Visualization and Analysis of Massive Data with VisIt

ATPESC 2015
Argonne Training Program on Extreme-Scale Computing
Wednesday August 12, 2015

Cyrus Harrison
Lawrence Livermore National Laboratory
cyrush@llnl.gov
Tutorial Outline

- VisIt Project Intro [10 min]
- Guided tour of VisIt [20 min]
- Hands on with an Aneurysm Simulation [30 min]
Tutorial Resources

- Tutorial Prep:

- Example Datasets:
 http://visitusers.org/index.php?title=Tutorial_Data

- Blood Flow Hands-on:

- More Tutorial Materials (From past Tutorials):
 http://visitusers.org/index.php?title=VisIt_Tutorial

- Cyrus’ Email: cyrush@llnl.gov
Aneurysm Simulation Data

Simulated using the LifeV (http://www.lifev.org/) finite element solver.

Available thanks to:

Gilles Fourestey and Jean Favre
Swiss National Supercomputing Centre

http://www.cscs.ch/
VisIt Project Introduction
VisIt is an open source, turnkey application for data analysis and visualization of mesh-based data.

- Production end-user tool supporting scientific and engineering applications.
- Provides an infrastructure for parallel post-processing that scales from desktops to massive HPC clusters.
- Source released under a BSD style license.
VisIt supports a wide range of use cases.

- **Data Exploration**
- **Comparative Analysis**
- **Quantitative Analysis**
- **Visual Debugging**
- **Presentation Graphics**
Examples of VisIt’s visualization capabilities.
VisIt uses MPI for distributed-memory parallelism on HPC clusters.

Full Dataset (27 billion total cells)

3072 sub-grids (each 192x129x256 cells)

We are enhancing VisIt’s pipeline infrastructure to support threaded processing and many-core architectures.
VisIt is a vibrant project with many participants.

- The VisIt project started in 2000 to support LLNL’s large scale ASC physics codes.

- The project grew beyond LLNL and ASC with research and development from DOE SciDAC and other efforts.

- VisIt is now supported by multiple organizations:
 - LLNL, LBNL, ORNL, UC Davis, Univ of Utah, Intelligent Light, ...

- Over 75 person years of effort, 1.5+ million lines of code.
VisIt’s capabilities are constantly being expanded.

Ongoing + Recent Development Efforts:

- Evaluation of EAVL / VTK-M for batch In-situ processing
 - http://m.vtk.org/index.php/Main_Page
 - http://ft.ornl.gov/eavl/

- Built-in SeedMe Python support for sharing visualizations
 - http://seedme.org/

- Support for High Order Finite Element Meshes via MFEM
 - https://code.google.com/p/mfem/
Project Introduction

VisIt scales well on current HPC platforms.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Architecture</th>
<th>Problem Size</th>
<th># of Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>X86_64</td>
<td>20,001^3 (8 T cells)</td>
<td>12K</td>
</tr>
<tr>
<td>Dawn</td>
<td>BG/P</td>
<td>15,871^3 (4 T cells)</td>
<td>64K</td>
</tr>
<tr>
<td>Franklin</td>
<td>Cray XT4</td>
<td>12,596^3 (2 T cells)</td>
<td>32K</td>
</tr>
<tr>
<td>JaguarPF</td>
<td>Cray XT5</td>
<td>12,596^3 (2 T cells)</td>
<td>32K</td>
</tr>
<tr>
<td>Juno</td>
<td>X86_64</td>
<td>10,000^3 (1 T cells)</td>
<td>16K</td>
</tr>
<tr>
<td>Franklin</td>
<td>Cray XT4</td>
<td>10,000^3 (1 T cells)</td>
<td>16K</td>
</tr>
<tr>
<td>Ranger</td>
<td>Sun</td>
<td>10,000^3 (1 T cells)</td>
<td>16K</td>
</tr>
<tr>
<td>Purple</td>
<td>IBM P5</td>
<td>8,000^3 (0.5 T cells)</td>
<td>8K</td>
</tr>
</tbody>
</table>

Scaling Studies of Isosurface Extraction and Volume Rendering (2009)

VisIt is also used daily by domain scientists.
The VisIt team focuses on making a robust, usable product for end users.

- Regular releases (~ 6 / year)
 - Executables for all major platforms
 - End-to-end build process script `build_visit`

- User Support and Training
 - visitusers.org, wiki for users and developers
 - Email lists: visit-users, visit-developers
 - Beginner and advanced tutorials
 - VisIt class with detailed exercises

- Documentation
 - "Getting data into VisIt" manual
 - Python interface manual
 - Users reference manual

Slides from the VisIt class
VisIt provides a flexible data model, suitable for many application domains.

- **Mesh Types:**
 - Point, Curve, 2D/3D Rectilinear, Curvilinear, Unstructured
 - Domain Decomposed, AMR
 - Time Varying
 - Primarily linear element support, limited quadratic element support

- **Fields:**
 - Scalar, Vector, Tensor, Material volume fractions, Species

VisIt currently supports over 110 file formats.
VisIt employs a parallelized client-server architecture.

Local Components

- VisIt Viewer
 - VisIt GUI
 - VisIt CLI
 - Python Clients
 - Java Clients

Parallel Cluster

- VisIt Engine
 - Data Plugin

MPI

- VisIt Engine
 - Data Plugin

Data Flow Network

- Filter
- Filter
- Filter

Data

(Data or Files)

Project Introduction
VisIt automatically switches to a scalable rendering mode for large data sets.

- Rendering Modes:
 - Local (hardware)
 - Remote (software or hardware)

- Beyond surfaces:
 - VisIt also provides scalable volume rendering.
VisIt’s infrastructure provides a flexible platform for custom workflows.

- **C++ Plugin Architecture**
 - Custom File formats, Plots, Operators
 - Interface for custom GUIs in Python, C++ and Java

- **Python Interfaces**
 - Python scripting and batch processing
 - Data analysis via Python Expressions and Queries.

- **Libsim library**
 - Enables coupling of simulation codes to VisIt for in situ visualization.
VisIt is used as a platform to deploy visualization research.

- **Research Collaborations:**
 - 2006 – 2011
 - 2012 – 2017

- **Research Focus:**
 - Next Generation Architectures
 - Parallel Algorithms
 - In-Situ Processing

- **Algorithms research:**
 - How to efficiently calculate particle paths in parallel.

- **Scaling research:**
 - Scaling to 10Ks of cores and trillions of cells.

- **Methods research:**
 - How to incorporate statistics into visualization.

- **Reconstructed material interfaces for visualization**

- **Visualization and Analysis Enabled Materialization of Multilevel Data**
VisIt: What’s the Big Deal?

- Everything works at scale
- Robust, usable tool
- Features that span the “power of visualization”:
 - Data Exploration
 - Confirmation
 - Communication
- Features for different kinds of users:
 - Visualization Experts
 - Code Developers
 - Code Consumers

Healthy future: Vibrant Developer and User Communities
Resources

- **User resources:**
 - Main website: http://www.llnl.gov/visit
 - Wiki: http://www.visitusers.org
 - Email: visitusers@ornl.gov

- **Development resources:**
 - Email: visit-developers@ornl.gov
 - SVN: http://portal.nersc.gov/svn/visit
Hands On Visualizations
30 minute Hands on visualization of a Blood Flow Simulation.

In-depth hands on visualization of a Water Flow Simulation.

Additional Material for Lunch or Dinner Hands-on sessions:

[Supporting Slides]
Visualization Techniques for Mesh-based Simulations
Terminology

- **Meshes**: discretization of physical space
 - Contains “zones” / “cells” / “elements”
 - Contains “nodes” / “points” / “vertices”
 - VisIt speak: zone & node

- **Fields**: variables stored on a mesh
 - **Scalar**: 1 value per zone/node
 - Example: pressure, density, temperature
 - **Vector**: 3 values per zone/node (direction)
 - Example: velocity
 - Note: 2 values for 2D, 3 values for 3D
 - More fields discussed later…
Pseudocolor

- Maps scalar fields (e.g., density, pressure, temperature) to colors.
Contour / Isosurface
Volume rendering

VisIt can combine volume rendering and opaque geometry
Particle advection: the foundation of flow visualization

- Displace massless particle based on velocity field

- $S(t) = \text{position of curve at time } t$
 - $S(t_0) = p_0$
 - t_0: initial time
 - p_0: initial position
 - $S'(t) = v(t, S(t))$
 - $v(t, p)$: velocity at time t and position p
 - $S'(t)$: derivative of the integral curve at time t

This is an ordinary differential equation
Streamlines

- Streamlines – instantaneous paths
- Pathlines – time dependent paths
Meshes

- All data in VisIt lives on a mesh
- Discretizes space into points and cells
 - (1D, 2D, 3D) + time
 - Topological dimension need not match spatial dimension (e.g. 2D surface in 3D space)
- Provides a place for data to be located
- Defines how data is interpolated
Variables

- Scalars, Vectors, Tensors
- Associated with points or cells of a mesh
 - Points: linear interpolation
 - Cells: piecewise constant
- Can have different dimensionality than the mesh (e.g. 3D vector data on a 2D mesh)
Materials

- Describes disjoint spatial regions at a sub-grid level
- Volume/area fractions
- VisIt will do high-quality sub-grid material interface reconstruction
Species

- Similar to materials, describes sub-grid variable composition
 - Example: *Material “Air” is made of species “N₂”, “O₂”, “Ar”, “CO₂”, etc.*

- Used for mass fractions

- Generally used to weight other scalars (e.g. partial pressure)
Parallel Meshes

- Provides aggregation for meshes
- A mesh may be composed of large numbers of mesh “blocks”
- Allows data parallelism
AMR meshes

- Mesh blocks can be associated with patches and levels
- Allows for aggregation of meshes into AMR hierarchy levels
AMR Example: Image vs. Data Resolution
Data representation for mesh-based HPC simulations
VisIt’s Core Abstractions
VisIt’s core abstractions

- **Databases**: How datasets are read
- **Plots**: How you render data
- **Operators**: How you manipulate data
- **Expressions**: Mechanism for generating derived quantities
- **Queries**: How to access quantitative information
Examples of VisIt Pipelines

- Databases: how you read data
- Plots: how you render data
- Operators: how you transform/manipulate data
- Expressions: how you create new fields
- Queries: how you pull out quantitative information

Database

Open a database, which reads from a file
(example: open file1.hdf5)

Plot

Make a plot of a variable in the database
(example: Volume plot)
Examples of VisIt Pipelines

- **Databases**: how you read data

- **Plots**: how you render data

- **Operators**: how you transform/manipulate data

- **Expressions**: how you create new fields

- **Queries**: how you pull out quantitative information

- **Database**: Open a database, which reads from a file (example: open file1.hdf5)

- **Operator**: Apply an operator to transform the data (example: Slice operator)

- **Plot**: Plot a variable in the database (example: Pseudocolor plot)
Examples of VisIt Pipelines

- Databases: how you read data
- Plots: how you render data
- Operators: how you transform/manipulate data
- Expressions: how you create new fields
- Queries: how you pull out quantitative information

Open a database, which reads from a file (example: open file1.hdf5)

Apply an operator to transform the data (example: Slice operator)

Apply a second operator to transform the data (example: Elevate operator)

Plot a variable in the database (example: Pseudocolor plot)
Examples of VisIt Pipelines

- **Databases:** how you read data
 - Open a database, which reads from a file (example: open file1.hdf5)

- **Plots:** how you render data
 - Create derived quantities from fields in the file (example: magnitude(velocity))
 - Plot the expression variable (example: Pseudocolor plot)

- **Operators:** how you transform/manipulate data

- **Expressions:** how you create new fields

- **Queries:** how you pull out quantitative information
Examples of VisIt Pipelines

- Databases: how you read data
- Plots: how you render data
- Operators: how you transform/manipulate data
- Expressions: how you create new fields
- Queries: how you pull out quantitative information

Database
- Open a database, which reads from a file (example: open file1.hdf5)

Plot
- Plot a field from the file (example: density + Pseudocolor plot)

Query
- Extract quantitative information (example: integrate density to find mass)
Examples of VisIt Pipelines

- Databases: how you read data
 - Open a database, which reads from a file (example: open file1.hdf5)

- Plots: how you render data
 - Create derived quantities from fields in the file (example: magnitude(velocity))

- Operators: how you transform/manipulate data
 - Apply an operator to transform the data (example: Slice operator)

- Expressions: how you create new fields
 - Apply a second operator to transform the data (example: Elevate operator)

- Queries: how you pull out quantitative information
 - Plot a field (example: speed + Pseudocolor plot)
 - Extract quantitative information (example: maximum speed over cross-section)
Practical Tips for Using VisIt
Practical Tips for Using VisIt

- How to get VisIt to read your data
- How to get help when you run into trouble
How to get VisIt to read your data.

- There is an extensive manual on this topic: “Getting Data Into VisIt”

 https://wci.llnl.gov/simulation/computer-codes/visit/manuals

- Three ways:
 - Use a known format
 - Write a file format reader
 - In situ processing
File formats that VisIt supports

- **110+ Total Readers**: ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, CLAW, EnSight, ENZO, Exodus, FLASH, Fluent, GDAL, Gadget, Images (TIFF, PNG, etc), ITAPS/MOAB, LAMMPS, NASTRAN, NETCDF, Nek5000, OpenFOAM, PLOT3D, PlainText, Pixie, Shapefile, Silo, Tecplot, VTK, Xdmf, Vs, and many more

- Some readers are more robust than others.
 - For some formats, support is limited to flavors of a file a VisIt developer has encountered previously (e.g. Tecplot).
File formats that VisIt supports

- 110+ Total Readers: ADIOS, BOV, Boxlib, CCM, CGNS, Chombo, Exodus, FLASH (TIFF, PNG, etc), NASTRAN, NETCDF, PLOT3D, Plaintext, Tecplot, VTK, and many more.

- Some readers are more robust than others.
 - For some formats, support is limited to flavors of a file a VisIt developer has encountered previously (e.g. Tecplot).
Application Code Formats

- ANSYS
- Cale
- CASTRO
- CCM
- DDCMD
- Dyna3D
- Enzo
- FLASH
- FVCOM
- Gadget
- LAMMPS
- NASTRAN
- Nek5000
- OVERFLOW
- PATTRAN
- Pixie
- S3D
- ZeusMP
Application Toolkit Formats

- Adventure I/O
- BoxLib
- Chombo
- ITAPS
- OpenFOAM
- SAMRAI
- Spheral
General Scientific Data Formats

- ADIOS
- CGNS
- Exodus
- HDF5
- H5Part
- NETCDF
- PDB
- Silo
- XDMF

Common Structure

Conventions

API

Array Storage I/O

Silo / Ale3d
File formats that VisIt supports

- Common array writing libraries:
 - NETCDF
 - VisIt reader understands many (but not all) conventions
 - HDF5
 - Pixie is most general HDF5 reader
 - Many other HDF5 readers

- Xdmf: specify an XML file that describes semantics of arrays in HDF5 file

- VizSchema (Vs): add attributes to your HDF5 file that describes semantics of the arrays.
Silo file format

- Silo is a mature, self-describing file format that deals with multi-block data.
- It has drivers on top of HDF5 and “PDB”.
- Fairly rich data model
- More information:
 - https://wci.llnl.gov/simulation/computer-codes/silo
Welcome to Silo

A mesh and field I/O library and scientific database

- Structured Rectilinear Mesh
- Gridless Point Mesh
- Structured (Curvilinear) Mesh
- Arbitrary Subsets
- Silex browser for Silo files
- Constructive Solid Geometry (CSG) Mesh
- Unstructured Zoo (UCD) Mesh
- Adaptive Mesh Refinement (AMR) Mesh
- Mixing Materials
- Arbitrary Polyhedral Mesh
- XY Curve
Specialized Scientific Data Formats

- BOW
- FITS
- GDAL
- MatrixMarket
- ProteinDataBank
- ESRI Shapefile
- XYZ

DEM from GDAL

Protein Data Bank
Visualization Formats

- VTK
- EnSight
- GMV
- Plot3D
- Tecplot
- Vis5D
- Xmdv
VTK File Format

- The VTK file format has both ASCII and binary variants.

- Easiest way to write VTK files: use VTK modules
 - ... but this creates a dependence on the VTK library

- You can also try to write them yourself, but this is an error prone process.

- Third option: visit_writer
VisIt Writer writes VTK files

- It is a “library” (actually a single C file) that writes VTK-compliant files.
 - The typical path is to link visit_writer into your code and write VTK files

- There is also a Python binding for visit_writer.
 - The typical path is to write a Python program that converts from your format to VTK

- Both options are short term: they allow you to play with VisIt on your data. If you like VisIt, then you typically formulate a long term file format strategy.

- More information on visit_writer:
import visit_writer
import math
import sys

nX = 20
nY = 20
conn = []
for i in range(nX-1):
 for j in range(nY-1):
 pt1 = j*(nX) + i;
 pt2 = j*(nX) + i+1;
 pt3 = (j+1)*(nX) + i+1;
 pt4 = (j+1)*(nX) + i;
 conn.append(["quad", pt1, pt2, pt3, pt4])

pts = []
rad = []
for i in range(nX):
 for j in range(nY):
 pts.extend([[float(i), float(j), 0]])
 rad.append(math.sqrt(i*i + j*j))

var_datum = ["radius", 1, 1, rad]
vars = [var_datum]
visit_writer.WriteUnstructuredMesh("ugrid.vtk", 0, pts, conn, vars)
sys.exit()
Graphics Formats

- Image
 - (PNG, JPEG, TIFF, BMP, etc.)
- RAW
- STL
- Wavefront OBJ
General ASCII Data Formats

- Curve2D
- Lines
- PlainText
- Point3D
Practical Tips for Using VisIt

- How to get VisIt to read your data
- How to get help when you run into trouble
How to get help when you run into trouble

- **FAQ**
 - https://wci.llnl.gov/simulation/computer-codes/visit/faq

- **VisIt Users Mailing List**
 - Address: visit-users@elist.ornl.gov
 - Info: https://elist.ornl.gov/mailman/listinfo/visit-users
 - Archive: https://elist.ornl.gov/pipermail/visit-users/

- **VisIt Users Wiki**
 - http://www.visitusers.org

- **VisIt Users Forum**
 - http://visitusers.org/forum/YaBB.pl

- **Priority support for specific user groups:**
 - VisIt-help-{XYZ} Mailing Lists

- **Reference Manuals**
 - https://wci.llnl.gov/simulation/computer-codes/visit/manuals
FAQ: https://wci.llnl.gov/simulation/computer-codes/visit/faqs
VisIt-users Mailing List

- You may only post to mailing list if you are also a subscriber.
- Approximately 400 recipients, approx. 300 posts per month.
- Developers monitor mailing list, strive for 100% response rate.
- Response time is typically excellent (O(1 hour)).
 - International community participates … not unusual for a question from Australia to be answered by a European, while all US developers are asleep.
- List Address: visit-users@ornl.gov
- More information: https://email.ornl.gov/mailman/listinfo/visit-users
- Archive: https://email.ornl.gov/pipermail/visit-users/
VisItusers.org

- Great source for VisIt tips and recipes.
- Users section has lots of practical advice:
 - “I solved this problem using this technique”
 - “Here’s my script to do this analysis”

VisItusers.org is the VisIt project’s staging area for usage recipes and future formal documentation.
VisIt Users Forum

- http://www.visitusers.org/forum

- Increasingly popular option; you can post without receiving 300 emails a month
 - But it is viewed by less people and less well supported.

- Google indexes these pages.
Visit-help-{XYZ}

- Some customer groups pay for priority VisIt support:
 - These customers can post directly to specific visit-help-{XYZ} support lists without subscribing.
 - The messages are received by all VisIt developers and supported collectively.

- Example Lists:
 - visit-help-asc, visit-help-scidac
Manuels & Other Documentation

- Getting Started Manual
- Users Manual
- Python Interface
- Getting Data Into VisIt
- VisIt Class Slides
- VisIt Class Exercises
- {Tutorials}
Resources

- **Presenters:**
 - Cyrus Harrison: cyrush@llnl.gov

- **User resources:**
 - Main website: http://www.llnl.gov/visit
 - Wiki: http://www.visitusers.org
 - Email: visitusers@ornl.gov

- **Development resources:**
 - Email: visit-developers@ornl.gov
 - SVN: http://portal.nersc.gov/svn/visit