
Large Scale Debugging on Titan
and Mira with Allinea DDT

David Lecomber
Allinea Software
david@allinea.com

• Our mission: to make HPC software

development fast, simple and successful

‒ A modern integrated environment for HPC

developers

‒ Scalable tools for any scale of system

• Supporting the lifecycle of application

development and improvement

‒ Allinea DDT : Productively debug code

‒ Allinea MAP : Enhance application performance

• Designed for productivity

‒ Consistent integrated easy to use tools

‒ Enables effective use of HPC resources and expertise

Allinea Software

Major Supercomputing Centers

Extreme machines are everywhere

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2010 2011 2012 2013

C
P

U
 C

o
re

s

No. 1 No. 100 No. 500

Machine
sizes are

exploding

Software
scale grows
as machines

grow

Some Software Challenges for the

Extreme

Algorithmic: Compilers are not enough!

• Restructure for SIMD threads and vectorization

• Fundamental changes: Do we really need FFTs here?

• Rediscover PRAM and 0-1 Sorting Networks(!)

Programmer Efficiency

• MPI alone is not sufficient: Hybrid required

• Performance trade-offs harder to understand

• Software bugs harder to fix

Bugs in Practice

Some types of bug

Bohrbug Steady, dependable bug

Heisenbug Vanishes when you try to debug (observe)

Mandelbug Complexity and obscurity of the cause is so great that it
appears chaotic

Schroedinbug First occurs after someone reads the source file and deduces
that it never worked, after which the program ceases to work

Debugging in practice…

Run

Crash

Hypothesis
Insert print
statements

Compile

Print statement debugging

• The first debugger: print
statements

– Each process prints a
message or value at
defined locations

– Diagnose the problem from
evidence and intuition

• A long slow process

– Analogous to bisection root
finding

• Broken at modest scale

– Too much output – too
many log files

x

f(x)

Titan and Mira

• 18,688 nodes

• 18,688 NVIDIA Kepler K20 GPUs

• 299,008 CPU cores

• 50,233,344 CUDA cores

Titan

• 49,152 nodes

• 786,432 cores

• 3,145,728 hardware threads

Mira

Does the printf workflow “work”?

Bug fixing as scale increases

Reproduce
at a

smaller
scale?

Reduced data set -
may not trigger
the problem?

Didn't you already
try the code at

small scale?

Is it a system
issue?

Is probability
stacking up

against you?

Debugging
at extreme
scale is a
necessity

Three Challenges for tools

Scalability

• Speed and Simplification

Heterogeneity

• Accelerators and Coprocessors

Adoption

• Ease of Use and Education

What you should expect (demand!) for

debugging at scale

Scalability

•A debugger that works to at least as high a scale as you need

Hardware and software support

•Whatever software you use and wherever you use it – the debugger supports it

Assistance

•Debugger is installed, configured, and documented – with site experts and training

ALCF, OLCF and Allinea deliver

2009 - Allinea and Oak Ridge
begin collaboration to provide

super-Petascale debugging

2010 - Allinea and Argonne
collaboration to extend scaling to

BlueGene systems

2013 - Mira and Titan full size
debugging in place

Beneath the Petascale Allinea DDT

• Scalable tree network

– Sends bulk commands and
merge responses

– Aggregations maintain the
essence of the information

– Optimizations to enable
BlueGene architecture

• Usability matters

– The interface is as
important as the speed

– Focus on scalable
components

• Powerful graphical debugger designed for :

‒ C/C++, Fortran, UPC, …

‒ MPI, OpenMP and mixed-mode code

‒ Accelerators and coprocessors: CUDA

and Intel Xeon Phi

• Unified interface with Allinea MAP :

‒ One interface eliminates learning curve

‒ Spend more time on your results

• Slash your time to debug

‒ Reproduces and triggers your bugs instantly

‒ Helps you easily understand where issues come from quickly

‒ Helps you to fix them as swiftly as possible

Allinea DDT

Fix software problems, fast

• Where did it happen?

‒ Allinea DDT leaps to source automatically

‒ Merges stacks from processes

and threads

• How did it happen?

‒ Some faults evident instantly from source

• Why did it happen?

‒ Real-time data comparison and consolidation

‒ Unique “Smart Highlighting” – colouring

differences and changes

‒ Sparklines comparing data across processes

‒ Force crashes to happen?

‒ Memory debugging makes many random

bugs appear every time

Allinea DDT: Scalable debugging by design

Interlude: Local Demonstration

• Simple persistent hanging

– Stepping through a code

• Process count dependent hanging:

– Attaching to the running job

Example – ORNL’s Jaguar

HPC code fails on 98,304 cores

Random processes crashing

Printf? Which processes and where?

Too costly to repeat

Allinea DDT finds cause first time

Getting started on Titan

• How?

module load ddt

ddt

• Congratulations, you are now ready to

debug.

Titan Interlude

• Learn how it feels to debug at scale

Example – ANL Mira

HPC code fails on 16,384 cores

Code abandoned – bug couldn’t be fixed

Machine too busy for interactive debugging

Allinea DDT offline mode runs bug case overnight

Found error in initialization

Getting started on Mira

• How?

– soft add +ddt

– ddt

• Congratulations you are now ready to

debug.

Offline debugging

 Interactive access

difficult

 Used offline mode

 Submit and forget

 Post-mortem

analysis

Tracepoints

 A scalable print alternative

 Merged print – with a sparkline graph

showing distribution

 No recompilation required

Mira Interlude

• Use offline debugging to full advantage

Top 5 features at scale

Parallel stack view
Automated data

comparison: sparklines
Parallel array searching

Step, play, and
breakpoints

Offline debugging

Summary

Debugging at scale is not difficult

• 300,000 cores is as easy as 30 cores

• The user interface is vital to success

Debugging at scale is not slow

• High performance debugging – at Mira and Titan scale

• Logarithmic performance

Stable, in production and well supported

• Routinely used over 100,000 cores

