
From Ideas to Execution
Building Code on Supercomputers

ATPESC 2015
Aron Ahmadia
Continuum Analytics

building code is complex

2

Today’s scientists regularly work with “stacks” of code
instead of single libraries

A minimal “stack” includes MPI and Fortran 77
But many of today’s applications are frequently more
complicated

We manage complexity with abstractions
This is no different when building software

Programming is simply another form of
writing…

3

interpreted vs. compiled

4

a high level language can be either interpreted or compiled into
machine language before being executed on a computer

an interpreted program is indirectly executed through an interpreter, a
separate program that usually runs on the same computer
a compiled program is instead translated to machine code by a
compiler before being executed directly on the computer

compiler - translates a high level language to object code
linker - collects and merges object files into single executables
assembler - assembly -> machine code, archiver - static objects -> libraries

Programming is simply another form of
writing ELF binaries

5

6

elf: executable and linkable format

7

very simple composition
ELF header (architecture, endianness)
run-time information (segments)
link/load-time information (sections)
program data

tools for examining elf binaries
file, nm, ldd, readelf, objdump, patchelf

a basic taxonomy of programming
languages

8

machine language - the native language executed by central processing
units on computers, represented usually in hexadecimal
assembly language - an isomorphic mapping between a machine language
and a set of human understandable text mnemonics
object code, a collection of separate, named sequences of machine
language and associated data and metadata
high level language - a programming languages designed to be abstracted
from the specifics of a particular computer architecture
scripting language - a programming language that controls one or more
software applications

a basic taxonomy of elf binaries

9

relocatable - holds code and data suitable for linking with other object
files to create an executable or a shared object file (.o)
executable - holds a program suitable for execution
shared object file - holds code and data suitable for linking either
through the link editor (.so) or the dynamic linker

EVERY DEPENDENCY IS
IMPLICIT UNTIL YOU MAKE IT
EXPLICIT

10

is code sufficient?

11

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship
is the complete software development environment
and the complete set of instructions which generated
the figures.

David Donoho, 1998.

is code sufficient?

12

An article about computational science in a scientific
publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship
is the complete software development
environment and the complete set of instructions
which generated the figures.

David Donoho, 1998.

thirty years ago

13

“Here’s my .f77 file! I hope you’ve got a computer
with 1 MB of RAM…”

ten years ago

14

“Here’s a bunch of source code and a Makefile, don’t
worry I just included all of the dependencies in my
code…”

today

15

“These results rely on a development LAMMPS, an
unreleased version of NAMD, a patched version of
PETSc, our ported LLVM stack, and the latest
commit on this branch from my GitHub repository.
Good luck!”

explicit and implicit dependencies

16

explicit
compilation units (.f, .c, .cxx)
external library names

implicit (by default)
header files / template libraries
compiler/linker versions, flags, settings
external library versions

including vs. linking

17

Includes are a pre-processing step in compiling relocatable
objects

-I flag
Directly copies and pastes included files into compilation
unit

Links are references to other relocatable object archives
(libfoo.a) or shared object files (libfoo.so)

-L flag (Also use the -R flag when linking dynamically)
resolved either statically at link-time or dynamically at run-
time

building scientific software

18

most freely distributed scientific software is designed to be built with
make
make [Feldman, 1978] - a software construction tool for building targets from their
corresponding dependencies

dependencies are frequently hierarchical (e.g. program: objects:
source)
builds can be partial (only some targets updated) or complete

the most popular accompanying tool is the GNU build system
GNU build system [MacKenzie, 1991]- a suite of programming tools for portably
building source-code based distributions

how ‘make all’ works

19

1. look in the current directory for a Makefile, a text file containing declarations of
targets, their dependencies, and a set of rules for building targets from their
respective dependencies

2. construct a directed acyclic graph (DAG) mapping targets to
dependencies.

3. traverse the directed acyclic graph and, for each target, find all its
dependencies, and update the target if it is older than any of its
dependencies (out-of-date)
a common idiom is to issue make recursively, with a Makefile in
each subdirectory of the source tree -- this can be dangerous!

sample makefile/DAG
OBJ = main.o parse.o
prog: $(OBJ)
 $(CC) -o $@ $(OBJ)
main.o: main.c parse.h
 $(CC) -c main.c
parse.o: parse.c parse.h
 $(CC) -c parse.c

20

targets
OBJ = main.o parse.o
prog: $(OBJ)
 $(CC) -o $@ $(OBJ)
main.o: main.c parse.h
 $(CC) -c main.c
parse.o: parse.c parse.h
 $(CC) -c parse.c

21

dependencies
OBJ = main.o parse.o
prog: $(OBJ)
 $(CC) -o $@ $(OBJ)
main.o: main.c parse.h
 $(CC) -c main.c
parse.o: parse.c parse.h
 $(CC) -c parse.c

22

A WELL DESIGNED MAKEFILE
CAN CAPTURE A COMPLETE
SCIENTIFIC WORKFLOW

23

pop quiz: scalability

24

assume a makefile with defined N targets and M
independent dependent source files
make considers a target to be ‘out-of-date’ when the time
stamp of any of its dependencies are more recent than the
target
what is the minimum number of source files to be
considered when evaluating whether to rebuild a single
target? all N targets?

pop quiz: scalability

25

what is the minimum number of source files to be considered
when evaluating whether to rebuild a single target?
0. a real target with no dependencies is never rebuilt (but
make will still check to see if it exists when you try to build
it)
all N targets?
M. All source files must be considered, if any of the
dependencies are more recent than their corresponding
targets, then the targets must be rebuilt.

deficiencies in standalone make

26

doesn’t know anything about your system
cannot determine your dependencies for you
recursive make can improperly fail to update
targets
scales poorly to very large builds

tools that use make

27

GNU build system

(autoconf, automake, and
libtool)

provide configuration, makefile-
generation, and library
management, implicit dependency
tracking

CMake

provides cross-platform
configuration and build setup, can
generate makefiles in UNIX as well
as project files for IDEs such as
Visual Studio, implicit dependency
scanner

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/libtool/
http://www.cmake.org/

don’t ignore the shell

28

Automate with scripts
Refactor, organize, and control with shell functions
Manage the build and run context through environment
variables
Use subshells to safely execute commands without
modifying the current shell’s working directory or
environment variables

QUESTIONS?

29

further reading/sources

30

See the previous slides for direct links to the software packages listed
GNU Make

[*] Python for Software Design - How to Think Like a Computer Scientist by Allen B. Downey

[*] Program Library HOWTO by David A. Wheeler

[*] How to Write Shared Libraries by Ulrich Drepper

[*] Grace Hopper by Wikipedia Community

[*] Build System Rules and Algorithms by Mike Shal

http://www.gnu.org/software/make/
http://greenteapress.com/thinkpython/
http://tldp.org/HOWTO/Program-Library-HOWTO/
http://www.akkadia.org/drepper/dsohowto.pdf
http://en.wikipedia.org/wiki/Grace_Hopper
http://gittup.org/tup/build_system_rules_and_algorithms.pdf

photo credits

31

Slides 9, 10 (Grace Hopper) from the US Department of the Navy Naval
Historical Center, NH 96919-KN, by James S. Davis, 1984
Slides 20, 21, and 22 (Makefile DAG example) used diagrams lifted from
“Recursive Make Considered Harmful”, by Peter Miller, 1987

http://www.history.navy.mil/photos/images/h96000/h96919kc.htm
http://miller.emu.id.au/pmiller/books/rmch/

