“l have had my results for a long time, but | do not yet
Argonne'\ know how | am to arrive at them.”
—Carl Friedrich Gauss, 1777-1855

DIY Parallel Data Analysis

I'm sure my wife
will appreciate all
the DIY I'm doing
around the house

for her!
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Postprocessing Scientific Data Analysis in HPC Environments

Examples:
2D statistical graphics using R

3D scientific visualization using ParaView

Scientific visualization using Vislt
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Cluster
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Run-time Scientific Data Analysis in HPC Environments

Examples:
GLEAN, ADIOS,

ParaView Coprocessing Library
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Examples:
GLEAN, ADIOS,
DIY
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Scientific Data Analysis Today

Big science = big data, and

* Big data analysis => big science resources
Data analysis is data intensive.

* Data intensity = data movement.
Parallel = data parallel (for us)

* Big data => data decomposition

* Task parallelism, thread parallelism, while important, are
not part of this work

Most analysis algorithms are not up to the challenge
* Either serial, or

¢ Communication and /O are scalability killers




Comes in Many Flavors

Statistical

Information entropy analysis of astrophysics

Topological Geometric

Morse-Smale Complex of combustion Voronoi tessellation of cosmology




You Have Two Choices to Parallelize Data Analysis

By hand With tools

Application Application

Analysis Algorithm Analysis Algorithm
Stochastic| Linear Algebra | Iterative |Nearest Neighbor q ( > Stochastic| Linear Algebra | Iterative [Nearest Neighbor
Interface

OS / Runtime ‘

OS / Runtime

void ParallelAlgorithm() {

MPI_Send(); void ParallelAlgorithm() {
MPI_Recv(); LocalAlgorithm();

MPI_Barrier(); DIY _Merge blocks();

MPI_File_write(); DIY_File_write()
}




DIY

helps the user write data-parallel analysis algorithms by decomposing a
problem into blocks and communicating items between blocks.

Features Library
Parallel I/O to/from storage Written in C++ with C bindings
Domain decomposition Autoconf build system (configure, make, make install)
Network communication Lightweight: libdiy.a 800KB

Utilities Maintainable: ~15K lines of code, including examples

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt I/O Decomposition Communication

| | Read
Analysis Library Data Blocking Neighbor
ITL, Osuflow, Qhull, VTK Whrite .
| Results Assignment Global

DIY
|

-y Parallel Datatype Parallel
M Pl Utilities Creation

DIY usage and library organization




Nine Things That DIY Does

. Separate analysis ops from data ops

. Group data items into blocks

. Assign blocks to processes

. Group blocks into neighborhoods

. Support multiple multiple instances of 2, 3, and 4
Handle time

. Communicate between blocks in various ways

Read data and write results
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Integrate with other libraries and tools
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Two examples of 3 out of a total of 25 neighborhoods
8 processes 4 processes rocess




Writing a DIY Program

Documentation
README for installation

User’s manual with description, examples
of custom datatypes, complete API
reference

Tutorial Examples

Block I/O: Reading data, writing analysis
results

Static: Merge-based, Swap-based reduction,
Neighborhood exchange

Time-varying: Neighborhood exchange
Spare thread: Simulation and analysis
overlap

MOAB: Unstructured mesh data model

VTK: Integrating DIY communication with
VTK filters

R: Integrating DIY communication with R
stats algorithms

Multimodel: multiple domains and
communicating between them

Initialize
|

Decompose domain
(regular grid &
postprocessing)

i

List decomposition
(irregular data or
in situ

Read data
from storage

Data exists in
memory

Local
analyze

Communicate

Merge Swap
Reduce | Reduce

Neighbor

. . L d
Write analysis el
to storage

User
[

' DIY
Finalize or user




Particle Tracing

Strong Scaling
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Particle tracing of '/4 million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms




Information Entropy

Strong Scaling
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Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.




Morse-Smale Complex

Strong Scaling
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Computation of Morse-Smale complex in | 1523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including 1/O.




In Situ Voronoi Tessellation

Strong Scaling
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For 1283 particles, 41 % strong scaling for total tessellation time, including I/O;
comparable to simulation strong scaling.




Further Reading

DIY
* Peterka,T., Ross, R, Kendall, W, Gyulassy, A., Pascucci,V., Shen, H.-WV, Lee, T.-Y., Chaudhuri,A.:
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and
Visualization Symposium (LDAV'I ), IEEE Visualization Conference, Providence RI, 201 I.
* Peterka,T., Ross, R.:Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special
Session on Improving MPI User and Developer Interaction IMUDI'| 2,Vienna, AT.

DIY applications
* Peterka, T, Ross, R., Nouanesengsey, B, Lee, T.-Y,, Shen, H.-W,, Kendall, W,, Huang, J.: A Study of
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'I I,
Anchorage AK, May 201 I.
* Gyulassy,A., Peterka, T, Pascucci,V., Ross, R.:The Parallel Computation of Morse-Smale
Complexes. Proceedings of IPDPS'1 2, Shanghai, China, 2012.
* Nouanesengsy, B, Lee, T.-Y,, Lu, K., Shen, H.-WV,, Peterka, T.: Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT.
* Peterka,T., Kwan, ., Pope, A, Finkel, H., Heitmann, K., Habib, S.,Wang, ]., Zagaris, G.: Meshing the
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT.
* Chaudhuri,A,, Lee-T.-Y,, Zhou, B.,Wang, C., Xu, T, Shen, H.-W,, Peterka, T., Chiang,Y.-).: Scalable
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large
Data Analysis and Visualization, LDAV'| 2, Seattle, WA.
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\ “The purpose of computing is insight, not numbers.”
Argonne® _Richard Hamming, 1962
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http://www.mcs.anl.gov/~tpeterka/software.html

https://svn.mcs.anl.gov/repos/diy/trunk
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