
Community Codes: How They Develop and What it Takes to
Develop One – Part I

Anshu Dubey

With slides from
Brian O’Shea (Enzo)
Cecelia DeLuca (ESMF)
Matt Turk (Enzo and yt)

The Development and Funding Models

Examples from Three Different Community Codes

“Cathedral and the Bazaar”, Eric S. Raymond

•  The Cathedral model
–  Code is available with each software release
–  Development between releases is restricted to an

exclusive group of software developers.
•  GNU Emacs and GCC are presented as examples.

–  Central control models

•  The Bazaar model
–  Code is developed over the Internet in view of the public.
–  Raymond credits Linus Torvalds, leader of the Linux

kernel project, as the inventor of this process.
–  Distributed control models

Scientific codes
•  Mostly follow the cathedral model
•  Many reasons are given, some valid, others spring from bias
•  The valid ones

–  Scientists tend to be skeptical of software engineering
–  The code quality becomes hard to maintain
–  Hard to find financial support for gate keeping and general maintenance
–  Typical user communities are too small to effectively support the bazaar

model
–  The reward structure for majority of potential contributors is incompatible

•  The not so valid ones
–  Codes are far too complex
–  Competitive advantage from owning the code

The	
 real	
 reason	
 many	
 -mes	
 is	
 simply	
 the	
 history	
 of	
 the	
 development	
 of	
 the	
 code	

and	
 the	
 pride	
 of	
 ownership	

The Benefits of the Bazaar model

•  Given a large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix will be
obvious to someone

–  More varied test cases that demonstrate bugs
–  Debugging can be effectively parallelized.
–  The infrastructure limitations are quickly exposed

•  Capability addition is rapid, codes can do more
–  A corollary to that is a good extensible design
–  Users always want something more and/or something different

from what is available
–  Greater knowledge pool operating together, more possibility of

innovation

The Pitfalls of the Bazaar model

•  Many of the benefitting reasons can equally easily go the other
way

–  Bigger knowledge pool can also mean more conflicting
opinions

–  Prioritizations can become extremely challenging
•  Gatekeeping can become a huge challenge for maintaining

software quality
–  Scientific codes have their own peculiarities for verification

and validation that can be extremely challenging
–  The orchestration of capability combination is harder when

there is physics involved because many times it just won’t
play well together

Open Source Benefits

•  Nobody can pull the plug on you.
–  You have the source code, free to use and modify, in

perpetuity.
–  That includes me

•  You don’t have to pay
–  But you might be asked to help generate funding
–  You pay with your time and attention and what you give

back.
–  Stakeholders are power (if you can figure out how to tap it)

•  Not all stakeholders are equivalent
•  User count may not be as helpful as vocal collaborators

Object-Oriented Programming Helps

•  Strong interfaces and encapsulation (enforced by the
language or build system) enables community participation.

–  Users can try derived classes and get their code running
without too much direct hand-holding.

–  Open-source means they can change interfaces locally.

•  Design-by-Contract (DbC)

Scientific Community Codes Can Follow
Several Different Paths :
•  The most common path

–  Someone wrote a very useful piece of code that several
people in the group started using

–  Collaborations happened
–  People moved and took the code with them
–  Critical mass of users achieved, code becomes popular

•  No focused effort to build the code
–  Usually very little software process involved
–  For the whole code, limited shelf life

A More Sustained Path

•  Sometimes enough like minded people take it a step further
–  Some long term planning resulting in better engineered

code
–  Thought given to extensibility and for future code growth
–  As the code grows so does its community supported model

•  This model is still relatively rare.
–  The occurrences are increasing

A Desirable Path

•  Explicit funding to build a code for a target community
•  Implied support for the design phase
•  The outcome is expected to be long lasting and well

engineered
•  The occurrences are even rarer
•  And it is getting increasingly harder
•  When it works outcome is more capable and longer lasting

codes

Examples: Enzo Transitioning
from Close to Open Source	

Brian W. O’Shea
Michigan State University	

1996-2003: 	

closed-source!	

March 2004: Enzo 1.0	

The Enzo community today	

•  25 contributors (~12 active developers) at >10

institutions	

•  ~200 people on enzo-users mailing list (~50% active?)	

•  ~80 million SUs devoted to Enzo simulations in 2011	

from NSF, NASA, DOE (with more in 2012)	

•  Financial support from NSF (AST, OCI, PHY), NASA,	

and DOE	

•  Complementary community: 	

yt (http://yt-	

project.org)	

Development model	

•  Entirely distributed development model:

small number of devs per institution!	

•  Code distribution using mercurial (BitBucket)	

•  Use code forks / pull requests to move features	

from development branches into main branch
of	

the code	

•  Almost all development discussion takes
place on archived, public mailing list and on
Google DOcs (meeting notes emailed out)	

Community support	

•  Most developers are astrophysicists “scratching

their own itch” (and funded to do science!)	

•  Development spurred by ~1.5 workshops/year	

+ periodic task-oriented “code sprints”	

•  Active mailing lists for users and developers	

•  Development funded by many streams:	

universities, federal agencies, postdoctoral	

fellowships	

•  Complementary yt development has helped to	

spur usage of Enzo!	

Impact	

•  Enthusiastic and heavily-involved user/developer

community	

•  Enzo is widely known in astrophysics - strongly	

represented in code comparisons, conference	

talks/posters - and highly trusted	

•  Code is flexible and extensible: high science/	

dollar!	

•  Has spurred development of open-source science	

•  Involvement in this community has strongly	

affected young scientists’ career trajectories	

Challenges	

• No “Fearless Leader” of development

process: hard to make major code
revisions (esp. user-facing)	

•  Part-time developers: distractions, hard
to do “boring but important”
infrastructure	

projects	

•  Significant work required to build
consensus and keep community
together!	

Conclusions	

•  For the Enzo collaboration, this
transition has been worth it:	

	

	

•	

	

	

•	

Enhanced transparency/reproducibility (more
trust in the code)	

	

Larger user base: more eyes on the code,
wider adoption	

More and better science per dollar!	

•  Conversion of a code from closed-source to
an open-source community code is not
without technical and sociological
challenges.	

Example	
 3	
 :	
 ESMF	
 Community	
 infrastructure	
 for	

building	
 and	
 coupling	
 high	
 performance	
 climate,	

weather,	
 and	
 coastal	
 models	

	

Vision	

•  Earth	
 system	
 models	
 that	
 can	
 be	
 built,	
 assembled	
 and	
 reconfigured	

easily,	
 using	
 shared	
 toolkits	
 and	
 standard	
 interfaces.	

•  A	
 growing	
 pool	
 of	
 Earth	
 system	
 modeling	
 components	
 that,	
 through	

their	
 broad	
 distribu-on	
 and	
 ability	
 to	
 interoperate,	
 promotes	
 the	
 rapid	

transfer	
 of	
 knowledge.	

•  Earth	
 system	
 modelers	
 who	
 are	
 able	
 to	
 work	
 more	
 produc-vely,	

focusing	
 on	
 science	
 rather	
 than	
 technical	
 details.	

•  An	
 Earth	
 system	
 modeling	
 community	
 with	
 cost-­‐effec-ve,	
 shared	

infrastructure	
 development	
 and	
 many	
 new	
 opportuni-es	
 for	
 scien-fic	

collabora-on.	

•  Accelerated	
 scien-fic	
 discovery	
 and	
 improved	
 predic-ve	
 capability	

through	
 the	
 social	
 and	
 technical	
 influence	
 of	
 ESMF.	
 	

Evolu-on	

Phase 1: 2002-2005
NASA’s Earth Science Technology Office ran a solicitation to develop an Earth System
Modeling Framework (ESMF).
A multi-agency collaboration (NASA/NSF/DOE/NOAA) won the award. The core
development team was located at NCAR.
A prototype ESMF software package (version 2r) demonstrated feasibility.

Phase 2: 2005-2010
New sponsors included Department of Defense and NOAA.
A multi-agency governance plan including the CRB was created:
http://www.earthsystemmodeling.org/management/paper_1004_projectplan.pdf
Many new applications and requirements were brought into the project, motivating a
complete redesign of framework data structures (version 3r).

Phase 3: 2010-2015 (and beyond)
The core development team moved to NOAA/CIRES for closer alignment with federal
models.
Basic framework development completed with version 5r (ports, bugs, feature requests,
user support etc. still require resources).
The focus is on increasing adoption and creating a community of interoperable codes.

Computa-onal	
 Context	

•  Teams of specialists, often at different sites, contribute scientific or computational

components to an overall modeling system
•  Components may be at multiple levels: individual physical processes (e.g.

atmospheric chemistry), physical realms (e.g. atmosphere, ocean), and
members of same or multi-model ensembles (e.g. “MIP” experiments)

•  Components contributed from multiple teams must be coupled together, often
requiring transformations of data in the process(e.g. grid remapping and
interpolation, merging, redistribution)

•  Transformations are most frequently 2D data, but 3D is becoming more common
•  There is an increasing need for cross-disciplinary and inter-framework coupling

for climate impacts
•  Running on tens of thousands of processors is fairly routine; utilizing

hundreds of thousands of processors or GPUs is less common
•  Modelers will tolerate virtually no framework overhead and seek fault

tolerance and bit reproducibility
•  Provenance collection is increasingly important for climate simulations

Architecture	

Low Level Utilities

Fields and Grids Layer

Model Layer

Components Layer
Gridded Components
Coupler Components

ESMF Infrastructure

User Code

ESMF Superstructure

MPI, NetCDF, … External Libraries

•  The Earth System Modeling
Framework (ESMF) provides a
component architecture or
superstructure for assembling
geophysical components into
applications.

•  ESMF provides an
infrastructure that modelers
use to
–  Generate and apply

interpolation weights
–  Handle metadata, time

management, I/O and
communications, and other
common functions

The ESMF distribution does not
include scientific models

Summary	
 of	
 Features	

•  Components	
 with	
 mul-ple	
 coupling	
 and	
 execu-on	
 modes	
 for	
 flexibility,	

including	
 a	
 web	
 service	
 execu-on	
 mode	

•  Fast	
 parallel	
 remapping	
 with	
 many	
 features	

•  Core	
 methods	
 are	
 scalable	
 to	
 tens	
 of	
 thousands	
 of	
 processors	

•  Supports	
 hybrid	
 (threaded/distributed)	
 programming	
 for	
 op-mal	

performance	
 on	
 many	
 computer	
 architectures;	
 works	
 with	
 codes	
 that	

use	
 OpenMP	
 and	
 OpenACC	

•  Time	
 management	
 u-lity	
 with	
 many	
 calendars,	
 forward/reverse	
 -me	

opera-ons,	
 alarms,	
 and	
 other	
 features	

•  Metadata	
 u-lity	
 that	
 enables	
 comprehensive,	
 standard	
 metadata	
 to	
 be	

wriOen	
 out	
 in	
 standard	
 formats	

•  Runs	
 on	
 30+	
 plaTorm/compiler	
 combina-ons,	
 exhaus-ve	
 nightly	

regression	
 test	
 suite	
 (4500+	
 tests)	
 and	
 documenta-on	

•  Couples	
 Fortran	
 or	
 C-­‐based	
 model	
 components	

•  Open	
 source	
 license	

Major	
 Users	

ESMF	
 Components:	

•  NOAA	
 Na-onal	
 Weather	
 Service	
 opera-onal	
 weather	
 models	
 	

(GFS,	
 Global	
 Ensemble,	
 NEMS)	

•  NASA	
 atmospheric	
 general	
 circula-on	
 model	
 GEOS-­‐5	

•  Navy	
 and	
 related	
 atmospheric,	
 ocean	
 and	
 coastal	
 research	

and	
 opera-onal	
 models	
 –	
 COAMPS,	
 NOGAPS,	
 HYCOM,	

WaveWatch,	
 others	

•  Hydrological	
 modelers	
 at	
 Del`	
 hydraulics,	
 space	
 weather	

modelers	
 at	
 NCAR	
 and	
 NOAA	

ESMF	
 Regridding	
 and	
 Python	
 Libraries	

•  NCAR/DOE	
 Community	
 Earth	
 System	
 Model	
 (CESM)	

•  Analysis	
 and	
 visualiza-on	
 packages:	
 	
 NCAR	
 Command	

Language,	
 Ultrascale	
 Visualiza-on	
 	
 -­‐	
 Climate	
 Data	
 Analysis	

Tools	
 (UV-­‐CDAT),	
 PyFerret	
 users	

•  Community	
 Surface	
 Dynamics	
 Modeling	
 System	

	

Usage	
 Metrics	

•  Updated	
 ESMF	
 component	
 lis-ng	
 at:	

hOp://www.earthsystemmodeling.org/components/	

•  Includes	
 85	
 components	
 with	
 ESMF	
 interfaces,	
 12	
 coupled	
 cross-­‐

agency	
 modeling	
 systems	
 in	
 space	
 weather,	
 climate,	
 weather,	

hydrology,	
 and	
 coastal	
 predic-on,	
 for	
 opera-onal	
 and	
 research	

use	

•  About	
 4500	
 registered	
 downloads	

	

Values	
 and	
 Principles	

•  Community	
 driven	
 development	
 and	
 community	
 ownership	

•  Openness	
 of	
 project	
 processes,	
 management,	
 code	
 and	
 informa-on	

•  Correctness	

•  Commitment	
 to	
 a	
 globally	
 distributed	
 and	
 diverse	
 development	
 and	

customer	
 base	

•  Simplicity	

•  Efficiency	

•  User	
 engagement	

•  Environmental	
 stewardship	

Web	
 link	
 for	
 detail:	
 hOp://www.esmf.ucar.edu/about_us/values.shtml	

Making	
 Distributed	

Co-­‐Development	
 Work	

Hinges	
 on	
 asynchronous,	
 all-­‐to-­‐all	
 communicaAon	
 paBerns:	
 	
 everybody	

must	
 have	
 informaAon	

•  Archived	
 email	
 list	
 where	
 all	
 development	
 correspondence	
 gets	
 cc’d	

•  Minutes	
 for	
 all	
 telecons	

•  Web	
 browsable	
 repositories	
 (main	
 and	
 contribu-ons),	
 mail	
 summary	

on	
 check-­‐ins	

•  Daily,	
 publicly	
 archived	
 test	
 results	

•  Monthly	
 archived	
 metrics	

•  Public	
 archived	
 trackers	
 (bugs,	
 feature	
 requests,	
 support	
 requests,	

etc.)	

	

Discouraged:	
 	
 IMing,	
 one-­‐to-­‐one	
 correspondence	
 or	
 calls	
 –	
 the	
 medium	

maOers	

	

Change	
 Review	
 Board	

•  CRB	
 established	
 as	
 a	
 vehicle	
 for	
 shared	
 ownership	
 through	
 user	
 task	

priori-za-on	
 and	
 release	
 content	
 decisions	

•  Consists	
 of	
 technical	
 leads	
 from	
 key	
 user	
 communi-es	

•  Not	
 led	
 by	
 the	
 development	
 team!	

•  Sets	
 the	
 schedule	
 and	
 expecta-ons	
 for	
 future	
 func-onality	

enhancements	
 in	
 ESMF	
 internal	
 and	
 public	
 distribu-ons	

–  Based	
 on	
 broad	
 user	
 community	
 and	
 stakeholder	
 input	

–  Constrained	
 by	
 available	
 developer	
 resources	

–  Updated	
 quarterly	
 to	
 reflect	
 current	
 reali-es	

•  CRB	
 reviews	
 releases	
 a`er	
 delivery	
 for	
 adherence	
 to	
 release	
 plan	

Governance	
 Highlights	

Management of ESMF required governance that recognized

social and cultural factors as well as technical factors
Main practical objectives of governance:
•  Enabling stakeholders to fight and criticize in a civilized,

contained, constructive way
•  Enabling people to make priority decisions based on

resource realities
Observations:
•  Sometimes just getting everyone equally dissatisfied and

ready to move on is a victory
•  Thorough, informed criticism is the most useful input a

project can get
•  Governance changes and evolves over the life span of a

project

Governance	
 Func-ons	

•  PrioriAze	
 development	
 tasks	
 in	
 a	
 manner	
 acceptable	
 to	
 major	
 stakeholders	

and	
 the	
 broader	
 community,	
 and	
 define	
 development	
 schedules	
 based	
 on	

realis-c	
 assessments	
 of	
 resource	
 constraints	
 (CRB)	

•  Deliver	
 a	
 product	
 that	
 meets	
 the	
 needs	
 of	
 cri-cal	
 applica-ons,	
 including	

adequate	
 and	
 correct	
 func-onality,	
 sa-sfactory	
 performance	
 and	
 memory	

use,	
 ...	
 (Core)	

•  Support	
 users	
 via	
 prompt	
 responses	
 to	
 ques-ons,	
 training	
 classes,	
 minimal	

code	
 changes	
 for	
 adop-on,	
 thorough	
 documenta-on,	
 ...	
 (Core)	

•  Encourage	
 community	
 parAcipaAon	
 in	
 design	
 and	
 implementaAon	

decisions	
 frequently	
 throughout	
 the	
 development	
 cycle	
 (JST)	

•  Leverage	
 contribuAons	
 of	
 so`ware	
 from	
 the	
 community	
 when	
 possible	
 (JST)	

•  Create	
 frank	
 and	
 construc-ve	
 mechanisms	
 for	
 feedback	
 (Adv.	
 Board)	

•  Enable	
 stakeholders	
 to	
 modify	
 the	
 organizaAonal	
 structure	
 as	
 required	

(Exec.	
 Board)	

•  Coordinate	
 and	
 communicate	
 at	
 many	
 levels	
 in	
 order	
 to	
 create	
 a	

knowledgeable	
 and	
 suppor-ve	
 network	
 that	
 includes	
 developers,	
 technical	

management,	
 ins-tu-onal	
 management,	
 and	
 program	
 management	
 (IAWG	

and	
 other	
 bodies)	

Governance	

Executive Board
Strategic Direction
Organizational Changes
Board Appointments

Interagency Working Group
Stakeholder Liaison
Programmatic Assessment & Feedback

Advisory Board
External Projects Coordination
General Guidance & Evaluation

Functionality Change
Requests

Joint Specification Team
Requirements Definition
Design and Code Reviews
External Code Contributions

Implementation
Schedule

Resource
Constraints

Collaborative Design
Beta Testing

Working Project

Executive
Management

Reporting

Reporting

weekly

Core Development Team
Project Management
Software Development
Testing & Maintenance
Distribution & User Support daily

annually

Change Review Board
Development Priorities
Release Review & Approval

quarterly

Example : FLASH Developed and
Distributed by One Institution
•  Under sustained funding from the ASC alliance program
•  One of the expected outcomes was a public code

–  Use the same code for many different applications
•  All target applications were for reactive flows

•  Diverging camps from the beginning
–  Camp 1: Produce a well architected modular code
–  Camp 2: Yes, but also use it soon for science

•  Both goals hard to meet in the near term
•  Two parallel development paths started

–  Not enough resources to sustain both
–  Camp 2 won out

•  First release FLASH1.6 – three iterations of refactoring

Version 1
•  Smashed together from three distinct existing codes

–  PARAMESH for AMR
–  Prometheus for Hydro
–  EOS and nuclear burn from other research codes

•  F77 style of programming; Common blocks for data sharing
•  Inconsistent data structures, divergent coding practices and no

coding standards
•  Concept of alternative implementations brought in with a script

for plugging different EOS
•  Beginning of inheriting directory structure

Version 2 : Data Inventory

•  Centralized database
–  Common blocks eliminated
–  All data inventoried
–  Different types of variables identified

•  Testing got formalized
–  Test-suite version 1
–  Run on multiple platforms
–  Policies about monitoring

•  Not much else changed in the architecture

Version 3 : the Current Architecture

•  Kept inheriting directory structure, inheritance and customization
mechanisms from earlier versions

•  Defined naming conventions
–  Differentiate between namespace and organizational directories
–  Differentiate between API and non-API functions in a unit
–  Prefixes indicating the source and scope of data items

•  Formalized the unit architecture
–  Defined API for each unit with null implementation at the top level

•  Resolved data ownership and scope
•  Resolved lateral dependencies for encapsulation
•  Introduced subunits and built-in unit test framework

Transition to Version 2

•  The bias at the time – keep the scientists in control
•  Keep the development and production branches synchronized

–  Enforced backward compatibility in the interfaces
–  Precluded needed deep changes
–  Hugely increased developer effort
–  High barrier to entry for a new developer

•  Did not get adopted for production in the center for more than
two years

–  Development continued in FLASH1.6, and so had to be
brought simultaneously into FLASH2 too.

–  Database caused performance hit and IPA could not be
done, so slower

Transition to Version 3

•  Controlled by the developers
•  Sufficient time and resources made available to design and

prototype
•  No attempt at backward compatibility
•  No attempt to keep development synchronized with production
•  All focus on a forward looking modular, extensible and

maintainable code

Two	
 very	
 important	
 factors	
 to	
 remember:	

The	
 scien-sts	
 had	
 a	
 robust	
 enough	
 produc-on	
 code	

The	
 developers	
 had	
 internalized	
 the	
 vagaries	
 of	
 the	
 solvers	

The Methodology
•  Build the framework in isolation from the production code base
•  Infrastructure units first implemented with a homegrown

Uniform Grid.
–  Helped define the API and data ownership

•  Unit tests for infrastructure built before any physics was
brought over

•  Hydro and ideal gas EOS were next with Sod problem
•  Next was PARAMESH: the Sod problem and the IO

implementation were verified
•  Test-suite was started on multiple platforms with various

configurations (1/2/3D, UG/PARAMESH, HDF5/PnetCDF)
•  This took about a year and a half, the framework was very well

tested and robust by this time

The Methodology Continued …
•  In the next stage the mature solvers (ones that were unlikely to have

incremental changes) were transitioned to the code
–  Once a code unit became designated for FLASH3, no users

could make a change to that unit in FLASH2 without consulting
the code group.

•  The next transition was the simplest production application (with
minimal amount of physics)

•  Scientists were in the loop for verification and in prioritizing the units
to be transitioned

•  FLASH3 was in production in the Center long before its official 3.0
release

–  More trust between developers and scientists
–  More reliable code; unit tests provided more confidence, and it

was easier to add capabilities

Interdisciplinary Interactions

Prioritization
–  whether good long term design or meet short term science

objectives
–  Both have their place
–  Initial stages driven by science objectives

•  Too early for long term software design
•  Quick and dirty solutions with an eye to learning about code

components and their interplay
–  Once there is useable code, long term planning and design

should occur
•  Willingness to make wholesale changes to the code at least

once in necessary
•  At no stage should one lose sight of science objectives

The Management and Governance Model

•  Licensed and distributed from the Flash Center at the University of
Chicago

–  License allows modification and customization but not
redistribution

–  External contributions are welcome but they go out in the release
tarball from the Flash Center

–  In a new model there are code add-ons that are available as-is
•  Not verified and/or guaranteed by the core team

•  A dedicated code group of with many roles
–  Develop and maintain the code
–  Manage the various production and project branches
–  Support simulation campaigns at the center

•  The code group is not a consumer of its own code
–  But supports the consumption

Community Building

•  Took several years
•  Started with collaborations with the Center scientists
•  Alumni of the center took the culture and the code with them

–  Their students and post-docs adopted the code
•  We started holding Tutorials on-site and at scientific

conferences
–  Tutorials had hands-on sessions and help for user’s specific

problems
•  Easy customizability built into the infrastructure helped

–  As did the included ready to run examples
The	
 greatest	
 impact	
 in	
 popularizing	
 the	
 code	
 though	
 was	
 rela-ve	
 ease	
 in	
 gemng	
 	

started,	
 quick	
 turn-­‐around	
 for	
 user’s	
 ques-ons	
 and	
 hand	
 holding	
 provided	
 through	

the	
 mailing	
 lists	

Variety of User Expertise
•  Novice users – execute one of included applications

–  change only the runtime parameters
•  Most users – generate new problems, analyze

–  Generate new Simulations with initial conditions,
parameters

–  Write alternate API routines for specialized output
•  Advanced users – Customize existing routines

–  Add small amounts of new code where their application
resides

•  Expert – new research
–  Completely new algorithms and/or capabilities
–  Can contribute to core functionality

Distribution Policies
•  The licensing agreement
•  Distribution control
•  What is included in the release
•  How often to release

FLASH Example
•  A custom licensing agreement
•  Source code is included, can be modified, but cannot be

redistributed
•  More than 3/4 of the usable code base is distributed
•  Once or twice a year full releases, patches in-between

Contribution Policies
•  Balancing contributors and code distribution needs

–  Contributors want their code to become integrated with
the code so it is maintained, but may not want it released
immediately

•  Not exercised enough
•  Contributor may want some IP protection

•  Maintainable code requirements
–  The minimum set needed from the contributor

•  Source code, build scripts, tests, documentation
•  Agreement on user support

–  Contributor or the distributor
•  Add-ons not included with the distribution, but work with the

code

Contribution and Attribution Policies:
FLASH Example

•  Code accepted with the understanding that it will eventually be
distributed

•  Pre-negotiated period of time when the code exists in FLASH repo
but is not released

•  The contributor provides user support also for negotiated time
(usually that doesn’t stop)

•  The contribution does need to include the makefile snippet and
appropriate tests that can be included in the test suite

•  At least one example setup for users and its appropriate
documentation is needed if it is a new capability

•  If it is an alternative implementation of a new capability then the
documentation only for the code is sufficient

•  All contributions are acknowledged in user’s guide and release
notes. The contributors can also provide publications to be cited if
their code is used

Community Building
•  Popularizing the code alone does not build a community
•  Neither does customizability – different users want different

capabilities
–  The Center’s research priorities do not align much with a large

fraction of the user community

•  Enabling contributions from users and providing support for them
•  Including policy provisions for balancing the IP protection with open

source needs
•  Relaxing the redistribution policies – groups of users can modify the

code and share among themselves as long as they have the
license

•  Group licenses also became available

So What Did it Take ?

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong
culture of user support is a pre-requisite

Common Threads

•  Open source with a governance structure in place
•  Trust building among teams
•  Commitment to transparent communications
•  Strong commitment to user support
•  Either an interdisciplinary team, or a group of people

comfortable with science and code development
•  Attention to software engineering and documentation
•  Understanding the benefit of sharing as opposed to being

secretive about the code

Building a community …

The technical and social aspects

The yt Project
Growing & Engaging a community
of practice

Matthew Turk
Columbia University

"Users"

Traditional View of Scientific
Development

"Developers"

"Users"

"Developers"

Most Scientific Development

"Devusers"

Community of Practice

"Developers"
Inspection and
verification
Tracking modifications
Sharing information
Doing new and
interesting things

"Users"
Uncritical acceptance of
code?

"Users"
"These are the people we
give the code to that don't

care how it works."

Challenges

Academic Reward
Structure

de facto & de jure

o  Utilization of developed tools

o  Respect from community

o  Project involvements

o  Invitations and opportunities to

speak

de facto & de jure

o  Funding

o  Publications

o  Citation count

o  Influence

Traditional astrophysics
does not favor tool

builders.

Documentation,

testing,

outreach,

infrastructure development.

Chores

Chores

Tasks not fully-aligned with
reward structure present great

motivational challenges.

Co-opetition

o  Funding

o  Publications

o  Citation count

o  Influence ()

The "citation economy" for
community codes is

broken, and this
disproportionately impacts

new and junior
contributors.

The "citation economy" for
community codes is

broken, and this
disproportionately impacts

new and junior
contributors.

(It's bad for scientists, but

even worse
for infrastructure.)

How developer community
engagement, cohesion,

excitement and energy is
affected by funded

improvements remains
unclear.

Strategies

Design the community you
want.

Design the community you
want.

Diversity. Tone. Enthusiasm.
Congeniality.

Design the community you
want.

This is an investment.

Technical
& Social

Reduce barrier to entry
Test on every push

Review every
changeset

Reduce barrier to entry
Test on every push

Review every
changeset

Everything comes in the box: version
control, extensions, sample data,

dependencies, and tutorials.

CVCS DVCS

Repository

Individuals

Repo

Repo

Repo
Repo

Repo

Repo

Reduce barrier to entry
Test on every push

Review every
changeset

Shining Panda for unit tests & small
data answer tests, ReadTheDocs.org,

and an auto-deployed ReST blog.

Reduce barrier to entry
Test on every push

Review every
changeset

Pull requests and mentoring of new
developers, through IRC, mailing list,

and code comments.

Accept contributions of
data, scripts, images,

projects

Communication

All project business should
be conducted openly.

Immediate

Immediate

Immediate

Low-Latency

High-Latency

Technical
& Social

Culture self-propagates.
So, it must be seeded

directly.

Foster a community of
peers,

not a community of
elites.

Humility

Respect

Trust

Humility

I think there might be a
bug in ...

It's like that for a good
reason. Don't touch it.

I think there might be a
bug in ...

It behaves that way
because ...

Respect

I've noticed something is
acting strangely with ...

You're probably doing it
wrong.

I've noticed something is
acting strangely with ...

Can you tell us how you'd
expect it to act?

Trust

Letting
go...

By emphasizing pride
over ownership, we've

found projects can
move between people

without smothering
through control.

Success

Developed by working
astrophysicists.

Developed by working
astrophysicists.

Usage on
XSEDE
Nautilus

Szczepanski et al,
2012

"... it seems likely that significant software
contributions to existing scientific software
projects are not likely to be rewarded
through the traditional reputation economy
of science. Together these factors
provide a reason to expect the over-
production of independent scientific
software packages, and the
underproduction of collaborative projects
in which later academics build on the work
of earlier ones."

Howison & Herbsleb (2011)

(Short) Bibliography
"The Art of Community" by Jono Bacon
"Producing Open Source Software" by Karl Fogel
"Team Geek" by Brian Fitzpatrick & Ben Collins-Sussman
"Organizing Simulation Code Collectives" by Mikaela Sundberg
"Scientific Software Production" by James Howison & James Herbsleb
"Your Community is your Best Feature" by Gina Trapani
"The Proof of the Pudding" by John Allsopp
"Standing Out in the Crowd" by Skud

Also visit http://flash.uchicago.edu/cc2012/
For presentations about various community codes
Workshop to be held with SC13 on sustainable software for science
http://wssspe.researchcomputing.org.uk/

