l‘T The HDF Group

Parallel HDF5

Scot Breitenfeld
HPC Applications
The HDF Group

Extreme Scale Computing PHDF5 www.hdfgroup.org

-

H'F Advantage of Parallel HDF5

* Recent success story
* Trillion particle simulation on hopper @ NERSC
« 120,000 cores
« 30TB file

« 23GB/sec average speed with 35GB/sec peaks
(out of 40GB/sec max for system)

» Parallel HDF5 rocks! (when used properly ©)

Extreme Scale Computing PHDF5 www.hdfgroup.org

FF Outline

* Overview of Parallel HDF5 design
» Parallel Environment Requirements

« PHDF5 Programming Model

 Examples
» Performance Analysis

 Parallel Tools

» Upcoming features of HDF5 (if time
permits)

Extreme Scale Computing PHDF5 www.hdfgroup.org

MPI-l/O VS. HDF5

Extreme Scale Computing PHDF5 www.hdfgroup.org

FF MPI-10 vs. HDF5

 MPI-IO is an Input/Output API

* |t treats the data file as a “linear byte
stream” and each MPI application needs
to provide its own file view and data

representations to interpret those bytes

Extreme Scale Computing PHDF5 www.hdfgroup.org

HF MPI-10 vs. HDF5

* All data stored are machine dependent
except the “external32” representation

» External32 is defined in Big Endianness

* Little-endian machines have to do the data
conversion in both read or write operations

* 64-bit sized data types may lose
information

Extreme Scale Computing PHDF5 www.hdfgroup.org

HF MPI-10 vs. HDF5

« HDF5 is data management software

* |t stores data and metadata according
to the HDF5 data format definition

 HDF5 file is self-describing

« Each machine can store the data in its own
native representation for efficient 1/0O
without loss of data precision

* Any necessary data representation
conversion is done by the HDF5 library

automatically

Extreme Scale Computing PHDF5 www.hdfgroup.org

OVERVIEW OF PARALLEL
HDFS DESIGN

HF PHDF5 Requirements

 PHDF5 should allow multiple processes to
perform |/O to an HDF5 file at the same
time
 Single file image to all processes
« Compare with one file per process design:
« Expensive post processing
* Not usable by different number of processes
* Too many files produced for file system

 PHDF5 should use a standard parallel 1/O
Interface

* Must be portable to different platforms

Extreme Scale Computing PHDF5 www.hdfgroup.org

HF PHDF5 requirements

» Support Message Passing Interface
(MPI) programming

 PHDF5 files compatible with serial
HDF5 files

 Shareable between different serial or
parallel platforms

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Parallel environment requirements

* MPI with MPI-IO
« MPICH, OpenMPI w/ROMIO
* Vendor's MPI-10

« Parallel file system
* IBM GPFS

o Lustre
e PVFS

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: PHDFS5 implementation layers

‘ HDF5 Application

I

Compute node

§
HDF5 Library

MPI Library

Z () [[N
‘<] HDF5 file on Parallel File System >

] — ———

Switch network + /O servers

BBDDDDBBDBBD

Disk architecture and layout of data on disk

Extreme Scale Computing PHDF5 www.hdfgroup.org

Compute node Compute node

PHDF5 CONSISTENCY
SEMANTICS

|-u: Consistency Semantics

* Consistency semantics: Rules that define the
outcome of multiple, possibly concurrent,
accesses to an object or data structure by one
Or more processes in a computer system.

Extreme Scale Computing PHDF5 www.hdfgroup.org

'Y= PHDF5 Consistency Semantics

 PHDFS5 library defines a set of consistency
semantics to let users know what to expect
when processes access data managed by the
library.

 When the changes a process makes are
actually visible to itself (if it tries to read back
that data) or to other processes that access the

same file with independent or collective /O
operations

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-ﬂ: HDF5 MPI-I/O consistency semantics

« Same as MPI-I/O semantics

MPI_File write at()
MPI_Barrier() MPI_Barrier()
MPI_File read_at()

« Default MPI-I/O semantics doesn'’t
guarantee atomicity or sequence of calls!

* Problems may occur (although we haven't
seen any) when writing/reading HDF5
metadata or raw data

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-ﬂ: HDF5 MPI-I/O consistency semantics

 MPI I/O provides atomicity and sync-barrier-
sync features to address the issue

« PHDFS5 follows MPI /O

 H5Fset mpio_atomicity function to turn on
MPI| atomicity

« HSFsync function to transfer written data to
storage device (in implementation now)

« Alternatively: We are currently working on
reimplementation of metadata caching for
PHDF5 (using a metadata server)

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: HDF5 MPI-I/O consistency semantics

* For more information see “Enabling a strict
consistency semantics model in parallel
HDF5” linked from H5Fset._mpi_atomicity
RM page’

1 http://www.hdfgroup.org/HDF5/doc/RM/Advanced/
PHDF5FileConsistencySemantics/PHDFSFileConsistencySemantics.pdf

Extreme Scale Computing PHDF5 www.hdfgroup.org

HDF5 PARALLEL
PROGRAMMING MODEL

|-u:How to compile PHDF5 applications

* hdpcc — HDF5 C compiler command
« Similar to mpicc
* hdpfc — HDF5 Fortran compiler command
« Similar to mpif90
* To compille:
* % h5pcc h5prog.c
* % h5pfc h5prog.fo0

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Programming restrictions

* PHDF5 opens a parallel file with an MPI
communicator

 Returns a file handle
 Future access to the file via the file handle

* All processes must participate in collective
PHDFS5 APls

* Different files can be opened via different
communicators

Extreme Scale Computing PHDF5 www.hdfgroup.org

FF Collective HDF5 calls

* All HDF5 APIs that modify structural
metadata are collective!

* File operations
- H5Fcreate, H5Fopen, HS5Fclose, etc

« Object creation
- HS5Dcreate, HS5Dclose, etc
* Object structure modification (e.g., dataset
extent modification)

— H5Dset extent, etc
o http://www.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

Extreme Scale Computing PHDF5 www.hdfgroup.org

FHF Other HDF5 calls

* Array data transfer can be collective or
independent

- Dataset operations: H5Dwrite, H5Dread

« Collectiveness is indicated by function
parameters, not by function names as in MPI API

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: What does PHDF5 support ?

» After a file is opened by the processes of a
communicator

 All parts of file are accessible by all processes

* All objects in the file are accessible by all
processes

* Multiple processes may write to the same data
array

« Each process may write to individual data array

Extreme Scale Computing PHDF5 www.hdfgroup.org

FF PHDF5 API languages

« C and Fortran language interfaces
* Most platforms with MPI-IO supported. e.qg.,
* |IBM AIX

 Linux clusters
* Cray XT

Extreme Scale Computing PHDF5 www.hdfgroup.org

HF Programming model

« HDF5 uses access template object
(property list) to control the file access

mechanism
 General model to access HDF5 file in

parallel:

- Set up MPI-IO access template (file access

property list)

- Open File

— Access Data

— Close File

Extreme Scale Computing PHDF5 www.hdfgroup.org

Moving your sequential application to the HDF5 parallel world

MY FIRST PARALLEL HDF5
PROGRAM

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Example of PHDFS C program

Parallel HDF5 program has extra calls

MPI Init(&argc, &argv);

1. fapl id = H5Pcreate (HS5P_FILE ACCESS) ;

2. H5Pset fapl mpio(fapl id, comm, info);

3. file id = HS5Fcreate(FNAME,.., fapl id);

4. space id = H5Screate simple(..);

5. dset id = H5Dcreate(file id, DNAME, H5T NATIVE INT,
space id,..);

6. xf id = H5Pcreate (HS5P DATASET XFER) ;

7. H5Pset dxpl mpio(xf id, H5FD MPIO COLLECTIVE) ;

8. status = H5Dwrite(dset id, H5T NATIVE INT, .., xf id.);

MPI Finalize();

Extreme Scale Computing PHDF5 www.hdfgroup.org

Writing patterns

EXAMPLE

Extreme Scale Computing PHDF5 www.hdfgroup.org

= Parallel HDFS tutorial examples

* For simple examples how to write different
data patterns see

http://www.hdfgroup.org/HDF5/Tutor/parallel.html

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Programming model

« Each process defines memory and file
hyperslabs using H5Sselect hyperslab

» Each process executes a write/read call using
hyperslabs defined, which can be either
collective or independent

* The hyperslab parameters define the portion of
the dataset to write to

— Contiguous hyperslab

- Regularly spaced data (column or row)
- Pattern

- Blocks

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Four processes writing by rows

HDF5 "SDS row.h5" {
GROUP "/" {

DATASET "IntArray" {
DATATYPE HS5T_STD I32BE
DATASPACE SIMPLE { (8, 5)/ (8, 5) }
DATA {

10, 10, 10, 10, 10,
10, 10, 10, 10, 10,
11, 11, 11, 11, 11,
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
13, 13, 13, 13, 13

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Two processes writing by columns

HDF5 "SDS col.h5" {
GROUP "/" {
DATASET "IntArray" {
DATATYPE HS5T_STD I32BE
DATASPACE SIMPLE { (8, 6)/ (8 6) }
DATA {
1,

J

10, 20, 100, 200,
10, 20, 100, 200,
10, 20, 100, 200,
10, 20, 100, 200,
10, 20, 100, 200,
10, 20, 100, 200,
10, 20, 100, 200,
10, 20, 100, 200

Extreme Scale Computing PHDF5 www.hdfgroup.org

o o
o o o o o

o
o

-
N NMNDMNDMNMNMNMNMNDNNDN
-

o

R R R RRRR
\o

o

|-u: Four processes writing by pattern

HDF5 "SDS pat.h5" {
GROUP "/" {
DATASET "IntArray" {
DATATYPE H5T_STD I32BE
DATASPACE SIMPLE { (8, 4)/ (8, 4) }

DATA {
1, 3, 1, 3,
2, 4, 2, 4,
1, 3, 1, 3,
2, 4, 2, 4,
1, 3, 1, 3,
2, 4, 2, 4,
1, 3, 1, 3,
2, 4, 2, 4

o
o
o

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Four processes writing by blocks

HDF5 "SDS_blk.h5" {
GROUP "/" {
DATASET "IntArray" {
DATATYPE H5T _STD I32BE
DATASPACE SIMPLE { (8, 4)/ (8, 4) }
DATA {
1,

J

o
o
o

o
o
o

o
o
o

-

P PP NNMNNMNNDN
-

PP, MNMNMNNNNDN
-

o

o
o

o
o
o
o

o
o
o
o

w wwwpkEkRkPR

- . .

W w wuwkRrpRkRrpRR
-

o
o

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Complex data patterns

HDF5 doesn’t have restrictions on data patterns and data balance

13|14 |15 | 16

33134|35|36|37 38|39 |40
45|46 | 47 | 48
49 [50 | 51 | 52 | 53 | 54 | 55 | 56
61 | 62 | 63 | 64

2 |3 |4 |5 |6 |7 |8

9 1011|1213 |14 |15 |16
17 1181920 |21 |22 |23 | 24
2526|2728 |29 30|31 |32
33134 (35|36 |37 (38|39 |40
41 |42 143 |44 |45 | 46 | 47 | 48
49 | 50 | 51|52 |53 |54 55|56
5715859 60|61 |62|63|64

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Examples of irregular selection

* |nternally, the HDF5 library creates an MPI
datatype for each lower dimension in the
selection and then combines those types into
one giant structured MPI datatype

www.hdfgroup.org

Extreme Scale Computing PHDF5

I'TCOLLECTIVE UNSTRUCTURED FINITE ELEMENT 1/O

Single File Read
32 Million Element Mesh, Hyperslab Appending Improvements1

Nodal Coordinates | 100 —] .

ORIGINAL -- READING NODE COORDINATES — o

(X,y,2) : IMPROVED -- READING NODE COORDINATES - - o - -
i ORIGINAL - READING TAGS —
IMPROVED -- READING TAGS - -o- -

Hyperslab 10 |

“\\‘

A

0.1 L

Number of Node/

\

UIdR] SR00Y SNONZNUOI—UON

0.01 | l 1 ! ! l ! ! | \\\é I 4
l 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Number of Processes

'MOAB — Mira at Argonne National Laboratory

Extreme Scale Computing PHDF5 www.hdfgroup.org

PERFORMANCE ANALYSIS

I-T Performance analysis

 Some common causes of poor performance
* Possible solutions

Extreme Scale Computing PHDF5 www.hdfgroup.org

H'Y= My PHDFS5 application 1/O is slow

 Raw |/O data sizes
* Independent vs. Collective I/O

“Tuning HDF5 for Lustre File Systems” by
Howison, Koziol, Knaak, Mainzer, and
Shalf

¢ Chunking and hyperslab selection
** HDF5 metadata cache
*» Specific I/0O system hints

Extreme Scale Computing PHDF5 www.hdfgroup.org

INDEPENDENT VS.
COLLECTIVE RAW DATAI/O

|-u: Collective vs. independent calls

 MPI definition of collective calls:

 All processes of the communicator must participate
in calls in the right order. E.g.,

 Process1 Process?2
e call A(); call B(); call A(); call B(); **right**
e call A(); call B(); call B(); call A(); **wrong**

* Independent means not collective ©

« Collective is not necessarily synchronous, nor
must require communication

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Independent vs. collective access

« User reported
Independent data
transfer mode was
much slower than
the collective data

transfer mode 230,000 rows

« Data array was tall
and thin: 230,000
rows by 6 columns

% / v/// /é / %

B -:':__ <:_'_< S <:v <:_'_ {:’ -:':__
L P
AR AR

<.:?_ ey {:.:‘_ -::?< <:_'_ {:‘_-: iy
4 G Rk
i A, A

b -

Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Debug Slow Parallel I/0 Speed(1)

* Writing to one dataset
— Using 4 processes == 4 columns
— datatype is 8-byte doubles

— 4 processes, 1000 rows == 4x1000x8 = 32,000
bytes

* % mpirun -np 4 ./a.out 1000
- Execution time: 1.783798 s.
* % mpirun -np 4 ./a.out 2000
— Execution time: 3.838858 s.

 Difference of 2 seconds for 1000 more rows =
32,000 bytes.

« Speed of 16KB/sec!!! Way too slow.

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Debug slow parallel 1/0 speed(2)

 Build a version of PHDF5 with
 ./configure --enable-debug --enable-parallel ...

 This allows the tracing of MPIO I/O calls in the
HDFS library.

 E.g., to trace
« MP| _File read xx and MPI_File write xx calls
* % setenv H5FD mpio Debug “rw”

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FOF

Debug slow parallel 1/O speed(3)

% setenv H5FD_mpio Debug 'rw’

% mpirun -np 4 ./a.out 1000

In HSFD _mpio_write
In HSFD_mpio_write
in HSFD _mpio_write
In HSFD_mpio_write

mpi_off=0 size i=96
mpi_off=0 size i=96
mpi_off=0 size i=96
mpi_off=0 size i=96

Indep.; contiguous.

in HS5FD_mpio_write mpi_off=2056 size i=8
in HSFD_mpio_write mpi_off=2048 size i=8
in HSFD_mpio_write mpi_off=2072 size i=8
in HSFD_mpio_write mpi_off=2064 size i=8
in HSFD_mpio_write mpi_off=2088 size i=8
in HS5FD_mpio_write mpi_off=2080 size i=8

» Total of 4000 of these little 8 bytes writes == 32,000 bytes.

August 12, 2014

Extreme Scale Computing PHDF5

www.hdfgroup.org

|-u: Independent calls are many and small

« Each process writes
one element of one
row, skips to next
row, write one
element, so on.

« Each process issues
230,000 writes of 8
bytes each.

230.000 rows

1%.:%{4‘”% .o .

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Debug slow parallel /0 speed (4)

% setenv H5FD _mpio_Debug 'rw’
% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.

In HSFD_mpio_write
In HSFD_mpio_write
In HSFD_mpio_write
in HSFD_mpio_write
In HSFD_mpio_write
In HSFD_mpio_write
In HSFD_mpio_write
In HSFD_mpio_write
in HSFD_mpio_write
In HSFD_mpio_write
In HSFD_mpio_write
In HSFD_mpio_write

mpi_off=0 size_1=96
mpi_off=0 size_1=96
mpi_off=0 size _1=96
mpi_off=0 size 1=96

mpi_off=3688 size i=8000
mpi_off=11688 size i=8000
mpi_off=27688 size i=8000
mpi_off=19688 size i=8000
mpi_off=96 size _1=40
mpi_off=136 size_1=544
mpi_off=680 size_1=120
mpi_off=800 Size 1=272

Execution time: 0.011599 s.

August 12, 2014

Extreme Scale Computing PHDF5 www.hdfgroup.org

|'u: Use collective mode or chunked storage

R TR PR R
: i
P,

« Collective I/O will
combine many small
iIndependent calls .
into few but bigger 230,0(50 FOWS
calls :

 Chunks of columns
speeds up too

277277
f-c‘,' o -cf-cj A L

Extreme Scale Computing PHDF5 www.hdfgroup.org

I-T Collective vs. independent write

1000
900 -
800 -
700 -
600 -
500 -

e ndependent write

400 - e==Collective write

Seconds to write

300 -
200 -
100 -

O _
0.25 0.5 1 1.88 2.29 2.75
Data size in MBs

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: CGNS Collective vs. Independent

1000

* Impact ﬁ ~ IMPRACTICAL
* CGNS was impractical at large 100 |

scales (i.e. greater then 1024 B]%FORE IMPROVEMENTS
processors) f
e Computational mesh size ,
* ~33 million elements R
e ~200 million nodes ool AFTER IMPROVEMENTS

Number of Pro:

100 -

s L — ~_ . ¢ New improvements
e B * CGNS I/O scales for large

Practical Maximum IO Bandwidth, 2.66 GiB/s e B
(Theoretical Maximum IO Bandwidth, 4 GiB/s) - R, o2

E | simulations
| Efficiently handles large I/O
from Exascale CFD

simulations

10 L

GiB/s

.
A e T]

0.1

0.01

! L |
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Number of Processes
Extreme Scale Computing PHDF5 www.hdfgroup.org

FF Collective /O in HDF5

« Set up using a Data Transfer Property List
(DXPL)

 All processes must participate in the I/O call
(H5Dread/write) with a selection (which could
be a NULL selection)

e Some cases where collective I/O is not used
even when the use asks for it:

e Data conversion
« Compressed Storage

« Chunking Storage:

* When the chunk is not selected by a certain
number of processes

Extreme Scale Computing PHDF5 www.hdfgroup.org

HY-Enabling Collective Parallel /0 with HDF5

/* Set up file access property list w/parallel I/0 access */
fa_plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fa_plist_id, comm, info);

/* Create a new file collectively */
file_id = HS5Fcreate(filename, HS5F_ACC_TRUNC,
H5P_DEFAULT, fa_plist_id);

/* <omitted data decomposition for brevity> */

/% Set up data transfer property list w/collective MPI-IO */
dx_plist_id = HS5Pcreate(H5P_DATASET_XFER) ;
H5Pset_dxpl_mpio(dx_plist_id, H5FD_MPIO_COLLECTIVE);

/* Write data elements to the dataset */

status = H5Dwrite(dset_id, HS5T_NATIVE_INT,
memspace, filespace, dx_plist_id, data);

Extreme Scale Computing PHDF5 www.hdfgroup.org

FF Collective /O in HDF5

« Can query Data Transfer Property List (DXPL)
after 1/O for collective |/O status:
« H5Pget mpio actual io mode
 Retrieves the type of I/O that HDF5 actually
performed on the last parallel /O call

« H5Pget mpio no collective cause

* Retrieves local and global causes that broke
collective 1/O on the last parallel /O call

« H5Pget mpio actual chunk opt mode

 Retrieves the type of chunk optimization that
HDF5 actually performed on the last parallel 1/0
call. This is not necessarily the type of
optimization requested

Extreme Scale Computing PHDF5 www.hdfgroup.org

EFFECT OF HDF5 STORAGE

I-Q: Contiguous storage

 Metadata header separate from dataset data
« Data stored in one contiguous block in HDF5 file

Metadata cache

Dataset header

Dataset data

Datatype
Dataspace

Attributes

Application memory

— |

|

File

Dataset data

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

I-u: On a parallel file system

File

! 3 1 1

OST 1 OST 2 OST 3 OST 4

The file is striped over multiple OSTs depending on
the stripe size and stripe count that the file was
created with.

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FHF Chunked storage

« Data is stored in chunks of predefined size

« Two-dimensional instance may be referred to as data
tiling
« HDFS5 library writes/reads the whole chunk

Contiguous Chunked

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-!J= Chunked storage (cont.)

 Dataset data is divided into equally sized blocks (chunks).
- Each chunk is stored separately as a contiguous block in

HDF5 file.
Metadata cache Dataset data

Dataset header , A ITBI1CID

e uJ

Dataspace

Attributos Chunk

Application memory
File |header (i3nhduenxk 1A 1C 1B 1B

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FOF

On a parallel file system

File

header

Chunk
index

A

B

P 1

OST 1 OST 3

The file is striped over multiple OSTs depending on
the stripe size and stripe count that the file was

created with

August 12, 2014

OST 2

Extreme Scale Computing PHDF5

!

OST 4

www.hdfgroup.org

|-ﬂ: Which is better for performance?

* |t depends!!
 Consider these selections:

 If contiguous: 2 seeks If contiguous: 16 seeks
 If chunked: 10 seeks If chunked: 4 seeks

Add to that striping over a Parallel File System, which
makes this problem very hard to solve!

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Chunking and hyperslab selection

P1 P2 P3

i a

* When writing or reading, try to use hyperslab
selections that coincide with chunk boundaries.

* |If not possible, HDF5 provides some options

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Parallel /0 on chunked datasets

* Multiple options for performing I/O when
collective:

* Operate on all chunks in one collective |/O
operation: “Linked chunk 1/O”

« Operate on each chunk collectively: “Multi-
chunk 1/O”

» Break collective I1/O and perform |/O on each
chunk independently (also in “Multi-chunk [/O”
algorithm)

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FHF Linked chunk 1/O

chunk 1 chunk 2 chunk 3 chunk 4
|- +F =

chunk 1 chunk 2 chunk 3 chunk 4
' e B

chunk 1 chunk 2 chunk 3 chunk 4

Cobective View - .ﬁ. ' —> - —> .

« One MPI Collective I/O Call

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FF Multi-chunk 1/0O

» Collective I/O per chunk

* Determine for each chunk if enough processes
nave a selection inside to do collective 1/O

* |If not enough, use independent I/O

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Decision making

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

EFFECT OF HDF5 METADATA
CACHE

HF PHDF5 and Metadata

 Metadata operations:
« Creating/removing a dataset, group, attribute, etc...
+ Extending a dataset’s dimensions
* Modifying group hierarchy
* efc ...

 All operations that modify metadata are collective,
l.e., all processes have to call that operation:

* If you have 10,000 processes running your
application, and one process needs to create a
dataset, ALL processes must call H5Dcreate to
create 1 dataset.

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Space allocation

 Allocating space at the file’'s EOA is very simple in
serial HDF5 applications:

* the EOA value begins at offset 0 in the file

* when space is required, the EOA value is
incremented by the size of the block requested.

« Space allocation using the EOA value in parallel
HDF5 applications can result in a race condition if
processes do not synchronize with each other:

« multiple processes believe that they are the sole
owner of a range of bytes within the HDF5 file.

« Solution: Make it Collective

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Example

« Consider this case, where 2 processes want
to create a dataset each.

P1 P2

HS5Dcreate(D1) HS5Dcreate(D2)

Each call has to allocate space in file to store
the dataset header.

Bytes 4 to 10 in the file are Bytes 4 to 10 in the file are
free free

Conflict!

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Example

P1 P2

H5Dcreate(D1) H5Dcreate(D1)

Allocate space in file to store the dataset header.
Bytes 4 to 10 in the file are free.

Create the dataset.

HS5Dcreate(D2) HS5Dcreate(D2)
Allocate space in file to store the dataset header.
Bytes 11 to 17 in the file are free.

Create the dataset.

August 12, 2014 www.hdfgroup.org

|-u: Metadata cache

 To handle synchronization issues, all HDF5
operations that could potentially modify the
metadata in an HDF5 file are required to be
collective

* A list of those routines is available in the HDF5
reference manual (

http://www.hdfgroup.org/HDF5/doc/RM/
CollectiveCalls.html)

* |f those operations are not collective, how can
each process manage its Metadata Cache?

* Do not have one, i.e. always access metadata
directly from disk

 Disastrous for performance as metadata is usually
very small

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-ﬂ: Managing the metadata cache

 All operations that modify metadata in the HDF5
file are collective:

* All processes will have the same dirty metadata
entries in their cache (i.e., metadata that is
inconsistent with what is on disk).

* Processes are not required to have the same clean

metadata entries (i.e., metadata that is in sync with
what is on disk).

 Internally, the metadata cache running on process
0 is responsible for managing changes to the
metadata in the HDF5 file.

 All the other caches must retain dirty metadata until
the process 0 cache tells them that the metadata is
clean (i.e., on disk).

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Example

 Metadata Cache is clean for all processes:

PO/ P1 P2 (P3
E1 E1 E4

E12
E2 E7 E6 E32
E3 E8 E1 E1
E4 E2 ES E4

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FOF

Example

 All processes call HoGcreate that modifies
metadata entry E3 in the file:

August 12, 2014

PO

E3
E1
E2
E4

P1 P2
E3 E3
E1 E4
E7 E6
E8 E1

Extreme Scale Computing PHDF5

P3

E3
E12
E32
E1

www.hdfgroup.org

FOF

Example

* All processes call HoDcreate that modifies
metadata entry E2 in the file:

August 12, 2014

PO

E3
E2
E1
E4

P1

E3
E2
E1
E7

P2

E3
E2
E4
E6

Extreme Scale Computing PHDF5

P3

E3
E2
E12
E32

www.hdfgroup.org

|-u: Example

* Process 0O calls H5Dopen on a dataset
accessing entry ES

PO P P2 P3
E5 E3 E3 E3
E3 E2 E2 E2
E2 E1 E4 E12
E1 E7 EG E32

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Flushing the cache

* |nitiated when:

* The size of dirty entries in cache exceeds a
certain threshold

* The user calls a flush
* The actual flush of metadata entries to disk is
currently implemented in two ways:
« Single Process (Process 0) write
* Distributed write

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Single Process (Process 0) write

» All processes enter a synchronization point.

* Process 0 writes all the dirty entries to disk
while other processes wait and do nothing

* Process 0 marks all the dirty entries as clean

* Process 0 broadcasts the cleaned entries to all
processes that marks them as clean too

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Distributed write

» All processes enter a synchronization point.

 Process 0 broadcasts the metadata that needs
to be flushed to all processes

» Using a distributed algorithm each determines
what part of the metadata cache entries it
needs to write, and writes them to disk
independently

» All processes mark the flushed metadata as
clean

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

PARALLEL TOOLS

I-Q: Parallel tools

* hoperf

* Performance measuring tool showing
/O performance for different I/O APls

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: hSperf

* An |/O performance measurement tool
» Tests 3 File I/O APls:

« POSIX I/O (open/write/read/close...)

 MPI-I/O (MPI_File {open,write,read,close})

« HDF5 (H5Fopen/H5Dwrite/H5Dread/HS5Fclose)
* An indication of |/O speed upper limits

Extreme Scale Computing PHDF5 www.hdfgroup.org

= Useful parallel HDF5 links

 Parallel HDF information site
http://www.hdfgroup.org/HDFS5/PHDFS/

» Parallel HDF5 tutorial available at
http://www.hdfgroup.org/HDF5/Tutor/

 HDF Help emall address
help@hdfgroup.org

Extreme Scale Computing PHDF5 www.hdfgroup.org

UPCOMING FEATURES IN
HDF5

H' = PHDF5 Improvements in Progress

* Multi-dataset read/write operations

* Allows single collective operation on multiple
datasets

« Similar to PnetCDF “write-combining” feature

« H5Dmulti_read/write(<array of datasets,
selections, etc>)

* Order of magnitude speedup (see next slides)

Extreme Scale Computing PHDF5 www.hdfgroup.org

= H5Dwrite vs. H5Dwrite_muilti

Chunked floating-point datasets

9
58
S 7
o 6
7))
£
“E’ 4 ==H5Dwrite
=3 ==H5Dwrite_multi
=

O h | | |

50 100 200 400 800
Number of datasets Rank = 1
Dims = 200

Chunk size = 20

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

= H5Dwrite vs. H5Dwrite_muilti

Contiguous floating-point datasets

(=]

oo

/
/
/
/ =H5Dwrite

==H5Dwrite_multi

~J

(=}]

3

1N

Write time in seconds
W

N

-—

- - Rank = 1
0 ? : 'Dims — 200
400 800 1600 3200 6400

Number of datasets

Extreme Scale Computing PHDF5 www.hdfgroup.org

H' = PHDF5 Improvements in Progress

* Avoid file truncation

 File format currently requires call to truncate
file, when closing

« Expensive in parallel (MPI_File set size)
« Change to file format will eliminate truncate call

Extreme Scale Computing PHDF5 www.hdfgroup.org

H' = PHDF5 Improvements in Progress

» Collective Object Open
* Currently, object open is independent

 All processes perform |/O to read metadata
from file, resulting in I/O storm at file system

« Change will allow a single process to read, then
broadcast metadata to other processes

* Virtual Object Layer (VOL)
* |/O Autotuning

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: CGNS cgp_close Improvements

CGNS Close
Cetus - GPFS
45
40
35 Patched
30 “-Orig
8 25
c
]
& 20
15
10
5
0 - :
128 512 1024 2048 4096 8192 12284 16384
Number of Ranks

Extreme Scale Computing PHDF5 www.hdfgroup.org

VIRTUAL OBJECT LAYER
(VOL)

|-u: Virtual Object Layer (VOL)

e Goal

- Provide an application with the HDF5 data model
and API, but allow different underlying storage
mechanisms

* New layer below HDF5 API

- Intercepts all API calls that can touch the data on
disk and routes them to a VOL plugin

* Potential VOL plugins:

— Native HDF5 driver (writes to HDFS5 file)

- Raw driver (maps groups to file system directories
and datasets to files in directories)

- Remote driver (the file exists on a remote machine)

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Virtual Object Layer
_HDFSAPL

Virtual Object Layer

/

5 P : \ e VOL plugins
Raw Native Metadata Remote
Mapping (H5) Server

Virtual File Layer RerTTOte
machine(s)
VFLdrivers
=
mpiio posix sec split

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

HF Why not use the VFL?

* VFL is implemented below the HDF5
abstract model

— Deals with blocks of bytes in the storage
container

— Does not recognize HDF5 objects nor abstract
operations on those objects

* VOL is layered right below the API layer to
capture the HDF5 model

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

l'u: Sample API Function Implementation

hid t HS5Dcreate2 (hid t loc id, const char *name,
hid t type id, hid_t space_id, hid t 1lcpl id, hid t
dcpl id, hid t dapl id) {

/* Check arguments */

/* call corresponding VOL callback for H5Dcreate */
dset_id = H5 VOL _create (TYPE_DATASET, ..);
/*

Return result to user (yes the dataset is created,
or no here is the error)
*/

return dset id;

¥

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

Work in progress: VOL

CONSIDERATIONS

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FF VOL Plugin Selection

» Use a pre-defined VOL plugin:
hid_t fapl = H5Pcreate(H5P_FILE_ACCESS);
H5Pset fapl mds vol(fapl, ..);
hid t file = H5Fcreate("foo.h5", .., .., fapl);
H5Pclose(fapl);

» Register user defined VOL plugin:
H5VOLregister (H5VOL class t *cls)
H5VOLunregister (hid t driver id)
H5Pget plugin_info (hid t plist id)

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Interchanging and Stacking Plugins

* |Interchanging VOL plugins
« Should be a valid thing to do
» User’'s responsibility to ensure plugins coexist

« Stacking plugins

HDF5 API

VOL

remote

« Stacking should make sense.

* For example, the first VOL plugin in a
stack could be a statistics plugin, that
does nothing but gather information on
what API calls are made and their
corresponding parameters.

August 12, 2014

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Mirroring

« Extension to stacking

« HDF5 API calls are forwarded through a mirror plugin to
two or more VOL plugins

HDF5 API

Mirror

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|.u:

Sample Plugins (l)

 Different File Format plugins

User Level Application
(Using HDF5 Data Model)

HDFS5 Library

H5A H50
H5G H5L

H5F H5D “

August 12, 2014

HDF5 Netcdf3
Plugin Plugin
1 I B

netcdf3 file

1 I Etc..

XML file

1' OR

HDFS5 file

Extreme Scale Computing PHDF5

www.hdfgroup.org

|-u: Sample Plugins: Metadata Server

:::O\ Application processes

Compute Nodes

H5F H5D H5A
H50 H5G H5L

HDF5 container

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

HF Raw Plugin

* The flexibility of the virtual object layer
provides developers with the option to
abandon the single file, binary format like the
native HDF5 implementation.

* A “raw’ file format could map HDF5 objects
(groups, datasets, etc ...) to file system objects
(directories, files, etc ...).

* The entire set of raw file system objects
created would represent one HDF5 container.

» Useful to the PLFS package (
http://institute.lanl.gov/plfs/)

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

HF Remote Plugin

* A remote VOL plugin would allow access to
files located remotely.

* The plugin could have an HDF5 server module
located where the HDF5 file resides and

listens to incoming requests from a remote
process.

e Use case: Remote visualization

* Large, remote datasets are very expensive to
migrate to the local visualization system.

* It would be faster to just enable in situ

visualization to remotely access the data using
the HDF5 API.

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Implementation

« VOL Class

— Data structure containing general variables and
a collection of function pointers for HDF5 API
calls

* Function Callbacks
- APl routines that potentially touch data on disk

- H5F, H58D, H5A, H50, H5G, HS5L, and H5T

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Implementation

* We will end up with a large set of function
callbacks:

« Lump all the functions together into one data
structure OR

« Have a general class that contains all common
functions, and then children of that class that
contain functions specific to certain HDF5
objects OR

* For each object have a set of callbacks that are
specific to that object (This is design choice that
has been taken).

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FHF Filters

* Need to keep HDF5 filters in mind
 Where is the filter applied, before or after the
VOL plugin?

- Logical guess now would be before, to avoid
having all plugins deal with filters

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Current status of VOL

¢ ?

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

Research Focus -

AUTOTUNING

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-ﬂ: Autotuning Background

« Software Autotuning:

« Employ empirical techniques to evaluate a set of
alternative mappings of computation kernels to an
architecture and select the mapping that obtains the
best performance.

« Autotuning Categories:

« Self-tuning library generators such as ATLAS, PhiPAC
and OSKI for linear algebra, etc.

« Compiler-based autotuners that automatically generate
and search a set of alternative implementations of a
computation

* Application-level autotuners that automate empirical
search across a set of parameter values proposed by
the application programmer

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

HF HDF5 Autotuning

 Why?
* Because the dominant I/O support request at
NERSC is poor I/O performance, many/most of

which can be solved by enabling Lustre
striping, or tuning another I/O parameter

« Scientists shouldn’t have to figure this stuff out!
 Two Areas of Focus:

« Evaluate techniques for autotuning HPC
application 1/O

* File system, MPI, HDF5
« Record and Replay HDF5 |/O operations

Extreme Scale Computing PHDF5 www.hdfgroup.org

I-u: Autotuning HPC 1/O

« Goal: Avoid tuning each application to each
machine and file system

* Create |I/O autotuner library that can inject “optimal”
parameters for I/O operations on a given system

« Using Darshan* tool to create wrappers for HDF5
calls

* Application can be dynamically linked with 1/O
autotuning library

* No changes to application or HDF5 library
« Using several HPC applications currently:
* VPIC, GCRM, Vorpal

* _ http://www.mcs.anl.gov/research/projects/darshan/

Extreme Scale Computing PHDF5 www.hdfgroup.org

I-u: Autotuning HPC 1/O

* |nitial parameters of interest

* File System (Lustre): stripe count, stripe unit

« MPI-1/O: Collective buffer size, coll. buffer
nodes

 HDF5: Alignment, sieve buffer size

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Autotuning HPC I/O

The whole space visualized

cb_nodes I l | l |

alignment BEFLbEER LY/
SHuputsize () M

August 12, 2014 Extreme Scale Computing PHDF5

r 23040

1048

128 128 B 576 B

www.hdfgroup.org

|-u: Autotuning HPC 1/O

* Autotuning Exploration/Generation Process:

* |terate over running application many times:
* Intercept application’s |/O calls
* Inject autotuning parameters
* Measure resulting performance

* Analyze performance information from many
application runs to create configuration file,

with best parameters found for application/
machine/file system

August 12, 2014 Extreme Scale Computing PHDF5

www.hdfgroup.org

I-u: Autotuning HPC I/O

» Using the I/O Autotuning Library:
« Dynamically link with 1/O autotuner library

* |/O autotuner library automatically reads
parameters from config file created during

exploration process

* |/O autotuner automatically injects autotuning
parameters as application operates

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

I-u: Autotuning HPC 1/O

Smaller set of space visualized

srpe_Court
e - 17

cb_nodes
b_buffer_size (MB) 2 4 8 16 64 128 M \
alignment 4288 1048576

siv_buf_size (KB) 128 256 NTB

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Autotuning HPC 1/O

Result of Running Our Script using 72 Configuration files on 32 Cores/1 Node of
Ranger

1200

1000 t

AN M|

800

Time(s)

600 - y y y Y Y C ==CP_F_HDF_WRITE_TIME

400 v
Time = 540.08 s
Configuration # = 68

200

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71
Different Configurations

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Autotuning HPC /O

Configuration #68

<High_Level_IO_Library=

<sieve_buf_size> 524280 </sieve_buf_size>

alignment> 262144,524288 </alignment>

<!—-— HS5Pset_alignment function gets 2 args: (Threshold, Alignment) -
</High_Level_IO0O_Library=

<Midd leware_Layer=>
<cb_buffer_size> 134217728 </cb_buffer_size>
=cb_nodes> 16 </cb_nodes>

aﬁir;erﬁ;;;:turﬁ 32 </striping_factor=
<striping_unit> 8388608 </striping_unit>

</Parallel_File_System>

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

FF Autotuning in HDF5

* “Auto-Tuning of Parallel IO Parameters for
HDF5 Applications”, Babak Behzad, et al,

poster @ SC12

» "Taming Parallel /O Complexity with Auto-
Tuning”, Babak Behzad, et al, SC13

Extreme Scale Computing PHDF5 www.hdfgroup.org

|-u: Autotuning HPC 1/O

* Remaining research:

« Determine “speed of light” for I/O on system
and use that to define “good enough”
performance

« Entire space is too large to fully explore, we are
now evaluating genetic algorithm techniques to
help find “good enough” parameters

* How to factor out “unlucky” exploration runs

« Methods for avoiding overriding application
parameters with autotuned parameters

August 12, 2014 Extreme Scale Computing PHDF5 www.hdfgroup.org

|‘T The HDF Group

Thank You!

Questions?

Extreme Scale Computing PHDF5 www.hdfgroup.org

