Leveraging FLASH Architecture for New Problems: Core-Collapse Supernovae

Sean M. Couch
Hubble Fellow, University of Chicago

smc@flash.uchicago.edu

Argonne Training Program on Extreme-Scale Computing
St. Charles, IL, 5 August 2013
FLASH Rules Help

• Exclusive Unit-by-Unit ownership of module-scope date is tremendous

• Use of inheritance, enforced by setup/build system is powerful

• Coding standards, such as naming conventions, “use, ONLY:” statements, etc., tedious but worth it!
Core-Collapse Requirements

- Higher-order shock-capture hydro/MHD
- Self-gravity
- Realistic EOS
- Electron capture physics during collapse
- Neutrino heating/cooling
- Neutrino leakage
- Multiple concurrent setups w/o code duplication
Core-Collapse Requirements

- yes • Higher-order shock-capture hydro/MHD
- yes • Self-gravity
- no • Realistic EOS
- no • Electron capture physics during collapse
- no • Neutrino heating/cooling
- no • Neutrino leakage
- yes • Multiple concurrent setups w/o code duplication
Core-Collapse Requirements

- yes • Higher-order shock-capture hydro/MHD
- yes • Self-gravity
- no • Realistic EOS
- no • Electron capture physics during collapse
- no • Neutrino heating/cooling
- no • Neutrino leakage
- yes • Multiple concurrent setups w/o code duplication
Neutrino Source Terms

source → physics → sourceTerms → Burn → Heat → Cool → Ionize → Stir
Neutrino Source Terms

- source
- physics
- sourceTerms
- Burn
- Heat
- Cool
- Ionize
- Stir
- Deleptonize
Neutrino Source Terms

source
physics
sourceTerms
Burn
Heat
HeatMain
StatPlusGauss
Neutrino
Cool
Ionize
Stir
Deleptonize
Neutrino Source Terms

- source
- physics
- sourceTerms
- Burn
- Heat
- Cool
- Ionize
- Stir
- Deleptonize
- HeatMain
- StatPlusGauss
- Neutrino
Neutrino Source Terms

HeatMain

StatPlusGauss

Neutrino
Neutrino Source Terms

- HeatMain
- Neutrino

StatPlusGauss

Config
- Heat.F90
- Heat_computeDt.F90
- Heat_data.F90
- Heat_init.F90
- Heat_oneZone.F90

Makefile
threadBlockList
Neutrino Source Terms

- Driver already has hooks to call Heat!

- HeatMain
- StatPlusGauss
- Neutrino

Config
- Heat.F90
- Heat_computeDt.F90
- Heat_data.F90
- Heat_init.F90
- Heat_oneZone.F90

Makefile
threadBlockList
Neutrino Source Terms

- Driver already has hooks to call Heat!

HeatMain

StatPlusGauss

Neutrino

Config
Heat.F90
Heat_computeDt.F90
Heat_data.F90
Heat_init.F90
Heat_oneZone.F90
Makefile
threadBlockList

Heat.F90
Neutrino Source Terms

- Driver already has hooks to call Heat!

Config:

```plaintext
REQUIRES Driver
PARAMETER Lneut REAL 0.0
PARAMETER Tneut REAL 0.0
PARAMETER bounce_time REAL 0.0
PARAMETER heatTimeFac REAL 1.0e4
PARAMETER useHalfState BOOLEAN FALSE
USESETUPVARS threadBlockList
IF threadBlockList
  PPDEFINE ST_THREAD_BLOCK_LIST
  REQUIRES ./threadBlockList
ENDIF
```

- HeatMain
- StatPlusGauss
- Neutrino
- Heat.F90
- Heat_computeDt.F90
- Heat_data.F90
- Heat_init.F90
- Heat_oneZone.F90
- Makefile
- threadBlockList
- Heat.F90
Neutrino Source Terms

source

physics

sourceTerms

Burn

Heat

Cool

Ionize

Stir

Deleptonize

HeatMain

StatPlusGauss

Neutrino

Monday, August 5, 13
Neutrino Source Terms

source

physics

sourceTerms

Burn

Heat

Cool

Ionize

Stir

Deleptonize

HeatMain

StatPlusGauss

Neutrino

Monday, August 5, 2013
• Hooks need to be added.
Neutrino Source Terms

source
\downarrow
physics
\downarrow
sourceTerms \rightarrow Deleptonize
Neutrino Source Terms

source

physics

sourceTerms ➔ Deleptonize

Config
Deleptonize.F90
DeleptonizeMain
Deleptonize_finalize.F90
Deleptonize_getBounce.F90
Deleptonize_init.F90
Deleptonize_interface.F90
Makefile
localAPI
Neutrino Source Terms

source
physics
sourceTerms → Deleptonize

Config
Deleptonize.F90
DeleptonizeMain
Deleptonize_finalize.F90
Deleptonize_getBounce.F90
Deleptonize_init.F90
Deleptonize_interface.F90
Makefile
localAPI
Neutrino Source Terms

source
physics
sourceTerms ➔ Deleptonize

Config
Deleptonize.F90
Deleptonize_data.F90
Deleptonize_getBounce.F90
Deleptonize_init.F90
Makefile
delep_detectBounce.F90
threadBlockList

Stubs

DeleptonizeMain
Deleptonize_finalize.F90
Deleptonize_getBounce.F90
Deleptonize_init.F90
Deleptonize_interface.F90
Makefile
localAPI

Makefile
delep_detectBounce.F90
delep_interface.F90
Neutrino Source Terms

source → Driver → DriverMain

physics

sourceTerms

Deleptonize
Neutrino Source Terms

source ➔ Driver ➔ DriverMain ➔ Driver_sourceTerms.F90

physics ➔ sourceTerms ➔ Deleptonize
Neutrino Source Terms

source ➔ Driver ➔ DriverMain ➔ Driver_sourceTerms.F90

physics ➔ sourceTerms ➔ Deleptonize

```fortran
use Heat_interface, ONLY : Heat
use Heatexchange_interface, ONLY : Heatexchange
use Burn_interface, ONLY : Burn
use Cool_interface, ONLY : Cool
use Ionize_interface, ONLY : Ionize
use EnergyDeposition_interface, ONLY : EnergyDeposition
use Deleptonize_interface, ONLY : Deleptonize

implicit none

real, intent(IN) :: dt
integer, intent(IN) :: blockCount
integer, dimension(blockCount), intent(IN):: blockList
integer, OPTIONAL, intent(IN):: pass

call Polytrope(blockCount, blockList, dt)
call Stir(blockCount, blockList, dt)
call Flame_step(blockCount, blockList, dt)
call Burn(blockCount, blockList, dt)
call Heat(blockCount, blockList, dt, dr_simTime)
call Heatexchange(blockCount, blockList, dt)
call Cool(blockCount, blockList, dt, dr_simTime)
call Ionize(blockCount, blockList, dt, dr_simTime)
call EnergyDeposition(blockCount, blockList, dt, dr_simTime, pass)
call Deleptonize(blockCount, blockList, dt, dr_simTime)
```
Core-Collapse Requirements

- yes • Higher-order shock-capture hydro/MHD
- yes • Self-gravity
- no • Realistic EOS
- no • Electron capture physics during collapse
- no • Neutrino heating/cooling
- no • Neutrino leakage
- yes • Multiple concurrent setups w/o code duplication
Core-Collapse Requirements

• **yes** • Higher-order shock-capture hydro/MHD

• **yes** • Self-gravity

• **no** • Realistic EOS

• **no** • Electron capture physics during collapse

• **no** • Neutrino heating/cooling

• **no** • Neutrino leakage

• **yes** • Multiple concurrent setups w/o code duplication
CCSN Equation of State

- Contributions to thermodynamics from baryons, photons, degenerate/relativistic elections & positrons
- Baryons experience phase change at high-density ($>10^{12} \text{ g cm}^{-3}$) when strong nuclear force becomes repulsive
- Traditionally handled via table lookup
CCSN Equation of State

- Several nuclear force models; need ability to swap different tables at runtime
- Kernel implementations from collaborators; available at stellarcollapse.org
- Need to interface FLASH EOS Unit with kernel EOS routines
CCSN Equation of State

source ➔ physics ➔ Eos ➔ EosMain ➔ Gamma

➔ Multigamma
➔ Helmholtz
➔ Tabulated
➔ Multitemp
CCSN Equation of State

source ➔ physics ➔ Eos ➔ EosMain ➔ Gamma ➔ Multigamma ➔ Helmholtz ➔ Tabulated ➔ Multitemp ➔ Nuclear
CCSN Equation of State

source ➔ physics ➔ Eos ➔ EosMain ➔ Gamma

- Multigamma
- Helmholtz
- Tabulated
- Multitemp
- Nuclear

Config
Eos_nucOneZone.F90
Makefile
eos_initNuclear.F90
eos_lowdens.F90
eos_nuclear.F90
kernel
CCSN Equation of State

source ➔ physics ➔ Eos ➔ EosMain ➔ Gamma

⇒ Multigamma
⇒ Helmholtz
⇒ Tabulated
⇒ Multitemp

Config
Eos_nucOneZone.F90
Makefile
eos_initNuclear.F90
eos_lowdens.F90
eos_nuclear.F90

kernel

Nuclear
CCSN Equation of State

source ➔ physics ➔ Eos ➔ EosMain ➔ Gamma ➔ Multigamma ➔ Helmholtz ➔ Tabulated ➔ Multitemp ➔ Nuclear

Config file for the nuclear equation of state
[physics/Eos/EosMain/Nuclear]

DEFAULT kernel

VARIABLE gamc EOSMAP: GAMC # sound-speed gamma
VARIABLE game EOSMAP: GAME # energy gamma
VARIABLE entr EOSMAP: ENTR # specific entropy in kB per baryon

PARAMETER eos_file STRING "eosTable"
PARAMETER eos_table_tmax REAL 250.
CCSN Equation of State

source ➤ physics ➤ Eos ➤ EosMain

Eos.F90

```fortran
select case(eos_type)
case(EOS_GAM)
call eos_idealGamma(mode, vecLen, eosData, vecBegin, vecEnd, massFrac=massFrac)
case(EOS_MGAM)
call eos_mgama(mode, vecLen, eosData, vecBegin, vecEnd, massFrac=massFrac, mass=mass)
case(EOS_HLM)
call eos_helmholtz(mode, vecLen, eosData, massFrac=massFrac, mask=mask)
case(EOS_TAB)
call eos_tabulated(mode, vecLen, eosData, massFrac=massFrac, mask=mask)
case(EOS_NUC)
call eos_nuclear(mode, vecLen, eosData, massFrac, mask=mask)
case default
if (eos_meshMe=MASTER_PE) print*,'[Eos] unrecognized eos_type',eos_type
call Driver_abortFlash('[Eos] unrecognized eos_type.')
end select
```

Eos_init.F90

```fortran
call eos_initGamma()
call eos_initMgama()
call eos_initHelmholtz()
call eos_initMtemp()
call eos_initTabulated()
call eos_initNuclear()
```
CCSN Equation of State

source ➔ physics ➔ Eos ➔ EosMain ➔ Gamma ➔ Multigamma ➔ Helmholtz ➔ Tabulated ➔ Multitemp ➔ Nuclear

Config
Eos_nucOneZone.F90
Makefile
eos_initNuclear.F90
eos_lowdens.F90
eos_nuclear.F90

kernel

Monday, August 5, 13
Core-Collapse Requirements

- yes • Higher-order shock-capture hydro/MHD
- yes • Self-gravity
- no • Realistic EOS
- no • Electron capture physics during collapse
- no • Neutrino heating/cooling
- no • Neutrino leakage
- yes • Multiple concurrent setups w/o code duplication
Core-Collapse Requirements

- yes • Higher-order shock-capture hydro/MHD
- yes • Self-gravity
- no • Realistic EOS
- no • Electron capture physics during collapse
- no • Neutrino heating/cooling
- no • Neutrino leakage
- yes • Multiple concurrent setups w/o code duplication
Neutrino Leakage

- Compute approximate transport along radial rays embedded in Cartesian domain
- Memory- and compute-intensive
Neutrino Leakage

source → physics → RadTrans → RadTransMain → MGD → NeutrinoLeakage
Neutrino Leakage

source
 ↓
physics
 ↓
RadTrans
 ↓
RadTransMain
 → MGD
 → NeutrinoLeakage

- Config
- Makefile
- RadTrans.F90
- RadTrans_computeDt.F90
- RadTrans_finalize.F90
- rt_calcLeak.F90
- rt_calcTau.F90
- rt_data.F90
- rt_init.F90
- rt_remapRays.F90
- rt_sampleRays.F90
- threadBlockList
Neutrino Leakage

- Driver already has hooks to call RadTrans!
- Private routines only code within unit

source

physics

RadTrans

RadTransMain

MGD

NeutrinoLeakage

Config
Makefile
RadTrans.F90
RadTrans_computeDt.F90
RadTrans_finalize.F90
rt_calcLeak.F90
rt_calcTau.F90
rt_data.F90
rt_init.F90
rt_remapRays.F90
rt_sampleRays.F90
threadBlockList
Neutrino Leakage

FLASH architecture allows easy instantiation of alternate communication patterns

```fortran
call MPI_COMM_SIZE(rt_meshComm, rt_meshNumProcs, error)
if (mod(rt_meshNumProcs, rt_subCommSize) /= 0 .OR. rt_subCommSize == -1) then
  if (rt_globalMe == MASTER_PE) write(*,*) "RadTrans: setting leak_subCommSize to meshNumProcs"
  rt_subCommSize = rt_meshNumProcs
end if
rt_subMeshMe = mod(rt_globalMe, rt_subCommSize)
call MPI_COMM_SPLIT(rt_meshComm, rt_globalMe/rt_subCommSize, rt_subMeshMe, rt_subMeshComm, error)

! Now let's parse up the rays among different processors.
allocate(rt_recvCnt(rt_subCommSize))
allocate(rt_dsplCnt(rt_subCommSize))
rt_recvCnt = 0
rt_dsplCnt = 0
numRaysPerProc = rt_leakNumRays / rt_subCommSize
num = mod(rt_leakNumRays, rt_subCommSize)
ient = 0
do i=1,rt_subCommSize
  if (i <= num) then
```
Core-Collapse Requirements

• yes • Higher-order shock-capture hydro/MHD
• yes • Self-gravity
• no • Realistic EOS
• no • Electron capture physics during collapse
• no • Neutrino heating/cooling
• no • Neutrino leakage
• yes • Multiple concurrent setups w/o code duplication
Core-Collapse Requirements

- yes • Higher-order shock-capture hydro/MHD
- yes • Self-gravity
- yes • Realistic EOS
- yes • Electron capture physics during collapse
- yes • Neutrino heating/cooling
- yes • Neutrino leakage
- yes • Multiple concurrent setups w/o code duplication
Core-Collapse Requirements

- **yes** • Higher-order shock-capture hydro/MHD
- **yes** • Self-gravity
- **yes** • Realistic EOS
- **yes** • Electron capture physics during collapse
- **yes** • Neutrino heating/cooling
- **yes** • Neutrino leakage
- **yes** • Multiple concurrent setups w/o code duplication
Including New Physics

- Unit rules and inheritance apply to Simulation Unit as well
- Coexistence of multiple application based on same setup feasible by multiple means
Including New Physics

source
Simulation
SimulationMain
CoreCollapse
Including New Physics

```
source
  Simulation
    SimulationMain
      CoreCollapse
```

```
Config
  Grid_bcApplyToRegionSpecialize.d.F90
  Grid_markRefineDerefine.F90
  Hydro_detectShock.F90
  IO_writeIntegralQuantities.F90
  MRITest
  Makefile

Perturb
  Simulation_data.F90
  Simulation_init.F90
  Simulation_initBlock.F90
  eos_helm.F90
  flash.par
  Leakage
  MagnetoHD
```
Including New Physics

source
Simulation
SimulationMain
CoreCollapse

Config
Grid_bcApplyToRegionSpecialize.d.F90
Grid_markRefineDerefine.F90
Hydro_detectShock.F90
IO_writeIntegralQuantities.F90
MRITest
Makefile

Perturb
Simulation_data.F90
Simulation_init.F90
Simulation_initBlock.F90
eos_helm.F90
flash.par
Leakage
MagnetoHD
Multiple Simulation Setups

source
Simulation
SimulationMain
CoreCollapse
MagnetoHD
Multiple Simulation Setups

source

Simulation

SimulationMain

CoreCollapse

MagnetohD

Config

Driver_evolveFlash.F90

Grid_markRefineDerefine.F90

IO_writeIntegralQuantities.F90

Simulation_customizeProlong.F90

Simulation_initBlock.F90

flash.par
Multiple Simulation Setups

source

Simulation

SimulationMain

CoreCollapse

MagnetohD

Config

Driver_evolveFlash.F90

Grid_markRefineDerefine.F90

IO_writeIntegralQuantities.F90

Simulation_customizeProlong.F90

Simulation_initBlock.F90

flash.par

Config file for MagnetohD Core Collapse SN setup.
This version uses leakage.

REQUIRES physics/RadTrans/RadTransMain/NeutrinoLeakage

#VARIABLE CMRI
VARIABLE LMRI
Multiple Simulation Setups

source

Simulation

SimulationMain

CoreCollapse

Magnetohd

Config
Driver_evolveFlash.F90
Grid_markRefineDerefine.F90
IO_writeIntegralQuantities.F90
Simulation_customizeProlong.F90
Simulation_initBlock.F90
flash.par

Config file for Magnetohd Core Collapse SN setup.
This version uses leakage.
REQUIRES physics/RadTrans/RadTransMain/NeutrinoLeakage

#VARIABLE CMRI
VARIABLE LMRI

Config file for Neutrino Leakage RadTrans
REQUIRES physics/sourceTerms/Deleptonize

CONFLICTS physics/sourceTerms/Heat/HeatMain/Neutrino
PARAMETER leak_radMax = REAL 0.0
Multiple Simulation Setups

Use of setup syntax

./setup CoreCollapse -auto -3d +cube16 +pm4dev +uhdopt +newMpole threadWithinBlock=True
Multiple Simulation Setups

Use of setup syntax

./setup CoreCollapse -auto -3d +cube16 +pm4dev +uhdopt +newMpole threadWithinBlock=True

./setup CoreCollapse/MagnetoHD -auto -3d +cube16 +pm4dev +uhdopt +newMpole threadWithinBlock=True --without-unit=physics/sourceTerms/Heat/HeatMain/Neutrino
Breaking the Law

- source
- Simulation
- SimulationMain
- CoreCollapse

Source Code Files

<table>
<thead>
<tr>
<th>Config</th>
<th>Perturb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid_bcApplyToRegionSpecialize.d.F90</td>
<td>Simulation_data.F90</td>
</tr>
<tr>
<td>Grid_markRefineDerefine.F90</td>
<td>Simulation_init.F90</td>
</tr>
<tr>
<td>Hydro_detectShock.F90</td>
<td>Simulation_initBlock.F90</td>
</tr>
<tr>
<td>IO_writeIntegralQuantities.F90</td>
<td>eos_helm.F90</td>
</tr>
<tr>
<td>MRITest</td>
<td>flash.par</td>
</tr>
<tr>
<td>Makefile</td>
<td>Leakage</td>
</tr>
<tr>
<td></td>
<td>MagnetoHD</td>
</tr>
</tbody>
</table>
Breaking the Law

Source
- Simulation
- SimulationMain
- CoreCollapse

Configuration Files
- Config
- Grid_bcApplyToRegionSpecialize.d.F90
- Grid_markRefineDerefine.F90
- Hydro_detectShock.F90
- IO_writeIntegralQuantities.F90
- MRITest
- Makefile

Perturb
- Simulation_data.F90
- Simulation_init.F90
- Simulation_initBlock.F90
- eos_helm.F90
- flash.par
- Leakage
- MagnetoHD
Breaking the Law

subroutine IO_writeIntegralQuantities (isFirst, simTime)
#include "constants.h"
#include "Flash.h"
#include "UHD.h"

use Simulation_data, ONLY: sim_pointMass, sim_expEner, &
 sim_shockRadTot, sim_shockRadNum, &
 sim_massAccRate, sim_massAccNum, &
 sim_postBounce, sim_bounceTime, sim_maxDens

!! use EnergyDeposition_data, ONLY: useEnergyDeposition
use IO_data, ONLY: io_restart, io_statsFileName, io_globalComm
use Grid_interface, ONLY: Grid_getListOfBlocks, &
 Grid_getBlkIndexLimits, Grid_getBlkPtr, Grid_getSingleCellVol, &
 Grid_releaseBlkPtr, Grid_getCellCoords

use IO_data, ONLY: io_globalMe
use Deleptonize_data, ONLY: delep_centralDens, delep_anteSonic, delep_centralEntr,
 delep_postBounce, delep_bounceTime

use Deleptonize_interface, ONLY: Deleptonize_getBounce
#else FLASH_HYDRO_UNSPLIT
use Hydro_data, ONLY: hy_cfl, hy_cfl_original, hy_RiemannSolver
#endif

Simulation_InitBlock.F90
eos_helm.F90
Flash.par
Leakage
MagnetoHD

source
Simulation
SimulationMain
CoreCollapse

Config
Grid_bcApplyToRegionSpecialize.F90
Grid_markRefineDerefine.F90
Hydro_detectShock.F90
IO_writeIntegralQuantities.F90
MRITest
Makefile
The FLASH object Directory

- Collects symbolic links to all the source code that will actually be compiled in your application
- Contains helpful information files about your application (setup_*)
- Highly ‘grep-able’
The FLASH object Directory

IncompNS_finalize.F90 -> ../source/physics/IncompNS/IncompNS_finalize.F90
IncompNS_computeDt.F90 -> ../source/physics/IncompNS/IncompNS_computeDt.F90
IncompNS.h -> ../source/physics/IncompNS/IncompNS.h
IncompNS.F90 -> ../source/physics/IncompNS/IncompNS.F90
ImBound_data.F90 -> ../source/physics/ImBound/ImBound_data.F90
I0_writeUserArray.F90 -> ../source/I0/I0_writeUserArray.F90
I0_writeRays.F90 -> ../source/I0/I0Main/hdf5/I0_writeRays.F90
I0_writeParticles.F90 -> ../source/I0/I0_writeParticles.F90
I0_writeIntegralQuantities.F90 -> ../source/Simulation/SimulationMain/CoreCollapse/I0_writeIntegralQuantities.F90
I0_writeCheckpoint.F90 -> ../source/I0/I0Main/I0_writeCheckpoint.F90
I0_updateScalars.F90 -> ../source/I0/I0Main/I0_updateScalars.F90
I0_startRayWrite.F90 -> ../source/I0/I0Main/hdf5/I0_startRayWrite.F90
I0_readUserArray.F90 -> ../source/I0/I0_readUserArray.F90
I0_readParticles.F90 -> ../source/I0/I0_readParticles.F90
I0_readCheckpoint.F90 -> ../source/I0/I0Main/I0_readCheckpoint.F90
I0_outputInitial.F90 -> ../source/I0/I0Main/I0_outputInitial.F90
I0_outputFinal.F90 -> ../source/I0/I0Main/I0_outputFinal.F90
I0_output.F90 -> ../source/I0/I0Main/I0_output.F90
I0_interface.F90 -> ../source/I0/I0_interface.F90
I0_initRPsFromCheckpoint.F90 -> ../source/I0/I0Main/I0_initRPsFromCheckpoint.F90
I0_getPrevScalar.F90 -> ../source/I0/I0Main/I0_getPrevScalar.F90
I0_finalize.F90 -> ../source/I0/I0Main/I0_finalize.F90
I0_data.F90 -> ../source/I0/I0Main/I0_data.F90
Hydro_sendOutputData.F90 -> ../source/physics/Hydro/Hydro_sendOutputData.F90
Hydro_mapBcType.F90 -> ../source/physics/Hydro/HydroMain/Hydro_mapBcType.F90
Hydro_init.F90 -> ../source/physics/Hydro/HydroMain/unsplit_opt/Hydro_Unsplit/Hydro_init.F90
Hydro_finalize.F90 -> ../source/physics/Hydro/HydroMain/unsplit_opt/Hydro_Unsplit/Hydro_finalize.F90
Heatexchange_finalize.F90 -> ../source/physics/HeatTerms/Heatexchange/Heatexchange_finalize.F90
Heatexchange_computeDt.F90 -> ../source/physics/sourceTerms/Heatexchange/Heatexchange_computeDt.F90
Heatexchange.F90 -> ../source/physics/sourceTerms/Heatexchange/Heatexchange.F90
Heat_interface.F90 -> ../source/physics/sourceTerms/Heatinterface.F90
Grid_updateSolidBodyForces.F90 -> ../source/Grid/Grid_updateSolidBodyForces.F90
Alternate Implementations

- Alternate implementations of units and sub-units in FLASH allows flexibility and experimentation
- Can act like pseudo-branching...
- Use of inheritance to reduce code duplication
- But...
Alternate Implementations

- Can lead to code duplication, difficult maintainability, and long lag times in reincorporation
- Examples: optimized unsplit hydro/MHD, threading implementations
Thanks!