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Software Process Components

* For All Codes
— Code Repository
— Build Process
— Code Architecture
— Coding Standards
— Verification Process
— Maintenance Practices

 If Publicly Distributed code
— Distribution Policies
— Contribution Policies
— Attribution Policies

You will learn more about many of these topics tomorrow.
Also visit https://ideas-productivity.org/resources/howtos/
3



Architecting Scientific Codes

e Desirable Features
— Well defined structure and modules
— Encapsulation of functionalities
— Minimization of data movement
— Maximization of locality and scalability
— Portability

* Constraints
— Accuracy and stability of numerics
— Multiple solvers with diverse requirements
— Intertwined interactions among solvers
— Little or no duplication of expertise



Architecting Scientific Codes

* Why it gets messy

— Well defined structure and modules
* Same data layout not good for all solvers
* Many corner cases (branches, other special handling)

— Encapsulation of functionalities
* Necessary lateral interactions

— Minimization of data movement
* Necessity of transposition / other form of copy

— Maximization of locality and scalability

» Solvers with low arithmetic intensity but hard
sequential dependencies

* Proximity and work distribution at cross purposes



Overarching Theme

* Differentiate between physical view and
virtual view

e Simpler world view at either end enables
separation of concerns

e Hard-nosed trade-offs
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Resources

https://www.cct.Isu.edu/research/cyber-advancement/cactus
http://flash.uchicago.edu/site/flashcode
https://computation-rnd.linl.gov/SAMRAI
http://ambermd.org
https://www.earthsystemcog.org/projects/esmf
https://commons.lbl.gov/display/chombo

R. Armstrong, G. Kumfert, L. Mclnnes, S. Parker, B. Allan, M. Sottile, T. Epperly, T.
Dahlgren, The CCA component model for high-performance scientific computing,
Concurrency and Computation: Practice and Experience 18 (2) (2006) 215-229.

P. Hovland, K. Keahey, L.C. Mclnnes, B. Norris, L.F. Diachin, P. Raghavan, A quality of
service approach for high-performance numerical components, in: Proceedings of
Workshop on QoS in Component-Based Software Engineering, Software Technologies

Conference, Toulouse, France, 2003.

D. Worth, C. Greenough, A survey of available tools for developing quality software
using Fortran 95. Technical report RAL-TR-2005, SFTC Rutherford

Appleton Laboratory, SESP Software Engineering Support Programme,
2005. <http://www.sesp.cse.clrc.ac.uk/html/Publications.html>.



Code Verification

Many stages and types of verification

* During initial code development

— accuracy and stability during development of the
algorithm

— matching the algorithm to the model
— interoperability of algorithms

* |n later stages
— Ongoing maintenance

— while adding new major capabilities or modifying
existing capabilities

— Preparing for production
e Mix of automation and human-intervention



Ongoing Maintenance

* The Selection of Tests
— Highly composable code => too many configurations
— Runtime parameters => variability in execution
— Also need to verify transparent restart

— For categorization of tests see
https://ideas-productivity.org/resources/howtos/
ideas-testing-definitions

— Focus here on unit /no-change tests
* Running the tests
— Must run on multiple platforms
— Maximize coverage for functions and interoperability
— Look for optimizations where possible




Selecting Tests
— One approach : use a matrix

— Put infrastructure components in rows, science components in
columns

— List interoperability constraints, and pick apps
e All unit tests
* Tests for ongoing productions
* Tests known to be sensitive to perturbations
* Least complex tests that can cover the empty spots
* Least complex tests that meet the missing interoperability constraints

Running Tests
— Select a test-harness frameworks (i.e. Jenkins)

— Add selected tests, automate as much as possible

— For more details see

https://ideas-productivity.org/wordpress/wp-content/uploads/
2015/04/IDEAS-Testing-HowTo.pdf

— Example http://flash.uchicago.edu/site/testsuite




Example: FLASH Tests Collection

test type | approach coverage examples | done by
unit test use alternative way | a capability guard cells, | test-suite
to generate or a solver particle software
verification data integration
comparison | against appro- interoperability | advection, test-suite
test ved benchmark among units shock tube, | software
and apps rotor
restart test | against two transparent advection test-suite
approved restart shock tube | software
benchmarks rotor
target manual specific RTflame human experts
platform verification application
benchmark | manual affected tests solver human experts
update verification upgrade
populating | combination all tests compiler human experts
new test of manual and upgrade and test
platform automated suite software

Dubey et al, Ongoing verification of a multiphysics community code: FLASH,
Software: Practice and Experience Vol 45(2) pp. 233-244
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Scientific Community Codes Have
Followed Different Paths :

* The most common path
— Someone wrote a very useful piece of code
— Collaborations happened, critical mass of users achieved, code
becomes popular
— No focused effort, no software process, limited shelf life

 More sustainable path
— Some long term planning might result in better engineered code

— Thought given to extensibility and for future code growth
— As the code grows so does its community supported model

 The desirable path
— Explicit funding to support a design phase with expectation of
longevity and good engineering

— When it works outcome can go way beyond original
expectations



Varying User Expertise

Novice users — execute one of included applications
— change only the runtime parameters
Most users — generate new problems, analyze

— Generate new Simulations with initial conditions,
parameters

— Write alternate and/or derived functions for specialized
output

Advanced users — Customize existing functions
— Add small amounts of new code needed by their
application
Expert — new research
— Completely new algorithms and/or capabilities
— Can contribute to core functionality



Software Engineering

Strong interfaces and encapsulation (enforced by
the language or build system) required for
community participation.
— Users want to customize in many different ways

* Depends somewhat on the code architecture

* Add needed interfaces on top of infrastructure

e Use derived classes
No comprehensive in-house support for all
features

Transient developer and user population

Users acquire a critical dependence for their work
— Makes it harder to build the community



Distribution Policies

The licensing agreement

— How restrictive ?

Distribution control

— Who can get the code

— Should there be a registration requirement
What is included in the release

— The degree of support for released components
How often to release

— Trade-off between making capabilities available
quickly and the overhead of releasing



Contribution Policies

Balancing contributors and code distribution needs

— Contributors want their code to become integrated with
the code so it is maintained, but may not want it
released immediately

* Not exercised enough
e Contributor may want some IP protection

Maintainable code requirements

— The minimum set needed from the contributor
* Source code, build scripts, tests, documentation

Agreement on user support
— Contributor or the distributor

Add-ons : components not included with the
distribution, but work with the code



Community Building

Popularizing the code alone does not build a community

Neither does customizability — different users want
different capabilities

Enabling contributions from users and providing support
for them

Including policy provisions for balancing the IP protection
with open source needs

Relaxed distribution policies — giving collective ownership
to groups of users so they can modify the code and share
among themselves as long as they have the license

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong
culture of user support is a pre-requisite
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Example: PDE’s
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Dubey and Graves, A Design Proposal for a Next Generation Scientific
Software Framework, HeteroPar 2015
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Solver Level Abstractions

e Stencil DSLs

— A stencil operator is a collection of shifts with
corresponding coefficients
— Applying the stencil operator

* Weighted sum of some points on the mesh
» Offset specified by the shift relative to the target
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Hierarchical Decomposition
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Asynchronous Execution

Barriers are the easy way to reconcile dependencies
— Take away the option of pipelining and/or overlapping

With hierarchical spatial and functional decomposition
rich collection of tasks

— Articulate dependencies explicitly

— Let the framework find the unit of computation that is
ready and hand it to client code with all the necessary data
e Under the hood, framework can be managing dependencies
* If client code assumes not-in-place update each of the tiles is a
task with neighborhood dependencies
Can be made into build or run environment
specifications through appropriate parameterization



Putting it all Together

* The construction of operators
— Express computation in the form of stencil operators or other
appropriate abstraction
— Specify the part of the domain, and the conditions under which the
operators apply
* Use masks to take care of branching
* Mix-mode parallelism
— Parameters to control the degree of tiling or other forms of mix-mode

parallelism
* Could be handed to the compiler when technology arrives

— Framework forms the data containers

* Dynamic tasking
— Smarter iterators that are aware of mix-mode parallelism and
dependencies
— The iterating loops give up control and do while loops



Integrated Option: Kokkos

Polymorphic multidimensional array (logical indexing)
— Layout : multi-index (i,j,k,...) €2 memory location

Memory Space : where data resides
— Differentiated by performance; e.g., capacity, latency, bandwidth

Execution Space : where functions execute
— Encapsulates hardware resources; e.g., cores, GPU, vector units, ...
— ldentify accessible memory spaces

Execution Policy : how (and where) a user function is executed
— E.g., data parallel range : concurrently call function(i) for i = [0..N)
— User’s function implemented as a C++ lambda or functor

Pattern: parallel for, parallel reduce, parallel scan, task-dag, ...

Compose: pattern + execution policy + user function; e.g.,
— Parallel pattern: foreach, reduce, scan, task-dag, ...
— Parallel loop/task body: C++11 lambda or C++98 functor

— parallel_pattern( Policy<Space>, Function);
Execute Function in Space according to pattern and Policy



Some Other Options

 Many efforts to provide tools to application
developers
— TiDA, HTA : managing tiling abstractions
— GridTools : comprehensive solution from CSCS-ETH
— Dash : managing multilevel locality
— Task based processing — OCR, charm++, HPX, Quark etc
— Language based solutions — Julia, Chapel, UPC++ etc
— Domain specific languages



Other Things to Consider

Leverage existing software

— Libraries may have better solvers
* Off-load expertise and maintenance

— Examine the interoperability constraints
* Many times the cost is justified even if there is more data movement

More available packages are attempting to achieve
interoperability
— See if a combination meets your requirements

May be worthwhile to let the library dictate data layout
if the corresponding operations dominate

Institute an extremely rigorous
verification regime at the outset
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Handling Legacy Codes

* Whether the code is worth refactoring
— Greatly exercised, so robust and reliable
— A great deal of model and algorithm knowledge encoded

— No new revolution change in the models and/or algorithms
likely to occur in foreseeable future

— New models need to be added to increase fidelity, doing it from
scratch would take far too long

* How much of the code is worth retaining

 When does the cost of backward compatibility become
too high

* How closely is the data layout tied to the solvers



Handling Legacy Codes

* Good interdisciplinary interactions critical

— Avoid pitfalls such as too little understanding of the
idiosyncrasies

* Many times what seems like bad code is there for a reason

— Avoid upsetting the sensitivities of code owners
* Need for co-operative design, possibly redesign of key components

— At least one member of the team should be able to speak
multiple domain languages

 Examine the inherent granularities in the modeling
— They usually translate into components

— Eliminate unnecessary lateral dependencies in the logical view

* They will help separate dependencies arising as an artifact of
implementation

* Apply the design ideas as outlined earlier in the lecture



Handling Legacy Codes

* Leverage existing software
— Libraries may have better solvers

» Off-load expertise and maintenance

— Examine the interoperability constraints
* Many times the cost is justified even if there is more data movement

 More available packages are attempting to achieve
interoperability

— See if a combination meets your requirements

* Automate repetitive tasks where possible

Institute an extremely rigorous
verification regime at the outset



Handling Legacy Codes: Raja

Encapsulate architecture-specific concerns through four co-
operating features

Data type encapsulation
— Hides non-portable compiler directives, data attributes, etc.

Traversal template & execution policy
— Encapsulates platform-specific scheduling & execution and code-
specific
— iteration patterns (typically a limited number of patterns per code)
IndexSet

— Encapsulates iteration space partitioning & data placement

C++ lambda function

— Captures loop body without modification (essential for RAJA
adoption in legacy code)



Publications and Workshops

* Journals
— Parallel Computing
— International Journal of High Performance Computing
Applications
— Journal of Parallel and Distributed Computing
— Computational Science and Discovery
— Concurrency — Practice & Experience
— Software — Practice & Experience

* Workshops
— WolfHPC
— WSSSPE
— SEHPSSE



