S

-« BERKELEY LAB
freeeee w
LAWRENCE BERKELEY NATIONAL LABORATORY

f“" U.S. DEPARTMENT OF
o)

ENERGY

Architecting Community Codes

Anshu Dubey

August 10, 2015
ATPESC - Community Codes and Software Engineering Session

Outline

Software Engineering for Scientific
Software

Constraints for Community Codes

Architecting for Massive Parallelism and
Heterogeneity

Handling Legacy Codes

Software Process Components

* For All Codes
— Code Repository
— Build Process
— Code Architecture
— Coding Standards
— Verification Process
— Maintenance Practices

 If Publicly Distributed code
— Distribution Policies
— Contribution Policies
— Attribution Policies

You will learn more about many of these topics tomorrow.
Also visit https://ideas-productivity.org/resources/howtos/
3

Architecting Scientific Codes

e Desirable Features
— Well defined structure and modules
— Encapsulation of functionalities
— Minimization of data movement
— Maximization of locality and scalability
— Portability

* Constraints
— Accuracy and stability of numerics
— Multiple solvers with diverse requirements
— Intertwined interactions among solvers
— Little or no duplication of expertise

Architecting Scientific Codes

* Why it gets messy

— Well defined structure and modules
* Same data layout not good for all solvers
* Many corner cases (branches, other special handling)

— Encapsulation of functionalities
* Necessary lateral interactions

— Minimization of data movement
* Necessity of transposition / other form of copy

— Maximization of locality and scalability

» Solvers with low arithmetic intensity but hard
sequential dependencies

* Proximity and work distribution at cross purposes

Overarching Theme

* Differentiate between physical view and
virtual view

e Simpler world view at either end enables
separation of concerns

e Hard-nosed trade-offs

Example: PDE’s

Real view : A
whole domain

Spatial

Virtual view :
domain sections

with many decomposition as stand-alone
operators computation unit
)
Functional

decomposition

Flexibility Vs
Performance

Virtual view
collection of
components

\
|
|
|
1
-
v

Memory
access and
compute
optimization

Parallelization
and scaling
optimization

Resources

https://www.cct.Isu.edu/research/cyber-advancement/cactus
http://flash.uchicago.edu/site/flashcode
https://computation-rnd.linl.gov/SAMRAI
http://ambermd.org
https://www.earthsystemcog.org/projects/esmf
https://commons.lbl.gov/display/chombo

R. Armstrong, G. Kumfert, L. Mclnnes, S. Parker, B. Allan, M. Sottile, T. Epperly, T.
Dahlgren, The CCA component model for high-performance scientific computing,
Concurrency and Computation: Practice and Experience 18 (2) (2006) 215-229.

P. Hovland, K. Keahey, L.C. Mclnnes, B. Norris, L.F. Diachin, P. Raghavan, A quality of
service approach for high-performance numerical components, in: Proceedings of
Workshop on QoS in Component-Based Software Engineering, Software Technologies

Conference, Toulouse, France, 2003.

D. Worth, C. Greenough, A survey of available tools for developing quality software
using Fortran 95. Technical report RAL-TR-2005, SFTC Rutherford

Appleton Laboratory, SESP Software Engineering Support Programme,
2005. <http://www.sesp.cse.clrc.ac.uk/html/Publications.html>.

Code Verification

Many stages and types of verification

* During initial code development

— accuracy and stability during development of the
algorithm

— matching the algorithm to the model
— interoperability of algorithms

* |n later stages
— Ongoing maintenance

— while adding new major capabilities or modifying
existing capabilities

— Preparing for production
e Mix of automation and human-intervention

Ongoing Maintenance

* The Selection of Tests
— Highly composable code => too many configurations
— Runtime parameters => variability in execution
— Also need to verify transparent restart

— For categorization of tests see
https://ideas-productivity.org/resources/howtos/
ideas-testing-definitions

— Focus here on unit /no-change tests
* Running the tests
— Must run on multiple platforms
— Maximize coverage for functions and interoperability
— Look for optimizations where possible

Selecting Tests
— One approach : use a matrix

— Put infrastructure components in rows, science components in
columns

— List interoperability constraints, and pick apps
e All unit tests
* Tests for ongoing productions
* Tests known to be sensitive to perturbations
* Least complex tests that can cover the empty spots
* Least complex tests that meet the missing interoperability constraints

Running Tests
— Select a test-harness frameworks (i.e. Jenkins)

— Add selected tests, automate as much as possible

— For more details see

https://ideas-productivity.org/wordpress/wp-content/uploads/
2015/04/IDEAS-Testing-HowTo.pdf

— Example http://flash.uchicago.edu/site/testsuite

Example: FLASH Tests Collection

test type | approach coverage examples | done by
unit test use alternative way | a capability guard cells, | test-suite
to generate or a solver particle software
verification data integration
comparison | against appro- interoperability | advection, test-suite
test ved benchmark among units shock tube, | software
and apps rotor
restart test | against two transparent advection test-suite
approved restart shock tube | software
benchmarks rotor
target manual specific RTflame human experts
platform verification application
benchmark | manual affected tests solver human experts
update verification upgrade
populating | combination all tests compiler human experts
new test of manual and upgrade and test
platform automated suite software

Dubey et al, Ongoing verification of a multiphysics community code: FLASH,
Software: Practice and Experience Vol 45(2) pp. 233-244

Outline

Software Engineering for Scientific
Software

Constraints for Community Codes

Architecting for Massive Parallelism and
Heterogeneity

Handling Legacy Codes

Scientific Community Codes Have
Followed Different Paths :

* The most common path
— Someone wrote a very useful piece of code
— Collaborations happened, critical mass of users achieved, code
becomes popular
— No focused effort, no software process, limited shelf life

 More sustainable path
— Some long term planning might result in better engineered code

— Thought given to extensibility and for future code growth
— As the code grows so does its community supported model

 The desirable path
— Explicit funding to support a design phase with expectation of
longevity and good engineering

— When it works outcome can go way beyond original
expectations

Varying User Expertise

Novice users — execute one of included applications
— change only the runtime parameters
Most users — generate new problems, analyze

— Generate new Simulations with initial conditions,
parameters

— Write alternate and/or derived functions for specialized
output

Advanced users — Customize existing functions
— Add small amounts of new code needed by their
application
Expert — new research
— Completely new algorithms and/or capabilities
— Can contribute to core functionality

Software Engineering

Strong interfaces and encapsulation (enforced by
the language or build system) required for
community participation.
— Users want to customize in many different ways

* Depends somewhat on the code architecture

* Add needed interfaces on top of infrastructure

e Use derived classes
No comprehensive in-house support for all
features

Transient developer and user population

Users acquire a critical dependence for their work
— Makes it harder to build the community

Distribution Policies

The licensing agreement

— How restrictive ?

Distribution control

— Who can get the code

— Should there be a registration requirement
What is included in the release

— The degree of support for released components
How often to release

— Trade-off between making capabilities available
quickly and the overhead of releasing

Contribution Policies

Balancing contributors and code distribution needs

— Contributors want their code to become integrated with
the code so it is maintained, but may not want it
released immediately

* Not exercised enough
e Contributor may want some IP protection

Maintainable code requirements

— The minimum set needed from the contributor
* Source code, build scripts, tests, documentation

Agreement on user support
— Contributor or the distributor

Add-ons : components not included with the
distribution, but work with the code

Community Building

Popularizing the code alone does not build a community

Neither does customizability — different users want
different capabilities

Enabling contributions from users and providing support
for them

Including policy provisions for balancing the IP protection
with open source needs

Relaxed distribution policies — giving collective ownership
to groups of users so they can modify the code and share
among themselves as long as they have the license

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong
culture of user support is a pre-requisite

Outline

Software Engineering for Scientific
Software

Constraints for Community Codes

Architecting for Massive Parallelism and
Heterogeneity

Handling Legacy Codes

Example: PDE’s

Real view : A
whole domain

Spatial

Virtual view :
domain sections

decomposition

with many decomposition as stand-alone
operators computation unit
Functional

Abstraction at
solver level

Virtual view
collection of
components

Werite solvers as independent tasks
Explicitly call out dependencies
Expose fusion possibilities

Dubey and Graves, A Design Proposal for a Next Generation Scientific
Software Framework, HeteroPar 2015

Fusing
Functions

Dynamic
Scheduling

Al

code
transformation

\l’

Memory
access and
compute
optimization

Parallelization
and scaling
optimization

Solver Level Abstractions

e Stencil DSLs

— A stencil operator is a collection of shifts with
corresponding coefficients
— Applying the stencil operator

* Weighted sum of some points on the mesh
» Offset specified by the shift relative to the target

R R Rietn <-1,0>
<1,0>
8 Y Y x <0,-1>
¢ > Ko Ko 8 <0’1>
R— Ri—p Kb N <0,0>

Hierarchical Decomposition

Real View .o T Virtual View
...................... Tiling
FrrrvTTT : . .
CrTTrrIIs * Hierarchy of tiling:
e el .
EFF;;H-?*«‘" ~~~~~~~~ * Larger non-overlapping
""E':'i:[[[f‘j"]j tile maps to coherence

P 1T 1rr1rni 1

rcrrrTTTs domain
.............. nE Smaller overlapping tile
""""""""" exposes more
[parallelism

CErrrtTTe e Parameterize end-
IR points, shape tiles as
A needed
FEFRRRER L
R R N
Ny By B T R
Ly
1l aa!

Asynchronous Execution

Barriers are the easy way to reconcile dependencies
— Take away the option of pipelining and/or overlapping

With hierarchical spatial and functional decomposition
rich collection of tasks

— Articulate dependencies explicitly

— Let the framework find the unit of computation that is
ready and hand it to client code with all the necessary data
e Under the hood, framework can be managing dependencies
* If client code assumes not-in-place update each of the tiles is a
task with neighborhood dependencies
Can be made into build or run environment
specifications through appropriate parameterization

Putting it all Together

* The construction of operators
— Express computation in the form of stencil operators or other
appropriate abstraction
— Specify the part of the domain, and the conditions under which the
operators apply
* Use masks to take care of branching
* Mix-mode parallelism
— Parameters to control the degree of tiling or other forms of mix-mode

parallelism
* Could be handed to the compiler when technology arrives

— Framework forms the data containers

* Dynamic tasking
— Smarter iterators that are aware of mix-mode parallelism and
dependencies
— The iterating loops give up control and do while loops

Integrated Option: Kokkos

Polymorphic multidimensional array (logical indexing)
— Layout : multi-index (i,j,k,...) €2 memory location

Memory Space : where data resides
— Differentiated by performance; e.g., capacity, latency, bandwidth

Execution Space : where functions execute
— Encapsulates hardware resources; e.g., cores, GPU, vector units, ...
— ldentify accessible memory spaces

Execution Policy : how (and where) a user function is executed
— E.g., data parallel range : concurrently call function(i) for i = [0..N)
— User’s function implemented as a C++ lambda or functor

Pattern: parallel for, parallel reduce, parallel scan, task-dag, ...

Compose: pattern + execution policy + user function; e.g.,
— Parallel pattern: foreach, reduce, scan, task-dag, ...
— Parallel loop/task body: C++11 lambda or C++98 functor

— parallel_pattern(Policy<Space>, Function);
Execute Function in Space according to pattern and Policy

Some Other Options

 Many efforts to provide tools to application
developers
— TiDA, HTA : managing tiling abstractions
— GridTools : comprehensive solution from CSCS-ETH
— Dash : managing multilevel locality
— Task based processing — OCR, charm++, HPX, Quark etc
— Language based solutions — Julia, Chapel, UPC++ etc
— Domain specific languages

Other Things to Consider

Leverage existing software

— Libraries may have better solvers
* Off-load expertise and maintenance

— Examine the interoperability constraints
* Many times the cost is justified even if there is more data movement

More available packages are attempting to achieve
interoperability
— See if a combination meets your requirements

May be worthwhile to let the library dictate data layout
if the corresponding operations dominate

Institute an extremely rigorous
verification regime at the outset

Outline

Software Engineering for Scientific
Software

Constraints for Community Codes

Architecting for Massive Parallelism and
Heterogeneity

Handling Legacy Codes

Handling Legacy Codes

* Whether the code is worth refactoring
— Greatly exercised, so robust and reliable
— A great deal of model and algorithm knowledge encoded

— No new revolution change in the models and/or algorithms
likely to occur in foreseeable future

— New models need to be added to increase fidelity, doing it from
scratch would take far too long

* How much of the code is worth retaining

 When does the cost of backward compatibility become
too high

* How closely is the data layout tied to the solvers

Handling Legacy Codes

* Good interdisciplinary interactions critical

— Avoid pitfalls such as too little understanding of the
idiosyncrasies

* Many times what seems like bad code is there for a reason

— Avoid upsetting the sensitivities of code owners
* Need for co-operative design, possibly redesign of key components

— At least one member of the team should be able to speak
multiple domain languages

 Examine the inherent granularities in the modeling
— They usually translate into components

— Eliminate unnecessary lateral dependencies in the logical view

* They will help separate dependencies arising as an artifact of
implementation

* Apply the design ideas as outlined earlier in the lecture

Handling Legacy Codes

* Leverage existing software
— Libraries may have better solvers

» Off-load expertise and maintenance

— Examine the interoperability constraints
* Many times the cost is justified even if there is more data movement

 More available packages are attempting to achieve
interoperability

— See if a combination meets your requirements

* Automate repetitive tasks where possible

Institute an extremely rigorous
verification regime at the outset

Handling Legacy Codes: Raja

Encapsulate architecture-specific concerns through four co-
operating features

Data type encapsulation
— Hides non-portable compiler directives, data attributes, etc.

Traversal template & execution policy
— Encapsulates platform-specific scheduling & execution and code-
specific
— iteration patterns (typically a limited number of patterns per code)
IndexSet

— Encapsulates iteration space partitioning & data placement

C++ lambda function

— Captures loop body without modification (essential for RAJA
adoption in legacy code)

Publications and Workshops

* Journals
— Parallel Computing
— International Journal of High Performance Computing
Applications
— Journal of Parallel and Distributed Computing
— Computational Science and Discovery
— Concurrency — Practice & Experience
— Software — Practice & Experience

* Workshops
— WolfHPC
— WSSSPE
— SEHPSSE

