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INTRODUCTION,

• Peak computer power grows by a factor of a thousand 
every decade and so has a profound impact on our 
ability to undertake science

• Often in the past  we have had to change our codes…
• A significant change is coming as we try to go forward 

for the next decade. 
• New machines are all very different architecturally due 

to energy and manufacturing process requirements 
• Can we achieve portability and performance?
• What are the right abstractions for ensuring portability 

and performance?



TITAN NODE

FUTURE GPU NODEs

Present nodes used here and Future Nodes

Intel Xeon Phi KNC 

Intel Xeon Phi KNL 

IBM BGQ 16 core



System 

attributes 

OLCF Now ALCF Now OLCF Upgrade ALCF Upgrade 

Name/Planne

d 

Installation 

TITAN MIRA Summit 2017-

2018 

Aurora 2018-

2019 

System peak 

(Flops) 
27 PF 10PF 8-10x Titan  >180PF  

Peak Power 

(MW) 

8.2MW 4.8MW 10MW   ~13MW 

System 

memory per 

node 

38 GB 16 GB > 512 GB TBA 

Node 

performance 

(TF) 

1.452   0.204 >40 >15 times Mira 

Node 

processors 

AMD Opteron 

Nvidia Kepler   

64-bit 

PowerPC A2 

Multiple IBM Power9 

CPUs & mulitple

Nvidia Voltas GPUS  

Intel Knights Hill

System size 

(nodes) 

18,688 nodes, 268K 

cores 18.6K GPUs 

49,152 nodes

768K cores

~3,500 nodes ~50,000 nodes

3M cores? 

Interconnect Gemini 5D Torus Mellanox Intel 

Present PetaFlop (10**15 ops )Architectures used here and Future Architectures

Plus one more generation of machines and then exascale 10**18



Programming Challenges for New Architectures I
Summit 3.5K nodes        TITAN 18.6K nodes 
At 8-10x Titan each Summit nodes has to have 40 –> 60 x 
flops  of a Titan node 
Titan injection bw is 6.4GB/s  vs 23 GB/s for Summit
Factor of 4 roughly. 

Consider Stencil Calculation 
flops proportional to volume 
communications proportional to surface area  
6N^2  where NxNxN is volume. Compare 6N^2 values
Summit communications per node are  then

(40 -> 60)**(2/3) of Titan or   13x Titan 
Hence Summit’s network might be easier to overload than 
is desirable
Hiding communications costs may will be key on Summit



Programming Challenges for New Architectures II

Mira 48K  nodes Theta 2.5K nodes     Aurora 50K nodes 
16 cores                        72?  cores                    60+ cores? 
10 PF                              8.5PF                            180-450- PF

Each  Theta core has to be  3-4x faster than a Mira core 

Similarly with Aurora  with about 4x cores and 18x performance 
each core has to be  3-4 X faster than a Mira core. 

This is achieved today with standard “heavyweight” Xeon cores 
e.g. NSFs Stampede.
Achieving this with vectorization could be challenging particularly 
if  KNH performance relies on long vectors. 
The Intel Omnipath technology seems to provide a  network that 
builds upon Mira.



Five abstractions for Portability and 
Performance

1. A DAG task-based formulation of problems

2. A programming model to write these tasks as code

3. A runtime system to execute these tasks

4. A low-level portability layer to allow tasks to run across 
different machines         

5.   A high-level domain specific language to ease problem       
specification



Five abstractions for Portability and 
Performance 

1. A DAG task-based formulation of problems

2. A programming model to write these tasks as code        
Uintah

3. A runtime system to execute these tasks
Uintah Runtime System

4.   A low-level portability layer to allow tasks to run 
across different machines         

Kokkos
5. A high-level domain specific language to ease problem 

solving
Nebo Wasatch



Why DAG Task-Based Approaches?

• Allows an abstract portable task specification 
independent of execution

• Allows ADAPTIVE execution through architecture-
aware runtime system with  over-decomposition
• Adapts to delays in communications or execution

• Allows replication of execution and fault-tolerance

• Task migration allows varying workloads to be 
addressed

• Performance can be achieved through a 
combination of runtime system and abstract 
machine specific layers 

CnC

Charm++



Uintah Open Source Software

Portability and Scalability



* Now at Google

NSF PetaApps

Qingyu Meng*       John Schmidt,,   Todd Harman  Justin Luitjens*,    Jacqueline Beckvermit

Uintah Software Team

* Now at NVIDIA

Phase 1 Uintah software developed 1998-2008 by a team led by Steve Parker
Novel design and reasonable scalability (~1000 cores 2005) fixed execution

Phase 2 (2008 …)NSF, ARL and DOE funded expansion of both scalability and 
software with  adaptive task  execution

PSAAP Extreme Scaling team          SANDIA           NSFXPS            Nan         Harish
Alan Humphrey  John Holmen   Dan Sunderland Brad Peterson  Xiao        Dasari



Uintah Architecture 

Simulation

Controller

Scheduler

Load

Balancer

Runtime System 

ARCHES

DSL: NEBO

WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERS

CPUsGPUs Xeon Phis

Kokkos Intermediate Layer  

Applications code
Programing model

Abstract C++ Task Graph Form 

Compilation into C++ Cuda etc

Adaptive Execution of tasks 

Intermediate layer for node
Performance on specific 
cores/processors 

Some components have 
not changed as we have 
gone from 600 to 600K 
cores

asynchronous out-of-order execution,  
work stealing, Overlap 
communication & computation.



ICE is a cell-centered finite volume 
method for Navier Stokes equations

ICE Structured Grid Variable (for Flows) are Cell 
Centered Nodes, Face Centered Nodes.

Unstructured Points (for Solids) are MPM 

Particles PIC for solids

Uintah Patch, Variables and AMR Outline 

ARCHES is a combustion code using several 
different  radiation models and linear  solvers

• Structured Grid + Unstructured 
Points

• Patch-based Domain 
Decomposition

• Regular Local  Adaptive Mesh 
Refinement

• Dynamic Load Balancing

• Profiling + Forecasting Model

• Parallel Space Filling Curves

• Works on MPI and/or thread level



Uintah Programing Model and Runtime System

Each task defines its computation with required 
inputs and outputs

Tasks do not explicitly define communications 
but only what inputs they need from a data 
warehouse and which tasks need to execute 
before each other

Uintah uses this information to create a task 
graph of computation (nodes) + communication 
(along edges)

Communication is overlapped with computation

Taskgraph is executed adaptively and 
sometimes out of order, inputs to tasks are 
saved



Programing Model for Stencil 

Computation on a Timestep

Unew = Uold + 

dt*F(Uold,Uhalo)

N
e
tw

o
rk

Old Data
Warehouse

GET

Uold Uhalo Halo 

receives 

Uhalo

MPI 

New Data
Warehouse

PUT

Unew

Halo sends
Example 
Stencil 
Task 



Simplified View of 
Runtime System 



Uintah Heterogeneous Runtime System 
(Multiple GPUs and Intel Xeon Phis   



The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches 

This is not a single graph. Multiscale and Multi-
Physics merely add flavor to the “soup”.
There are many adaptive strategies and tricks that 
are used in the execution of  this graph soup.

halos halos external

halos
external

halos



Portable Scalability is at least partially  achieved by not 

executing tasks in order e.g. AMR fluid-structure 

interaction

Straight line represents given order of tasks   Green X   shows 

when a task  is actually executed.   

Above the line means late  execution while below the line means 

early execution took place.  More “late” tasks than “early” ones 

as e.g.

TASKS: 1 2 3 4 5                   1  4  2  3 5

Early Late execution 



Summary of Uintah Scalability Improvements

(i) Move to a one MPI process per 
multicore node reduces memory to less 
than 10% of previous for 100K+ cores

(ii) Work on Runtime System involved 
substantial rewrites

(iii) Use optimal  size patches to balance 
overhead and granularity 

(iv) Use only one data warehouse but allow 
all cores fast access to it, through the 
use of atomic operations.

(v) Prioritize tasks with the most external 
communications

(vi) Use out-of-order execution 
(vii)Static order task execution  of limited 

value
Algorithm Random FCFS PatchOrder Most Msg.

Queue Length 3.11 3.16 4.05 4.29

Wait Time 18.9 18.0 7.0 2.6

Overall Time 315.35 308.73 187.19 139.39



MPM AMR ICE 

Strong Scaling 

*

Complex fluid-structure interaction problem

with adaptive mesh refinement, see SC13/14 paper

NSF funding. 

Resolution B 

29 Billion particles

4 Billion mesh cells

1.2 Million mesh 

patches

Mira DOE BG/Q

768K cores

Blue Waters Cray 

XE6/XK7 700K+ 

cores



Utah PSAAP2 Center

Motivating Problem 



CCMSC

Computer Science         Predictive  Modeling        Uncertainty Quantification        

The Exec



92 meters

boiler simulation

Alstom Power 1000MWe “Twin Fireball” boiler
Supply power for 1M people
1mm grid resolution = 9 x 1012 cells
1000 times larger than largest problems solved today



Radiation dominant mode of heat 

transfer

Radiative heat transfer (RTH) rates 
~proportional to 4th power of the 
temperature difference.

Combustion simulations highly influenced 
by the accuracy of models with radiative 
effects

Participating Media Particle laden, 

scattering, absorbing, emitting

Domain Contains:
Coal particles, soot

CO2 & H2O (and other minor gases)

Spectral, Specular reflections

Walls & tubes with deposits



Existing Simulations of Clean coal Boilers using ARCHES in Uintah

(i) Traditional Lagrangian/RANS approaches  do not 
address well particle effects

(ii) LES has potential to predict oxy--‐coal flames and 

to  be an important design tool

(iii) LES is “like DNS” for coal

• Structured, high order finite-volume
• Mass, momentum, energy conservation 
• LES  closure
• Tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

• Low Mach number approx. (pressure Poisson solve 
up to       variables  

• Radiation via Discrete Ordinates – massive solves 
or Ray tracing.

1210

Red is expt. Blue is sim.

Green is consistent



Linear Solves arises from Navier–Stokes Equations
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Arrive at pressure Poisson equation

Full model includes turbulence, chemical 
reactions  and radiation

Use hypre Solver distributed by LLNL
Preconditioned Conjugate Gradients on 
regular mesh patches used Multi-grid 
pre-conditioner used. 20^3 patch with 
one MPI process per core no AMR or 
radiation.



Uintah Portability

Wide range of cpu + infiniband machines

Vulcan and Mira  IBM BG/Q

Cray Blue Waters, Titan

Variety of Cray XC 30s 

IBM Dataplex DOD 

TACC Stampede CPU + Xeon Phi

Many machines worldwide……

Angiogenesis

Industrial 

Flares

Foam Compaction

Micropin Flow

Accidental Explosions

Sandstone 

Compaction



Utah PSAAP2 Center

Radiative Heat Transfer

A key computational kernel using as much as

50% of run  time



Ray Tracing Radiation Overview 






t

T

Solving energy and radiative heat transfer eqns

Need to compute the net radiative source term

• Energy equation conventionally solved by ARCHES (finite volume)

• Temperature field, T used to compute net radiative source term

• Radiative sources fed back into energy equation for CFD calculation

Diffusion – Convection + Source/Sinks q 

4
. (4 ) r rrays
q I Id I


      



Radiation: Reverse Monte Carlo Ray 

Tracing Algorithm 

Loose coupling to CFD due to time-scale 
separation.

• Radiation timescales are typically longer than turbulent 
mixing timescales.

• Required resolution decreases with distance → use AMR 
to trace rays locally.

• RMCRT:Incorporate dominant physics

• Emitting / Absorbing Media and walls

• Ray Scattering

• User controls # rays per cell

• Each cell has Temp Absorb and Scattering Coeffs , 

• Radiative Heat Transfer key

• Replicate Geometry on every node

• Calculate heat fluxes on Geometry

transfer cell information globally on coarse mesh except 
locally. 



Multi-Level RMCRT Approach

• Principal single-level challenges:

• all-to-all communication requirements

• problem size limited - memory constraints with 
large, highly resolved physical domains

Locally use fine mesh - local halo exchange

Globally use coarser approximation of 
global domain - all-to-all exchange of radiative 
properties

As rays travel away from local patch, stride 
between cells becomes larger

Significant reduction in computational cost, 
memory usage and all-to-all costs 

SOLUTION: AMR – multiple levels

RMCRT - 2D diagram of three-level mesh 
refinement scheme, illustrating how a ray from a 
fine-level patch (right) might be traced across a 

coarsened domain (left).



Two-Level RMCRT GPU Scalability on Titan

16,384
GPUs

Preliminary Results – July 1, 2015

GPU Strong scaling of the two-level benchmark RMCRT problem on the 
DOE Titan system

Patch sizes: 163, 323 and 643



Current Efforts on porting RMCRT to Xeon Phi

• Native execution experiments have explored :

• optimal run configurations

• use of the 61st (reserved) core on the Xeon Phi

• thread affinity

• mesh decomposition

• Key Outcomes:

• two Xeon E5s outperformed one  Xeon Phi by  40%

• mesh decomposition had a profound impact on performance

• No one thread placement strategy dominated performance

• Differing caches of Sandy Bridge and MIC matter 

• Simple  vectorization approaches failed (e.g. SIMD directives)

• Many options are available to explore (e.g. manual intrinsics and 

software packages such as Kokkos (SNL) or RAJA (LLNL))

• Complete code overhaul  necessary e.g. 1.5x speedup by changing 

data access mechanism



Performance at Node Level 
Problematic for stencil codes on real applications

Easy stencils are easy……

Few flops per byte.

Performance governed by data transfer rates often

Percentage of peak low 3-5% or   10-12% with a lot of work (PPM)

Corresponds to HPCG benchmark much more closely than Linpack

Opportunities with Low-level portability layers

Domain specific Languages may help 



An Example of A Problematic Uintah Task 

Computing the pressure in the ICE explicit fluids code values defined at nodes 
j, j+1.  Need to define values at midpoints and pressure halfway in time n+1/2
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Easy in 1D for one material, but in 3D for multiple materials?  



void ICE::computeEquilibrationPressure(const ProcessorGroup*,
const PatchSubset* patches,    const MaterialSubset* /*matls*/,
DataWarehouse* old_dw,     DataWarehouse* new_dw)

Loop over patches 
Get  data from Old data warehouse and allocate space in new data Warehouse 

Compute volume fractions and initial density 
now loop over every cell
for (CellIterator iter=patch->getExtraCellIterator();!iter.done();iter++) {

while ( count < d_max_iter_equilibration && converged == false) {         count++;
evaluate press_eos at cell i,j,k

Compute delPress - update press_CC
Compute updated volume fractions
Test for convergence

Find the speed of sound based on converged solution
Save iteration data for output in case of crash
BULLET PROOFING CHECKS positivity, mass fraction  etc
Boundary conditions 

Indeterminate loops while testing for convergence ,  calls to 2 functions  
11 loops over number of materials about 350 lines of robust  safe  C++



Ice Code Pressure Calculation 

Problem

Size

CPU

12 

patches

and

threads

GPU

12

patches

and

gpu

tasks

GPU

1 large

patch

and GPU

task

Speedup

50x50x50 0.00036 0.00032 0.0026 1.37

64x64x64 0.0072 0.00611 0.0035 2.03

100x100x100 0.0255 0.0203 0.00923 2.76

128x128x128 0.0488 0.037 0.0196 2.48

Significant penalty for running lots of smaller tasks on 
smaller arrays on a GPU. Need to reduce GPU overhead



GPU Engine and Scheduler Improvements

New GPU engine can now keep data resident on the GPU,

avoiding unnecessary PCIe bus data transfers and automatically

handles ghost/halo cells across multiple CPU threads, multiple

GPUs per node, and multiple nodes. Also reduced overhead so

that fast tasks do not have undue overhead.

Poisson Problem Problem Size Number of 

Patches

Avg Time Per 

Iteration

CPU engine 

(Xeon 12 cores)

400x400x400 12 (3x2x2) 0.653

Current GPU 

engine (K20)

400x400x400 12 (3x2x2) 0.344

New GPU engine 

(K20)

400x400x400 2 (1x1x2) 0.098



DSL: “Matlab for PDEs on Supercomputers”

Field & stencil 

operations:

Can “chain” stencil operations.

Auto-generate code for efficient execution on CPU, GPU, 

XeonPhi, etc. during compilation.

(and much more)

• 70+ natively supported discrete operators (extensible).

• CPU (serial, multicore), GPU, Xeon Phi backends.

• Field can live in multiple locations (GPU, CPU) simultaneously.



NEBO/Wasatch Example 
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Dependency

specification
Execution

order

Express complex pde functions as DAG -
automatically construct algorithms from 
expressions

Define field operations needed to execute tasks 
(fine grained vector parallelism on the mesh)

User writes only field operations code . Supports 
field & stencil operations directly - no loops! 

Strongly typed fields ensure valid operations at 
compile time. Allows implementations to be 
tried without modifying application code.

Scalability on a node - use Uintah infrastructure 
to get scalability across whole system

[Sutherland Earl Might]
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Example of Improvements – Wasatch
Before

Current

For this problem, Uintah overhead was reduced from ~19 milliseconds to 1-2 milliseconds.  Work is 

being done to improve this further.

Results were obtained on a Maxwell NVIDIA GPU.  We have noticed that Kepler GPUs have 

somewhat higher GPU API latencies.  



 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Multidimensional Arrays, with a twist

 Layout mapping: multi-index (i,j,k,...)  memory location

Choose layout to satisfy device-specific memory access pattern

 Layout changes are invisible to the user code

Kokkos: A Layered Collection of Libraries
[source Carter Edwards 
Dan Sunderland]
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Xeon Xeon Phi K20x
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o
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correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

 MD LJ Kernel Test 

 864k atoms, ~77 neighbors

 2D neighbor array

 Different layouts CPU vs GPU

 Random read ‘pos’ through
GPU texture cache 

 Large performance loss 
with wrong array layout



Uintah Laplace Eqn Example 

void operator()(int i, int j, int k, double & residual)

const { const IntVector n(i,j,k); (*m_newphi)[n]=(1./6)*( 
m_phi[IntVector(i+1,j,k)] + m_phi[IntVector(i-1,j,k)] + 
m_phi[IntVector(i,j+1,k)] + m_phi[IntVector(i,j-1,k)] + 
m_phi[IntVector(i,j,k+1)] + m_phi[IntVector(i,j,k-1)]);
double diff = (*m_newphi)[n] - m_phi[n]; residual += diff * diff;
} 

for(NodeIterator iter(l, h);!iter.done(); iter++)

{ IntVector n = *iter;
newphi[n]=(1./6)*( phi[n+IntVector(1,0,0)] + phi[n+IntVector(-
1,0,0)] + phi[n+IntVector(0,1,0)] + phi[n+IntVector(0,-1,0)] + 
phi[n+IntVector(0,0,1)] + phi[n+IntVector(0,0,-1)]);
double diff = newphi[n] - phi[n]; residual += diff * diff;
}

OLD

NEW

NEW is 2X faster than OLD on cpus



Summary

• The five abstractions are all  important for portability, scaling and 
for not needing to change applications code 

• Most significant challenge is development cost perhaps?

• Scalability still requires  tuning the runtime system. Cannot 
develop nodal code in isolation.

• Future Portability: use Kokkos for rewriting legacy applications 
+Wasach/Nebo DSL for new code.  MIC and GPU ongoing. Aiming 
at future DOE machines Summit and Aurora.

• What about really challenging apps? 


