
Portability and Performance
with Task-Based Frameworks -

Experiences with Uintah

Martin Berzins

Thanks to DOE ASCI (97-10), NSF , DOE NETL+NNSA, ARL,
NSF , INCITE, XSEDE, ALCC, ORNL, ALCF

Open source at

www.uintah.utah.edu

• Introduction, machines
• Uintah abstractions for portability
• Uintah key kernels
• Uintah performance examples and challenges
• Portable Performance

INTRODUCTION,

• Peak computer power grows by a factor of a thousand
every decade and so has a profound impact on our
ability to undertake science

• Often in the past we have had to change our codes…
• A significant change is coming as we try to go forward

for the next decade.
• New machines are all very different architecturally due

to energy and manufacturing process requirements
• Can we achieve portability and performance?
• What are the right abstractions for ensuring portability

and performance?

TITAN NODE

FUTURE GPU NODEs

Present nodes used here and Future Nodes

Intel Xeon Phi KNC

Intel Xeon Phi KNL

IBM BGQ 16 core

System

attributes

OLCF Now ALCF Now OLCF Upgrade ALCF Upgrade

Name/Planne

d

Installation

TITAN MIRA Summit 2017-

2018

Aurora 2018-

2019

System peak

(Flops)
27 PF 10PF 8-10x Titan >180PF

Peak Power

(MW)

8.2MW 4.8MW 10MW ~13MW

System

memory per

node

38 GB 16 GB > 512 GB TBA

Node

performance

(TF)

1.452 0.204 >40 >15 times Mira

Node

processors

AMD Opteron

Nvidia Kepler

64-bit

PowerPC A2

Multiple IBM Power9

CPUs & mulitple

Nvidia Voltas GPUS

Intel Knights Hill

System size

(nodes)

18,688 nodes, 268K

cores 18.6K GPUs

49,152 nodes

768K cores

~3,500 nodes ~50,000 nodes

3M cores?

Interconnect Gemini 5D Torus Mellanox Intel

Present PetaFlop (10**15 ops)Architectures used here and Future Architectures

Plus one more generation of machines and then exascale 10**18

Programming Challenges for New Architectures I
Summit 3.5K nodes TITAN 18.6K nodes
At 8-10x Titan each Summit nodes has to have 40 –> 60 x
flops of a Titan node
Titan injection bw is 6.4GB/s vs 23 GB/s for Summit
Factor of 4 roughly.

Consider Stencil Calculation
flops proportional to volume
communications proportional to surface area
6N^2 where NxNxN is volume. Compare 6N^2 values
Summit communications per node are then

(40 -> 60)**(2/3) of Titan or 13x Titan
Hence Summit’s network might be easier to overload than
is desirable
Hiding communications costs may will be key on Summit

Programming Challenges for New Architectures II

Mira 48K nodes Theta 2.5K nodes Aurora 50K nodes
16 cores 72? cores 60+ cores?
10 PF 8.5PF 180-450- PF

Each Theta core has to be 3-4x faster than a Mira core

Similarly with Aurora with about 4x cores and 18x performance
each core has to be 3-4 X faster than a Mira core.

This is achieved today with standard “heavyweight” Xeon cores
e.g. NSFs Stampede.
Achieving this with vectorization could be challenging particularly
if KNH performance relies on long vectors.
The Intel Omnipath technology seems to provide a network that
builds upon Mira.

Five abstractions for Portability and
Performance

1. A DAG task-based formulation of problems

2. A programming model to write these tasks as code

3. A runtime system to execute these tasks

4. A low-level portability layer to allow tasks to run across
different machines

5. A high-level domain specific language to ease problem
specification

Five abstractions for Portability and
Performance

1. A DAG task-based formulation of problems

2. A programming model to write these tasks as code
Uintah

3. A runtime system to execute these tasks
Uintah Runtime System

4. A low-level portability layer to allow tasks to run
across different machines

Kokkos
5. A high-level domain specific language to ease problem

solving
Nebo Wasatch

Why DAG Task-Based Approaches?

• Allows an abstract portable task specification
independent of execution

• Allows ADAPTIVE execution through architecture-
aware runtime system with over-decomposition
• Adapts to delays in communications or execution

• Allows replication of execution and fault-tolerance

• Task migration allows varying workloads to be
addressed

• Performance can be achieved through a
combination of runtime system and abstract
machine specific layers

CnC

Charm++

Uintah Open Source Software

Portability and Scalability

* Now at Google

NSF PetaApps

Qingyu Meng* John Schmidt,, Todd Harman Justin Luitjens*, Jacqueline Beckvermit

Uintah Software Team

* Now at NVIDIA

Phase 1 Uintah software developed 1998-2008 by a team led by Steve Parker
Novel design and reasonable scalability (~1000 cores 2005) fixed execution

Phase 2 (2008 …)NSF, ARL and DOE funded expansion of both scalability and
software with adaptive task execution

PSAAP Extreme Scaling team SANDIA NSFXPS Nan Harish
Alan Humphrey John Holmen Dan Sunderland Brad Peterson Xiao Dasari

Uintah Architecture

Simulation

Controller

Scheduler

Load

Balancer

Runtime System

ARCHES

DSL: NEBO

WASATCH

PIDX VisIT

MPM
ICE

UQ DRIVERS

CPUsGPUs Xeon Phis

Kokkos Intermediate Layer

Applications code
Programing model

Abstract C++ Task Graph Form

Compilation into C++ Cuda etc

Adaptive Execution of tasks

Intermediate layer for node
Performance on specific
cores/processors

Some components have
not changed as we have
gone from 600 to 600K
cores

asynchronous out-of-order execution,
work stealing, Overlap
communication & computation.

ICE is a cell-centered finite volume
method for Navier Stokes equations

ICE Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.

Unstructured Points (for Solids) are MPM

Particles PIC for solids

Uintah Patch, Variables and AMR Outline

ARCHES is a combustion code using several
different radiation models and linear solvers

• Structured Grid + Unstructured
Points

• Patch-based Domain
Decomposition

• Regular Local Adaptive Mesh
Refinement

• Dynamic Load Balancing

• Profiling + Forecasting Model

• Parallel Space Filling Curves

• Works on MPI and/or thread level

Uintah Programing Model and Runtime System

Each task defines its computation with required
inputs and outputs

Tasks do not explicitly define communications
but only what inputs they need from a data
warehouse and which tasks need to execute
before each other

Uintah uses this information to create a task
graph of computation (nodes) + communication
(along edges)

Communication is overlapped with computation

Taskgraph is executed adaptively and
sometimes out of order, inputs to tasks are
saved

Programing Model for Stencil

Computation on a Timestep

Unew = Uold +

dt*F(Uold,Uhalo)

N
e
tw

o
rk

Old Data
Warehouse

GET

Uold Uhalo Halo

receives

Uhalo

MPI

New Data
Warehouse

PUT

Unew

Halo sends
Example
Stencil
Task

Simplified View of
Runtime System

Uintah Heterogeneous Runtime System
(Multiple GPUs and Intel Xeon Phis

The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches

This is not a single graph. Multiscale and Multi-
Physics merely add flavor to the “soup”.
There are many adaptive strategies and tricks that
are used in the execution of this graph soup.

halos halos external

halos
external

halos

Portable Scalability is at least partially achieved by not

executing tasks in order e.g. AMR fluid-structure

interaction

Straight line represents given order of tasks Green X shows

when a task is actually executed.

Above the line means late execution while below the line means

early execution took place. More “late” tasks than “early” ones

as e.g.

TASKS: 1 2 3 4 5 1 4 2 3 5

Early Late execution

Summary of Uintah Scalability Improvements

(i) Move to a one MPI process per
multicore node reduces memory to less
than 10% of previous for 100K+ cores

(ii) Work on Runtime System involved
substantial rewrites

(iii) Use optimal size patches to balance
overhead and granularity

(iv) Use only one data warehouse but allow
all cores fast access to it, through the
use of atomic operations.

(v) Prioritize tasks with the most external
communications

(vi) Use out-of-order execution
(vii)Static order task execution of limited

value
Algorithm Random FCFS PatchOrder Most Msg.

Queue Length 3.11 3.16 4.05 4.29

Wait Time 18.9 18.0 7.0 2.6

Overall Time 315.35 308.73 187.19 139.39

MPM AMR ICE

Strong Scaling

*

Complex fluid-structure interaction problem

with adaptive mesh refinement, see SC13/14 paper

NSF funding.

Resolution B

29 Billion particles

4 Billion mesh cells

1.2 Million mesh

patches

Mira DOE BG/Q

768K cores

Blue Waters Cray

XE6/XK7 700K+

cores

Utah PSAAP2 Center

Motivating Problem

CCMSC

Computer Science Predictive Modeling Uncertainty Quantification

The Exec

92 meters

boiler simulation

Alstom Power 1000MWe “Twin Fireball” boiler
Supply power for 1M people
1mm grid resolution = 9 x 1012 cells
1000 times larger than largest problems solved today

Radiation dominant mode of heat

transfer

Radiative heat transfer (RTH) rates
~proportional to 4th power of the
temperature difference.

Combustion simulations highly influenced
by the accuracy of models with radiative
effects

Participating Media Particle laden,

scattering, absorbing, emitting

Domain Contains:
Coal particles, soot

CO2 & H2O (and other minor gases)

Spectral, Specular reflections

Walls & tubes with deposits

Existing Simulations of Clean coal Boilers using ARCHES in Uintah

(i) Traditional Lagrangian/RANS approaches do not
address well particle effects

(ii) LES has potential to predict oxy--‐coal flames and

to be an important design tool

(iii) LES is “like DNS” for coal

• Structured, high order finite-volume
• Mass, momentum, energy conservation
• LES closure
• Tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

• Low Mach number approx. (pressure Poisson solve
up to variables

• Radiation via Discrete Ordinates – massive solves
or Ray tracing.

1210

Red is expt. Blue is sim.

Green is consistent

Linear Solves arises from Navier–Stokes Equations

2

. 0,

where is density, is velocity vector and is pressure

, where .

t

p

u

u

u
F uu up F g

t








 


 




      



2
2

2
, where .

p
p R R F

t


    



Arrive at pressure Poisson equation

Full model includes turbulence, chemical
reactions and radiation

Use hypre Solver distributed by LLNL
Preconditioned Conjugate Gradients on
regular mesh patches used Multi-grid
pre-conditioner used. 20^3 patch with
one MPI process per core no AMR or
radiation.

Uintah Portability

Wide range of cpu + infiniband machines

Vulcan and Mira IBM BG/Q

Cray Blue Waters, Titan

Variety of Cray XC 30s

IBM Dataplex DOD

TACC Stampede CPU + Xeon Phi

Many machines worldwide……

Angiogenesis

Industrial

Flares

Foam Compaction

Micropin Flow

Accidental Explosions

Sandstone

Compaction

Utah PSAAP2 Center

Radiative Heat Transfer

A key computational kernel using as much as

50% of run time

Ray Tracing Radiation Overview






t

T

Solving energy and radiative heat transfer eqns

Need to compute the net radiative source term

• Energy equation conventionally solved by ARCHES (finite volume)

• Temperature field, T used to compute net radiative source term

• Radiative sources fed back into energy equation for CFD calculation

Diffusion – Convection + Source/Sinks q

4
. (4) r rrays
q I Id I


      

Radiation: Reverse Monte Carlo Ray

Tracing Algorithm

Loose coupling to CFD due to time-scale
separation.

• Radiation timescales are typically longer than turbulent
mixing timescales.

• Required resolution decreases with distance → use AMR
to trace rays locally.

• RMCRT:Incorporate dominant physics

• Emitting / Absorbing Media and walls

• Ray Scattering

• User controls # rays per cell

• Each cell has Temp Absorb and Scattering Coeffs ,

• Radiative Heat Transfer key

• Replicate Geometry on every node

• Calculate heat fluxes on Geometry

transfer cell information globally on coarse mesh except
locally.

Multi-Level RMCRT Approach

• Principal single-level challenges:

• all-to-all communication requirements

• problem size limited - memory constraints with
large, highly resolved physical domains

Locally use fine mesh - local halo exchange

Globally use coarser approximation of
global domain - all-to-all exchange of radiative
properties

As rays travel away from local patch, stride
between cells becomes larger

Significant reduction in computational cost,
memory usage and all-to-all costs

SOLUTION: AMR – multiple levels

RMCRT - 2D diagram of three-level mesh
refinement scheme, illustrating how a ray from a
fine-level patch (right) might be traced across a

coarsened domain (left).

Two-Level RMCRT GPU Scalability on Titan

16,384
GPUs

Preliminary Results – July 1, 2015

GPU Strong scaling of the two-level benchmark RMCRT problem on the
DOE Titan system

Patch sizes: 163, 323 and 643

Current Efforts on porting RMCRT to Xeon Phi

• Native execution experiments have explored :

• optimal run configurations

• use of the 61st (reserved) core on the Xeon Phi

• thread affinity

• mesh decomposition

• Key Outcomes:

• two Xeon E5s outperformed one Xeon Phi by 40%

• mesh decomposition had a profound impact on performance

• No one thread placement strategy dominated performance

• Differing caches of Sandy Bridge and MIC matter

• Simple vectorization approaches failed (e.g. SIMD directives)

• Many options are available to explore (e.g. manual intrinsics and

software packages such as Kokkos (SNL) or RAJA (LLNL))

• Complete code overhaul necessary e.g. 1.5x speedup by changing

data access mechanism

Performance at Node Level
Problematic for stencil codes on real applications

Easy stencils are easy……

Few flops per byte.

Performance governed by data transfer rates often

Percentage of peak low 3-5% or 10-12% with a lot of work (PPM)

Corresponds to HPCG benchmark much more closely than Linpack

Opportunities with Low-level portability layers

Domain specific Languages may help

An Example of A Problematic Uintah Task

Computing the pressure in the ICE explicit fluids code values defined at nodes
j, j+1. Need to define values at midpoints and pressure halfway in time n+1/2

   

 

     

1

1/

1/2 1/2 1

1/2

2

1 1 1/2

1

1 1 2

2

/

2

where ,

The iteration is

2 2

FC AVG n n

j j j javg

j

n

j

n
n n n FC F

n n

j j

n n

j j

n

j

C

j j j j jj

t
U p p

p

U p p
x

p

t t
u p p Up c U

x x

p

 









  





 



 






    
 

 

 
   




 

Easy in 1D for one material, but in 3D for multiple materials?

void ICE::computeEquilibrationPressure(const ProcessorGroup*,
const PatchSubset* patches, const MaterialSubset* /*matls*/,
DataWarehouse* old_dw, DataWarehouse* new_dw)

Loop over patches
Get data from Old data warehouse and allocate space in new data Warehouse

Compute volume fractions and initial density
now loop over every cell
for (CellIterator iter=patch->getExtraCellIterator();!iter.done();iter++) {

while (count < d_max_iter_equilibration && converged == false) { count++;
evaluate press_eos at cell i,j,k

Compute delPress - update press_CC
Compute updated volume fractions
Test for convergence

Find the speed of sound based on converged solution
Save iteration data for output in case of crash
BULLET PROOFING CHECKS positivity, mass fraction etc
Boundary conditions

Indeterminate loops while testing for convergence , calls to 2 functions
11 loops over number of materials about 350 lines of robust safe C++

Ice Code Pressure Calculation

Problem

Size

CPU

12

patches

and

threads

GPU

12

patches

and

gpu

tasks

GPU

1 large

patch

and GPU

task

Speedup

50x50x50 0.00036 0.00032 0.0026 1.37

64x64x64 0.0072 0.00611 0.0035 2.03

100x100x100 0.0255 0.0203 0.00923 2.76

128x128x128 0.0488 0.037 0.0196 2.48

Significant penalty for running lots of smaller tasks on
smaller arrays on a GPU. Need to reduce GPU overhead

GPU Engine and Scheduler Improvements

New GPU engine can now keep data resident on the GPU,

avoiding unnecessary PCIe bus data transfers and automatically

handles ghost/halo cells across multiple CPU threads, multiple

GPUs per node, and multiple nodes. Also reduced overhead so

that fast tasks do not have undue overhead.

Poisson Problem Problem Size Number of

Patches

Avg Time Per

Iteration

CPU engine

(Xeon 12 cores)

400x400x400 12 (3x2x2) 0.653

Current GPU

engine (K20)

400x400x400 12 (3x2x2) 0.344

New GPU engine

(K20)

400x400x400 2 (1x1x2) 0.098

DSL: “Matlab for PDEs on Supercomputers”

Field & stencil

operations:

Can “chain” stencil operations.

Auto-generate code for efficient execution on CPU, GPU,

XeonPhi, etc. during compilation.

(and much more)

• 70+ natively supported discrete operators (extensible).

• CPU (serial, multicore), GPU, Xeon Phi backends.

• Field can live in multiple locations (GPU, CPU) simultaneously.

NEBO/Wasatch Example

1
(,)

n

h ij i i
J T Y T h J


   

Energy equation

.() . 0h

e
eu J terms

t





   


Enthalpy diffusive flux

1

(,) (,)
ns

T

i ij j j i j

j

J D T Y Y D T Y T


    

Dependency

specification
Execution

order

Express complex pde functions as DAG -
automatically construct algorithms from
expressions

Define field operations needed to execute tasks
(fine grained vector parallelism on the mesh)

User writes only field operations code . Supports
field & stencil operations directly - no loops!

Strongly typed fields ensure valid operations at
compile time. Allows implementations to be
tried without modifying application code.

Scalability on a node - use Uintah infrastructure
to get scalability across whole system

[Sutherland Earl Might]

0

5

10

15

32^3 64^3 128^3

G
P

U
 S

p
e

e
d

u
p

Problem Size

Standalone

Diffusion Only Diffusion + Source

Over a single core

Example of Improvements – Wasatch
Before

Current

For this problem, Uintah overhead was reduced from ~19 milliseconds to 1-2 milliseconds. Work is

being done to improve this further.

Results were obtained on a Maxwell NVIDIA GPU. We have noticed that Kepler GPUs have

somewhat higher GPU API latencies.

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Multidimensional Arrays, with a twist

 Layout mapping: multi-index (i,j,k,...)  memory location

Choose layout to satisfy device-specific memory access pattern

 Layout changes are invisible to the user code

Kokkos: A Layered Collection of Libraries
[source Carter Edwards
Dan Sunderland]

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

o
p

/s
correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

 MD LJ Kernel Test

 864k atoms, ~77 neighbors

 2D neighbor array

 Different layouts CPU vs GPU

 Random read ‘pos’ through
GPU texture cache

 Large performance loss
with wrong array layout

Uintah Laplace Eqn Example

void operator()(int i, int j, int k, double & residual)

const { const IntVector n(i,j,k); (*m_newphi)[n]=(1./6)*(
m_phi[IntVector(i+1,j,k)] + m_phi[IntVector(i-1,j,k)] +
m_phi[IntVector(i,j+1,k)] + m_phi[IntVector(i,j-1,k)] +
m_phi[IntVector(i,j,k+1)] + m_phi[IntVector(i,j,k-1)]);
double diff = (*m_newphi)[n] - m_phi[n]; residual += diff * diff;
}

for(NodeIterator iter(l, h);!iter.done(); iter++)

{ IntVector n = *iter;
newphi[n]=(1./6)*(phi[n+IntVector(1,0,0)] + phi[n+IntVector(-
1,0,0)] + phi[n+IntVector(0,1,0)] + phi[n+IntVector(0,-1,0)] +
phi[n+IntVector(0,0,1)] + phi[n+IntVector(0,0,-1)]);
double diff = newphi[n] - phi[n]; residual += diff * diff;
}

OLD

NEW

NEW is 2X faster than OLD on cpus

Summary

• The five abstractions are all important for portability, scaling and
for not needing to change applications code

• Most significant challenge is development cost perhaps?

• Scalability still requires tuning the runtime system. Cannot
develop nodal code in isolation.

• Future Portability: use Kokkos for rewriting legacy applications
+Wasach/Nebo DSL for new code. MIC and GPU ongoing. Aiming
at future DOE machines Summit and Aurora.

• What about really challenging apps?

