The Evolution of GPU Accelerated Computing

Steve Parker
Senior Director
HPC & Rendering
July 29, 2013
Exaflop Expectations

Not just a high end issue.

First Exaflop Computer

CM5 ~200 KW

Titan 8.2 MW

Growing size, cost and power
Classic Dennard Scaling

Scale chip features down 0.7x per process generation

- 1.4x faster transistors
- 0.7x capacitance
- 0.7x voltage
- 2x more transistors
Scale chip features down 0.7x per process generation

- Transistors are no faster
- 1.4x faster transistors

- 0.7x capacitance
- 0.7x voltage

Static leakage limits reduction in V_{th}

V_{dd} stays constant
Perf/W Scaling

- **Dennard Scaling era:** MF GF TF almost to PF
 - Each generation: 2.8x capability in same power
 - 68% CAGR in perf/W!
 - CPUs realized only ~50% CAGR in perf/W (spent it on single thread perf)

- **Post Dennard era:**
 - Each generation: 1.4x capability in same power
 - 19% CAGR in perf/W
The High Cost of Data Movement

Efficiency == Locality

- 64-bit DP
- 256-bit access
- 8 kB SRAM
- 28nm IC

- Relative cost grows with each generation
- Wire delay (ps/mm) not improving
So, What To Do?

1) Stop making it worse...

Multicore CPUs

2) Continue to innovate in circuits (e.g.: low voltage SRAMs)

3) Unwind all that complexity we threw at single thread performance (reclaim the lost performance potential)

But still only a tiny fraction of CPU power spent on flops
HPC must go Hybrid

- Do most work by cores optimized for extreme energy efficiency
- Still need a few cores optimized for fast serial work

Optimizations for power-efficiency and single thread performance are fundamentally opposed.
First Generation - Wireframe

- **Vertex:** transform, clip, and project
- **Rasterization:** lines only
- **Pixel:** no pixels! calligraphic display
- **Dates:** prior to 1987
Storage Tube Terminals

- CRTs with analog charge “persistence”
- Accumulate a detailed static image by writing points or line segments
- Erase the stored image to start a new one
Second Generation - Shaded Solids

- Vertex: lighting
- Rasterization: filled polygons
- Pixel: depth buffer, color blending
- Dates: 1987 - 1992
Third Generation - Texture Mapping

- Vertex: more, faster
- Rasterization: more, faster
- Pixel: texture filtering, antialiasing
Early 3D Graphics Pipeline

- Application
- Scene Management
- Geometry
- Rasterization
- Pixel Processing
- ROP/FBI/Display
- Frame Buffer Memory

Host

GPU
IRIS 3000 Graphics Cards

Geometry Engines & Rasterizer

4 bit / pixel Framebuffer (2 instances)
Programmable Shaders: GeForceFX (2002)

- Vertex and fragment operations specified in small (macro) assembly language (separate processors)
- User-specified mapping of input data to operations
- Limited ability to use intermediate computed values to index input data (textures and vertex uniforms)

```
ADDR R0.xyz, eyePosition.xyzx, -f[TEX0].xyzx;
DP3R R0.w, R0.xyzx, R0.xyzx;
RSQR R0.w, R0.w;
MULR R0.xyz, R0.w, R0.xyzx;
ADDR R1.xyz, lightPosition.xyzx, -f[TEX0].xyzx;
DP3R R0.w, R1.xyzx, R1.xyzx;
RSQR R0.w, R0.w;
MADR R0.xyz, R0.w, R1.xyzx, R0.xyzx;
MULR R1.xyz, R0.w, R1.xyzx;
DP3R R0.w, R1.xyzx, f[TEX1].xyzx;
MAXR R0.w, R0.w, {0}.x;
```
The Pioneers: Early GPGPU (2002)

- Ray Tracing on Programmable Graphics Hardware, Purcell et al.
- PDEs in Graphics Hardware, Strzodka, Rumpf
- Fast Matrix Multiplies using Graphics Hardware, Larsen, McAllister

This was not easy...
A 50 Second Tutorial on GPU Programming

Firstly, you'll want to create some floating point textures... you'll want to create some floating point textures...

On the GPU, it's a wee bit more complicated...

... naturally

Good luck finding usefulness in the documentation...

Don't forget to turn off software mode...

Of course, there is a difference caused by...

NVIDIA and ATI, OpenGL...

... naturally

Linux, OS X, Windows, softwares and mode windows...

PBuffer
You’ll need to write the “add” shader...

For a more elegant solution to GPU programming, check out...

Brook for GPUs: Stream Computing on Graphics Hardware

Copy the data to the GPU ...

Render a shaded quad...

```glBegin(GL_TRIANGLES);
  glVertex2f(-1.0f, 3.0f);
  glVertex2f(-1.0f, -1.0f);
  glVertex2f(3.0f, -1.0f);
  glEnd();
CHECK_GL();```

Read back from the GPU ...

```glReadPixels (0, 0, width, height, GLformat(ncomp[i]),
 GL_FLOAT, t);```
Challenges with Early GPGPU Programming

- **HW challenges**
 - Limited addressing modes
 - Limited communication: inter-pixel, scatter
 - Lack of integer & bit ops
 - No branching
- **SW challenges**
 - Graphics API (DirectX, OpenGL)
 - Very limited GPU computing ecosystem
 - Distinct vertex and fragment procs

Software (DirectX, OpenGL) and hardware slowly became more general purpose...
GPU Computing Matures

GPU-Accelerated Systems in Top500

2006 – G80
- Unified Graphics/Compute Architecture
- IEEE math
- CUDA introduced at SC’06

Tesla
- Double precision FP

Fermi
- ECC
- High DP FP perf
- C++ support
- Cache hierarchy

Kepler
- Large perf/W
- Programmability enhancements

GPU = Many Years of R&D in Massively Parallel Computing:

Real-Time 3D Graphics Rendering

- Input triangle
- Transform vertices
- Tessellate
- Projection
- Rasterize
- Shade

Millions of triangles

Millions of pixels
Three Paths to GPU Computing

Libraries
- C++ Thrust
- cuBLAS
- cuSPARSE
- cuFFT
- Many more

Directives
- OpenACC
- Open
- Simple
- Portable

CUDA
- CUDA C
- CUDA C++
- CUDA Fortran
CUDA C Programming

void saxpy_serial(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nbblocks, 256>>>(n, 2.0, x, y);
CUDA Parallelism and Memory Model

Thread

per-thread local memory

Thread Block

Local barrier

per-block shared memory

Global barrier

Kernel foo()

per-device global memory

Kernel bar()
NVIDIA G80 Architecture
Unified Compute Architecture

- Unified processor types
- Unified access to mem structures
- SIMT, shared memory
- DirectX 10 & SM 4.0
Continued Evolution
Overarching Goals for GPU Computing

- Power Efficiency
- Ease of Programming and Portability
- Application Space Coverage
KEPLER

SMX

Hyper-Q

Dynamic Parallelism

(power efficiency)

(programmability and application coverage)
Kepler GK110 Block Diagram

- 7.1B Transistors
- 15 SMX units
- 1.3 TFLOPS FP64
- 1.5 MB L2 Cache
- 384-bit GDDR5
- PCI Express Gen3
Kepler GK110 SMX vs Fermi SM

3x sustained perf/W

Ground up redesign for perf/W
6x the SP FP units
4x the DP FP units
Significantly slower FU clocks

~4x the overall instruction throughput
2x register file size (64K regs)
2x threadblocks (16) & 1.33x threads (2K)
Hyper-Q
Easier Speedup of Legacy MPI Apps

FERMI
1 Work Queue

KEPLER
32 Concurrent Work Queues

CP2K - Quantum Chemistry
Strong Scaling: 864 water molecules

Speedup vs. Dual CPU

Number of GPUs
K20 with Hyper-Q
16 MPI ranks per node
K20 without Hyper-Q
1 MPI rank per node

2.5x
Dynamic Parallelism

Simpler Code, More General, Higher Performance

CPU

Fermi GPU

CPU

Kepler GPU
Dynamic Parallelism: Simpler Code, Higher Perf

Quicksort: Parallel Recursion

Without Dynamic Parallelism (Fermi)

With Dynamic Parallelism
Dynamic Parallelism: Simpler Code, Higher Perf

Code Size Cut by 2x

2x Performance
NCSA Mixes GPUs into BlueWaters

"By incorporating the XK7 system, Blue Waters will provide a bridge to the future of scientific computing."

– NCSA Director Thom Dunning

Contains 32 Cray XK7 cabinets with over 3000 NVIDIA Tesla GPUs
Titan: World’s #2 Supercomputer

18,688 Tesla K20X GPUs
27 PetaFlops
Flagship Scientific Applications on Titan

Material Science (WL-LSMS)
Role of material disorder, statistics, and fluctuations in nanoscale materials and systems.

Climate Change (CAM-SE)
Answer questions about specific climate change adaptation and mitigation scenarios; realistically represent features like precipitation patterns/statistics and tropical storms.

Biofuels (LAMMPS)
A multiple capability molecular dynamics code.

Astrophysics (NRDF)
Radiation transport – critical to astrophysics, laser fusion, combustion, atmospheric dynamics, and medical imaging.

Combustion (S3D)
Combustion simulations to enable the next generation of diesel/bio-fuels to burn more efficiently.

Nuclear Energy (Denovo)
Unprecedented high-fidelity radiation transport calculations that can be used in a variety of nuclear energy and technology applications.
Developer Momentum Continues to Grow

- **2008**
 - 4,000 Academic Papers
 - 150K CUDA Downloads
 - 60 Top 500 System
 - 100M CUDA-Capable GPUs

- **2013**
 - 37,000 Academic Papers
 - 1.6M CUDA Downloads
 - 640 University Courses
 - 430M CUDA-Capable GPUs

- 50 Top 500 Systems
- 19% Flops

Note: The numbers represent significant growth in CUDA adoption and usage over the years.
Kepler GPU Performance Results

Dual-socket comparison: CPU-GPU node vs. Dual-CPU node

CPU = 8 core SandyBridge E5-2687w 3.10 GHz

Chroma
- 1xCPU + 2xK20X: 10.2
- 1xCPU + K20X: 8.9
- 2xCPU: 1.0

SPECFEM3D
- 1xCPU + 2xK20X: 8.5
- 1xCPU + K20X: 7.2
- 2xCPU: 1.0

AMBER
- 1xCPU + 2xK20X: 6.1
- 1xCPU + K20X: 3.2
- 2xCPU: 1.0

WL-LSMS
- 1xCPU + 2xK20X: 3.5
- 1xCPU + K20X: 2.5
- 2xCPU: 1.0

NAMD
The Future
The Future of HPC Programming

Computers are not getting faster... just wider

- Need to structure all HPC apps as throughput problems

Locality *within* nodes much more important

- Need to expose locality (programming model)
 & explicitly manage memory hierarchy (compiler, runtime, autotuner)

How can we enable programmers to code for future processors in a portable way?
OpenACC Directives
Portable Parallelism

```c
main() {
    double pi = 0.0; long i;
    #pragma omp parallel for reduction(+:pi)
    for (i=0; i<N; i++)
    {
        double t = (double)((i+0.05)/N);
        pi += 4.0/(1.0+t*t);
    }
    printf("pi = %f\n", pi/N);
}
```

```c
main() {
    double pi = 0.0; long i;
    #pragma acc parallel loop reduction(+:pi)
    for (i=0; i<N; i++)
    {
        double t = (double)((i+0.05)/N);
        pi += 4.0/(1.0+t*t);
    }
    printf("pi = %f\n", pi/N);
}
```
Programmer Focuses on Exposing Parallelism
(not on platform-specific optimization)

Example: Application tuning work using directives for Titan system at ORNL
(comparing CPU+GPU vs. dual-CPU nodes)

- Tuned top 3 kernels for GPUs (90% of runtime)
- End result: 3 to 6x faster on GPU vs. CPU node
- *Improved perf of CPU-only version by 50%*

- Tuned top kernel for GPUs (50% of runtime)
- End result: 6.5x faster on GPU vs. CPU node
- *Doubled perf of CPU-only version!*

Results from Cray/ORNL
How Are GPUs Likely to Evolve Over This Decade?

- Integration
- More concentration on locality (both HW and SW)
- Reducing overheads (intra- and inter-node)
- Increased convergence with consumer technology
Changing Computing Landscape

“Attack of the killer cell phones.”
-- Jeff Brooks

Source: Mercury Research, ARM, Internal estimates
The ‘Super’ Computing Company
From Super Phones to Super Computers
The Future of HPC is Green

- **Power constraint is a Big Deal**
 - *Must* move to simpler cores for most work
 - *Must* pay more attention to intra-node locality

- **HPC increasingly supported by consumer markets**
 - Both driven fundamentally by power
 - *Unprecedented* architectural convergence

- **GPUs evolving to a tightly integrated, hybrid processor**
 - Hybrid cores, hybrid memory, integrated network
 - Goal: efficient on *any* code with high parallelism
 - This is simply how computers will be built
Expressing Parallelism with OpenACC
Simple Example: SAXPY

- BLAS1 function
- Y = a*X+Y
 - Y and X are length N vectors
 - A is a scalar
 - single precision data (float)

```c
void saxpy(int n, float a, float *x, float *y)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);
```
3 Ways to Accelerate Applications

- Libraries: “Drop-in” Acceleration
- OpenACC Directives: Easily Accelerate Applications
- Programming Languages: Maximum Flexibility
3 Ways to Accelerate Applications

- **Libraries**: “Drop-in” Acceleration
- **OpenACC Directives**: Easily Accelerate Applications
- **Programming Languages**: Maximum Flexibility
GPU Accelerated Libraries

- **NVIDIA cuBLAS**
- **NVIDIA cuRAND**
- **NVIDIA cuSPARSE**
- **NVIDIA NPP**
- **GPU VSIPL** - Vector Signal Image Processing
- **CULA tools** - GPU Accelerated Linear Algebra
- **MAGMA** - Matrix Algebra on GPU and Multicore
- **NVIDIA cuFFT**
- **ROGUE WAVE SOFTWARE** - IMSL Library
- **ArrayFire** - Matrix Computations
- **CUSP** - Sparse Linear Algebra
- **Thrust** - C++ STL Features for CUDA
SAXPY in cuBLAS

Serial BLAS Code

```c
int N = 1<<20;
...
// Use your choice of blas library
// Perform SAXPY on 1M elements
blas_saxpy(N, 2.0, x, 1, y, 1);
```

Parallel cuBLAS Code

```c
int N = 1<<20;
cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);
// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);
cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);
cublasShutdown();
```

You can also call cuBLAS from Fortran, C++, Python, and other languages

3 Ways to Accelerate Applications

Applications

Libraries

OpenACC
Directives

Programming
Languages

“Drop-in” Acceleration

Easily Accelerate Applications

Maximum Flexibility
OpenACC Compiler Directives

Program myscience

... serial code ...

$acc kernels
do k = 1,n1
do i = 1,n2
... parallel code ...
enddo
endoon
$acc end kernels

... serial code ...

End Program myscience

CPU

GPU

OpenACC Compiler Hint

Simple Compiler hints
Compiler Parallelizes code
Works on many-core GPUs & multicore CPUs

Your original Fortran or C code
SAXPY with OpenACC Directives

Parallel C Code

```c
void saxpy(int n,
    float a,
    float *x,
    float *y)
{
    #pragma acc kernels
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}
```

... // Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

Parallel Fortran Code

```fortran
subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i

    !$acc kernels
    do i=1,n
        y(i) = a*x(i)+y(i)
    enddo

    !$acc end kernels
end subroutine saxpy
```

... ! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

OpenACC
The Standard for GPU Directives

Simple: Directives are the easy path to accelerate compute intensive applications

Open: OpenACC is an open GPU directives standard, making GPU programming straightforward and portable across parallel and multi-core processors

Powerful: GPU Directives allow complete access to the massive parallel power of a GPU
Directives: Easy & Powerful

Real-Time Object Detection
Global Manufacturer of Navigation Systems

Valuation of Stock Portfolios using Monte Carlo
Global Technology Consulting Company

Interaction of Solvents and Biomolecules
University of Texas at San Antonio

5x in 40 Hours
2x in 4 Hours
5x in 8 Hours

“Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The most important thing is avoiding restructuring of existing code for production applications.”

-- Developer at the Global Manufacturer of Navigation Systems
Focus on Expressing Parallelism

With Directives, tuning work focuses on \textit{expressing parallelism}, which makes codes inherently better.

Example: Application tuning work using directives for new Titan system at ORNL.

- **S3D**
 - Research more efficient combustion with next-generation fuels
 - Tuning top 3 kernels (90\% of runtime)
 - 3 to 6x faster on CPU+GPU vs. CPU+CPU
 - But also improved all-CPU version by 50\%

- **CAM-SE**
 - Answer questions about specific climate change adaptation and mitigation scenarios
 - Tuning top key kernel (50\% of runtime)
 - 6.5x faster on CPU+GPU vs. CPU+CPU
 - Improved performance of CPU version by 100\%
OpenACC Specification and Website

- Full OpenACC 1.0 Specification available online
 - www.openacc.org
- Quick reference card also available
- Compilers available now from PGI, Cray, and CAPS
3 Ways to Accelerate Applications

- Libraries: “Drop-in” Acceleration
- OpenACC Directives: Easily Accelerate Applications
- Programming Languages: Maximum Flexibility
void saxpy(int n, float a,
 float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);

__global__
void saxpy(int n, float a,
 float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

int N = 1<<20;
 cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);
 cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

SAXPY in CUDA Fortran

Standard Fortran

```fortran
module mymodule
  contains
    subroutine saxpy(n, a, x, y)
      real :: x(:), y(:), a
      integer :: n, i
      do i=1,n
        y(i) = a*x(i)+y(i)
      enddo
    end subroutine saxpy
  end module
end module

program main
  use mymodule
  real :: x(2**20), y(2**20)
  x = 1.0, y = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy(2**20, 2.0, x, y)
end program main
```

CUDA Fortran

```fortran
module mymodule
  contains
    attributes(global) subroutine saxpy(n, a, x, y)
      real :: x(:), y(:), a
      integer :: n, i
      attributes(value) :: a, n
      i = threadIdx%x+(blockIdx%x-1)*blockDim%x
      if (i<=n) y(i) = a*x(i)+y(i)
    end subroutine saxpy
  end module
end module

program main
  use cudafor; use mymodule
  real, device :: x_d(2**20), y_d(2**20)
  x_d = 1.0, y_d = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d)
end program main
```

3 Ways to Accelerate Applications

Applications

Libraries
“Drop-in” Acceleration

OpenACC
Directives
Easily Accelerate Applications

Programming Languages
Maximum Flexibility
OpenACC Execution Model

1. Generate parallel code for GPU
2. Allocate GPU memory and copy input data
3. Execute parallel code on GPU
4. Copy output data to CPU and deallocate GPU memory

Compute-Intensive Code

$acc parallel

Rest of Sequential CPU Code

$acc end parallel

Application Code

GPU

CPU
OpenACC parallel Directive

Programmer identifies a block of code as having parallelism, compiler generates a parallel kernel for that loop.

```c
!acc parallel loop
  do i=1,n
     y(i) = a*x(i)+y(i)
  enddo
!acc end parallel loop
```

Most often parallel will be used as parallel loop.

Kernel:
A function that runs in parallel on the GPU.
while (err > tol && iter < iter_max) {
 err=0.0;

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);
 err = max(err, abs(Anew[j][i] - A[j][i]));
 }
 }

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}
while (err > tol && iter < iter_max) {
 err = 0.0;

 #pragma omp parallel for shared(m, n, Anew, A) reduction(max:err)
 for (int j = 1; j < n-1; j++) {
 for (int i = 1; i < m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]));
 }
 }

 #pragma omp parallel for shared(m, n, Anew, A)
 for (int j = 1; j < n-1; j++) {
 for (int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}
while (err > tol && iter < iter_max) {
 err=0.0;

#pragma acc parallel loop reduction(max:err)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]));
 }
 }

#pragma acc parallel loop
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}
Execution Time (lower is better)

CPU: Intel i7-3930K
6 Cores @ 3.20GHz

GPU: NVIDIA Tesla K20

OpenACC code is SLOWER than even serial code. Why?
What went wrong?

Set `PGI_ACC_TIME` environment variable to ‘1’

Accelerator Kernel Timing data
/home/jlarkin/openacc-workshop/exercises/001
laplace2D-kernels/laplace2d.c
main NVIDIA devicenum=0
time(us): 93,201,190
 56: data copyin reached 1000
device time(us): total=23,049,452
 max=28,928 min=22,761 avg=23,049
 56: kernel launched 1000 times
 grid: [4094] block: [256]
device time(us): total=2,609,928
 max=2,812 min=2,593 avg=2,609
elapsed time(us): total=2,872,585
 max=3,022 min=2,642 avg=2,872
56: reduction kernel launched 1000 times

Huge Data Transfer Bottleneck!
Computation: 5.19 seconds
Data movement: 74.7 seconds

23 seconds
23.9 seconds
27.8 seconds
24.8 seconds
Excessive Data Transfers

while (err > tol && iter < iter_max) {
 err=0.0;
 ...
}

#pragma acc parallel loop reduction(max:err)
for (int j = 1; j < n-1; j++) {
 for (int i = 1; i < m-1; i++) {
 err = max(err, abs(Anew[j][i] - A[j][i]));
 }
}

These copies happen every iteration of the outer while loop!

And note that there are two #pragma acc parallel, so there are 4 copies per while loop iteration!
Jacobi Iteration: OpenACC C Code

```c
#pragma acc data copy(A), create(Anew)
while ( err > tol && iter < iter_max ) {
    err=0.0;

#pragma acc parallel loop reduction(max:err)
    for( int j = 1; j < n-1; j++ ) {
        for(int i = 1; i < m-1; i++) {


            err = max(err, abs(Anew[j][i] - A[j][i]));
        }
    }

#pragma acc parallel loop
    for( int j = 1; j < n-1; j++ ) {
        for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
        }
    }

    iter++;
}
```

Copy A in at beginning of loop, out at end. Allocate Anew on accelerator.
Execution Time (lower is better)

CPU: Intel i7-3930K
6 Cores @ 3.20GHz

GPU: NVIDIA Tesla K20

Now OpenACC is 7.7X faster than 6 OpenMP threads and 18X faster than serial.
3 Ways to Accelerate Applications

- Libraries: “Drop-in” Acceleration
- OpenACC Directives: Easily Accelerate Applications
- Programming Languages: Maximum Flexibility
1D Stencil: A Common Algorithmic Pattern

- Applying a 1D stencil to a 1D array of elements
 - Sum of input elements within a radius

- Fundamental to many algorithms
 - Standard discretization methods, interpolation, convolution, filtering
 - Applications in seismic processing, weather simulation, image processing, CFD, etc
Serial vs. Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

\(\uparrow\) = Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

= Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

\(\downarrow \) = Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

\(\Rightarrow \) = Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

\[\therefore \text{ = Thread} \]
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

\[\text{Thread} = \]
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

\(\Rightarrow \) = Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

= Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

= Thread
Parallel Algorithm

Serial: 1 element at a time

Parallel: many elements at a time

= Thread
Main Function - C vs CUDA C

C

```c
#define N (10000*256)
int main() {
    int size=N*sizeof( float );
    //allocate resources
    float *in=( float* )malloc( size );
    float *out=( float* )malloc( size );
    initializeArray( in, N );
    applyStencil1D( N, in, out );
    //free resources
    free( in ); free( out );
}
```

CUDA C

```c
#define N (10000*256)
int main() {
    int size=N*sizeof( float );
    //allocate resources
    float *in=( float* )malloc( size );
    float *out=( float* )malloc( size );
    float *d_in; cudaMalloc( &d_in, size );
    float *d_out; cudaMalloc( &d_out, size );
    initializeArray( in, N );
    cudaMemcpy( d_in, in, size, cudaMemcpyHostToDevice );
    applyStencil1D<<< N/256 , 256 >>>( N, d_in, d_out );
    cudaMemcpy( out, d_out, size, cudaMemcpyDeviceToHost );
    //free resources
    free( in ); free( out );
    cudaFree( d_in ); cudaFree( d_out );
}
```
#define N (10000*256)
int main() {
 int size=N*sizeof(float);
 //allocate resources
 float *in=(float*)malloc(size);
 float *out=(float*)malloc(size);
 initializeArray(in, N);
 applyStencil1D(N, in, out);
 //free resources
 free(in); free(out);
}

CUDA C
#define N (10000*256)
int main() {
 int size=N*sizeof(float);
 //allocate resources
 float *in=(float*)malloc(size);
 float *out=(float*)malloc(size);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);
 initializeArray(in, N);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<< N/256 , 256 >>>(N, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
 //free resources
 free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
}
#define N (10000*256)
int main() {
 int size=N*sizeof(float);
 //allocate resources
 float *in=(float*)malloc(size);
 float *out=(float*)malloc(size);

 initializeArray(in, N);
 applyStencil1D(N, in, out);

 //free resources
 free(in); free(out);
}

#define N (10000*256)
int main() {
 int size=N*sizeof(float);
 //allocate resources
 float *in=(float*)malloc(size);
 float *out=(float*)malloc(size);
 float *d_in; cudaMalloc(&d_in, size);
 float *d_out; cudaMalloc(&d_out, size);

 initializeArray(in, N);
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 applyStencil1D<<< N/256 , 256 >>>(N, d_in, d_out);
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 //free resources
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
}
Main Function - C vs CUDA C

C

```c
#define N (10000*256)
int main() {
    int size=N*sizeof( float );
    //allocate resources
    float *in=( float* )malloc( size );
    float *out=( float* )malloc( size );
    initializeArray( in, N );
    applyStencil1D( N, in, out );
    //free resources
    free( in ); free( out );
}
```

CUDA C

```c
#define N (10000*256)
int main() {
    int size=N*sizeof( float );
    //allocate resources
    float *in=( float* )malloc( size );
    float *out=( float* )malloc( size );
    float *d_in; cudaMalloc( &d_in, size );
    float *d_out; cudaMalloc( &d_out, size );
    initializeArray( in, N );
    cudaMemcpy( d_in, in, size, cudaMemcpyHostToDevice );
    applyStencil1D<<< N/256 , 256 >>>( N, d_in, d_out );
    cudaMemcpy( out, d_out, size, cudaMemcpyDeviceToHost );
    //free resources
    free( in ); free( out );
    cudaFree( d_in );
    cudaFree( d_out );
}
```

- **Executes once for each element**
- **Launch parameters**
- **GPU memory pointers**
void applyStencil1D(int N, float *in, float *out) {
 for (int i = RADIUS; i < N - RADIUS; i++) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++)
 out[i] += in[i + j];
 }
}

__global__ void applyStencil1D(int N, float *in, float *out) {
 int i = blockIdx.x * 256 + threadIdx.x;
 if (i >= RADIUS && i < N - RADIUS) {
 out[i] = 0;
 //loop over all elements in the stencil
 for (int j = -RADIUS; j <= RADIUS; j++)
 out[i] += in[i + j];
 }
}
C

```c
void applyStencil1D(int N, float *in, float *out) {
  for (int i=RADIUS; i<N-RADIUS; i++) {
    out[i] = 0;
    //loop over all elements in the stencil
    for (int j = -RADIUS; j <= RADIUS; j++ )
      out[i] += in[i + j];
  }
}
```

CUDA C

```c
__global__ void applyStencil1D(int N, float *in, float *out) {
  int i = blockIdx.x * 256 + threadIdx.x;
  if (i >= RADIUS && i < N-RADIUS) {
    out[i] = 0;
    //loop over all elements in the stencil
    for (int j = -RADIUS; j <= RADIUS; j++)
      out[i] += in[i + j];
  }
}
```

Kernel to Kernel - Performance

<table>
<thead>
<tr>
<th>Device</th>
<th>GEElements/s</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeon E5 2665*</td>
<td>0.3</td>
<td>1x</td>
</tr>
<tr>
<td>Tesla K20X</td>
<td>6.3</td>
<td>21x</td>
</tr>
</tbody>
</table>

*1 core
With a little more time...

- CPU code can be parallelized and optimized too
 - OpenMP & vectorize
- CUDA Optimizations
 - Use CUDA shared memory (user managed cache)
 - Process multiple elements per thread
 - 1 hour of work

Kernel to Kernel - Performance

<table>
<thead>
<tr>
<th>Device</th>
<th>Algorithm</th>
<th>GEElements/s</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xeon E5 2665 *</td>
<td>Optimized & Parallel</td>
<td>2.75</td>
<td>1x</td>
</tr>
<tr>
<td>Tesla K20X</td>
<td>Naive</td>
<td>6.3</td>
<td>2.3x</td>
</tr>
<tr>
<td>Tesla K20X</td>
<td>Optimized</td>
<td>20.5</td>
<td>7.45x</td>
</tr>
</tbody>
</table>

8 cores