuse.byfreq h27v08.landuse.byfreq
h11v09.landuse.byfreq h17v05.landuse.byfreq h21v09.landuse.byfreq h27v09.landuse.byfreq

midway001$

midway001$ cat landuse/h03v07.landuse.byfreq .
211094 0 00 Input is MODIS

5348 101 satellite raster

4376202 .
3236303 image dataset
3196 4 04

1242 505 :
731606 Output is

405707 histogram of land
292 808

925909 use codes
83 10 0a

61110b

43 12 Oc

39 13 0d

25 14 Oe

4 15 of

midway001$



UChicago campus “collective” adds OSG resources

b

Epplicatiorg E Input j
Swift config
script files

\/- .
K Cluster file server

~

J

4 )
-

-

v
E Output j

Cluster interactive node

-~

\

g

UC3 seeder nodes

\

Midwest T2 nodes

OSG VO nodes

\

UChicago
UC3
Campus
Computing
Collective

/

UC3 architecture abstracts all the Condor resource flocking issues;
Swift accesses local, MWT2, and OSG as a unified Condor facility using campus user identity

www.ci.uchicago.edu/swift
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midway001S$ pwd

/home/wilde/osgdemo/modis/svn/run051

midway001S$ cat sites.xml
<config>
<pool handle="uc3">

<profile namespace="karajan" key="jobThrottle">3.99</profile>
<profile namespace="karajan" key="initialScore">10000</profile>

<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"

example
<execution provider="coaster" url="uc3-sub.uchicago.edu" jobmanager="ssh-cl:condor"/>
key="jobsPerNode">1</profile>
key="maxWalltime">3600</profile>
key="highOverAllocation">100</profile> Swift forwards
key="lowOverAllocation">100</profile>
key="slots">400</profile> Condor para meters

<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"
<profile namespace="globus"

key="maxNodes">1</profile>

key="nodeGranularity">1</profile>
key="condor.+AccountingGroup">"group_friends.{env.USER}"</profile>
key="jobType">nonshared</profile>

<filesystem provider="local" url="none" />
<workdirectory>.</workdirectory>

</pool>

</config>
midway001$

# Example of running 1,000 MODIS jobs on just the UC3 collective: local UC3 resources full but work routed to Midwest Tier 2 and OSG

S showsites

midway O
beagle 0
uc3 O
mwt2 256
0OSG 744
Total 1000

When local UC3 “seeder”

resource full, UC3 flocks
to other resources



Now user runs on multiple resources:

Swift config
script files

\_/- .
\ Cluster file server

4 N
Epplicatior; E Input j \

- ,

(

~N

Cray XE 24-core nodes]

Beagle Cray

J

-

4 N
N

E Output j

Cluster interactive node

J

UC3 seeder nodes

Midwest T2 nodes

OSG VO nodes

\ S

\ UChicago UC3 /

y
\

7

Sandybridge nodes

Westmere nodes

Department nodes

\_ UChicago RCC Y,

N

Same script runs on broad range of resources; separate throttles can be set for each site.
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<config>
example
<pool handle="uc3">
<execution provider="coaster" url="uc3-sub.uchicago.edu" jobmanager="ssh-cl:condor"/> ) .
<profile namespace="karajan" key="jobThrottle">10.00</profile> Multi p|e site
<profile namespace="karajan" key="initialScore">10000</profile> RS
<profile namespace="globus" key="jobsPerNode">1</profile> deﬁnltlons, managed
by support staff
<profile namespace="globus" key="jobType">nonshared</profile>
<!-- <profile namespace="globus" key="condor.+Requirements">isUndefined(GLIDECLIENT_Name) == FALSE</profile> -->
<workdirectory>.</workdirectory>
</pool>
<pool handle="beagle"> User can Specify

<execution provider="coaster" jobmanager="ssh-cl:pbs" url="login4.beagle.ci.uchicago.edu"/>
<profile namespace="globus" key="jobsPerNode">24</profile>

<profile namespace="globus" key="lowOverAllocation">100</profile>

<profile namespace="globus" key="highOverAllocation">100</profile>

<profile namespace="globus" key="providerAttributes">pbs.aprun;pbs.mpp;depth=24;pbs.resource_list=advres=wilde.1768</profile>

custom parameters

<workdirectory>/tmp/{env.USER}/swiftwork</workdirectory>
</pool>

App list selects

<pool handle="sandyb">

<execution provider="coaster" jobmanager="local:slurm"/> where app() run
<workdirectory>/tmp/{env.USER}</workdirectory>

</pool>

<pool handle="westmere"> $ cat tc

<execution provider="coaster" jobmanager="local:slurm"/> uc3 perl  Jusr/bin/perl null null null

. _ beagle  perl /usr/bin/perl null null null
<workdirectory>/tmp/{env.USER}</workdirectory> #sandyb perl /usr/bin/perl null null null

</pool> westmere perl /usr/bin/perl null null null

</config>
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Swift’s location-independent scripting
lets the user focus on science

Example of running 3,000 jobs to 3 hosts including the UC3 campus

collective: '
$ ./showsites

midway 289
beagle 1070

uc3 1011
mwt2 295
0SG 335

Total 3000

= The user started on a basic login host processing 10 files and moved up to a
3,000 file dataset, changing only the dataset name and a site-specification
list to get to the resources above

= Expanded the scope of their computations from one node to hundreds or
thousands of cores

= User didn’t need to look at what sites were busy, or adjust arcane scripts,
to get to these resources.
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