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David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology




® Numerous!

+ architecture, applications, algorithms, programming models &
systems software form an interconnected ecosystem

+ algorithms/software span diverging requirements in architecture
(more uniformity) & application (more irregularity)

® Architecture presentations today:

+ Beckman, Balaji

® Programming models tonight through Thursday:

¢ Intel, NVIDIA, MPI, OpenMP, Open ACC, OCCA, Chapel,
Charm++, UPC++, ADLB

® Algorithms Friday and Saturday:
¢ Demmel, Dongarra, FASTMath team
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Society for Industrial and Applied Mathematics f E in 8‘

SIAM NEWS >

CSE 2009: The World’s First CSE University

June 15, 2009

The King Abdullah University of Science and Technology, scheduled to welcome its
first class of students in September, sponsored a reception in Miami on March 2, the
first day of the SIAM Conference on Computational Science and Engineering. David
Keyes and Omar Ghattas, involved in different ways in the new venture, hosted the
reception and made informal presentations to the assembled crowd.

Most readers will know something of KAUST, which for the record is a graduate-only
(master's and doctoral) university being constructed in Saudi Arabia, on the eastern
edge of the Red Sea, not far from Jeddah. Keyes, the inaugural chair of KAUST's
Mathematical and Computer Sciences and Engineering Division, offered examples of
research areas of particular interest to Saudi Arabia and the region that will be
emphasized; among them are geophysics, seismology, reservoir modeling, CO2
sequestration, photovoltaics, stress-tolerant agriculture, desalination, catalysis, and
materials, along with the applied mathematics and computer science required to
support them.

Sizeable recruitment ads for KAUST have appeared in many recent issues of SIAM
N . de by side with ads nl ¥ | i . : | l
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- 36 cahinets of Cray XC40 with Intel Haswell 2.3 Ghz with 16 cores
- 128 GB of RAM per node

- Number of nodes: 6192

- Number of cores: 198144

- Peak Performance: 7.3 PFlops/s

- LINPACK : 5.6 PFlops/s

- 2.8 MW at peak

- 11.4 PB of Parallel File System

- 1/0 throughput: over 500 GB/s

- Burst Buffer capacity: 1.5 TB

- Burst Buffer throughput: over 1.2 TB/s




June 2009

Speed: .222 Petaflop/s (peak)
Ranking: #14 HPL R, .. then (#335 now)

Power: 0.5 MW (0.44 GF/s/W)
Cooling: air

Memory: 65 TeraBytes
Amdahl-Case Ratio: 0.29 B/F/s

I/O bandwidth: 25 GB/s
Storage: 2.7 PetaBytes

Nodes: 16,384
Cores: 65,536 at 0.85 Ghz

Burst buffer:
none

May 2015

Speed: 7.3 Petaflop/s (peak, )
Ranking: #7 HPL R, .. now

Power: 2.8 MW (~2 GF/s/Watt, A ~5X)
Cooling: water

Memory: 793 TeraBytes (n ~12X)
Amdahl-Case Ratio: 0.11 B/F/s (¥ ~3X)

I/O bandwidth: 500 GB/s (n ~20X)
Storage: 17.6 PetaBytes (f ~6.5X)

Nodes: 6,192
Cores: 198,144 at 2.3 Ghz

Burst buffer:
1.5 Petabytes, 1.2 TB/s bandwidth

ATPESC 3 Aug 2015



“A good player plays where the puck is, while a great

player skates to whey . puck' is going to be.”

— Wayne Gretzsky




Aspiration for this talk

® To paraphrase Gretzsky:

“Algorithms for where architectures are going to be”

Such algorithms may or may not be the best today;
however, hardware trends can be extrapolated to
their sweet spots.
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Examples being developed at the Extreme
Computing Research Center (ECRC)

® ACR(¢g), a new spin on 45-year-old cyclic reduction that recursively uses H
matrices on Schur complements to reduce O(/N?) complexity to O(V log2V)
o FMM(¢), a 30-year-old O(NV) solver for potential problems with good
asymptotic complexity but a bad constant when used at high accuracy,
used in low accuracy as a FEM preconditioner

® QDWH-SVD, a 2-year-old SVD algorithm that performs more flops but
generates essentially arbitrary amounts of dynamically schedulable
concurrency, and beats state-of-the-art on GPUs

® MWD, a multicore wavefront diamond-tiling stencil evaluation library
that reduces memory bandwidth pressure on multicore processors

® BDDC, a preconditioner well suited for high-contrast elliptic problems
that trades lots of local flops for low iteration count, now in PETSc

® MSPIN, a new nonlinear preconditioner that replaces most of the global
synchronizations of Newton iteration with local problems

ATPESC 3 Aug 2015
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Uptake from IESP meetings

® While obtaining the next 2 orders of performance, we need 1-2
orders more Flop/s per Watt

o target: 50 Gigaflop/s/W, today less than 5 Gigaflop/s/W
® Draconian reduction required in power per flop and per byte
will make computing and moving data less reliable

¢ circuit elements will be smaller and subject to greater physical
noise per signal, with less space and time redundancy for
resilience in the hardware

+ more errors must be caught and corrected in software

® Power may be cycled off and on or clocks slowed and speeded

¢ based on compute schedules (user-specified or software
adaptive) and dynamic thermal monitoring

+ makes per-node performance rate unreliable
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Why exa- is different

Which steps of FMADD take more energy?

64-bit floating-point fused multiply add or moving four 64-bit operands 20 mm across the die

934,569.299814557 input
X 52.827419489135/904 input
= 49,370,884.442971624253823

+ 4.20349729193958 input

= 49,370,888.64646892 output

20 mm

(Intel Sandy Bridge, 2.27B transistors)
Going across the die will require an order of magnitude more!

DARPA study predicts that by 2019:
¢ Double precision FMADD flop: 11pJ
¢ cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) ATPESC 3 Aug 2015



DP FMADD flop 100 pJ

DP DRAM read-to-register 4800 pJ
DP word transmit-to-neighbor 7500 pJ
DP word transmit-across-system 9000 pJ

Remember that a pico (10-1?) of something done exa (101%)
times per second is a mega (10%)-somethings per second
¢ 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
¢ 1 MW-year costs about $1M ($0.12/KW-hr x 8760 hr/yr)
* We “use” 1.4 KW continuously, so 100MW is 71,000 people

cl/o J. Shalf (LBNL)



Why exa- is different

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Table 1
Scaling Results for Circuit Performance

Device or Circuit Parameter Scaling Factor
Device dimension lox, L, W 1/x
Doping conecentration N, X
Voltage V 1/«
Current, / 1/«
Capacitance €4/t 1/x
Delay time/circuit VC/I
Power dissipation/circuit VI
Power density VI/A X
Table 2 Robert Dennard, IBM
Scaling Results for Interconnection Lines ( inventor of DRAM’ 1966)
Parameter Scaling Faector Eventu ally proces sin g is
Line resistance, Ry, = oL/Wt K

Line response time R,C
Line current density I/A4 as known for > 4 decades

Normalized voltage drop IR./V @ limited by transmission,




Some exascale architecture trends

Clock rates cease to increase while arithmetic
capability continues to increase dramatically w/
concurrency consistent with Moore’s Law

Memory storage capacity diverges exponentially below
arithmetic capacity

Transmission capability (memory BW and network
BW) diverges exponentially below arithmetic capability

Mean time between hardware interrupts shortens

=» Billions of $ € £ ¥ of scientific software worldwide
hangs in the balance until better algorithms arrive to
span the architecture-applications gap




Node-based “weak scaling” is routine;
thread-based *“strong scaling” is the game

¢ Expanding the number of nodes (processor-memory units)
beyond 10° would not be a serious threat to algorithms that
lend themselves to well-amortized precise load balancing

+ provided that the nodes are performance reliable
® The real challenge is usefully expanding the number of cores
on a node to 10°

+ must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

+ don’t need to wait for full exascale systems to experiment in this
regime — the battle is fought on individual shared-memory
nodes

ATPESC 3 Aug 2015






Bulk Synchronous

Parallelism

Leslie Valiant, Harvard
2010 Turing Award Winner

i
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The success of the von Neumann model of
sequential computation is attributable to the
fact that it is an cfficicnt bridge between software and hardware: high-level languagces
can be efficiently compiled on to this model; yet it can be efficiently implemented in
hardware. The author argues that an analogous bridge between software and hardware
is required for parallel computation if that is to become as widely used. This article
introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and
gives results quantifying its efficiency both in implementing high-level language
features and algorithms, as well as in being implemented in hardware.

AR
Leslie 6. Yaliant

Comm. of the ACM, 1990

ATPESC 3 Aug 2015




How are most simulations implemented at
the petascale today?

® Iterative methods based on data decomposition and
message-passing
+ data structures are distributed
+ each individual processor works on a subdomain of the original

+ exchanges information at its boundaries with other processors
that own portions with which it interacts causally, to evolve in
time or to establish equilibrium

+ computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

® The programming model is BSP/SPMD/CSP

+ Bulk Synchronous Programming
+ Single Program, Multiple Data
+ Communicating Sequential Processes

ATPESC 3 Aug 2015



BSP parallelism w/ domain decomposition

rows assigned
to proc “2” { Asj Ay, Ay }

Partitioning of the grid

induces block structure on \
the system matrix

(Jacobian)

ATPESC 3 Aug 2015



BSP has an impressive legacy

By the Gordon Bell Prize, performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, etc.) has improved more than
a million times in two decades. Simulation cost per performance has
improved by nearly a million times.

Gordon Bell 1 Gordon Bell

P;;e(:)rlgeaek Glgaﬂopls Pz;ec:)rll’ri:e COSt per

Peformance  dleljvered to Peformance  deljvered
Year applications Year Gigaflop/s

1988 1 1989 $2,500,000
1998 1,020 1999 $6,900
2008 1,350,000 2009 S8

ATPESC 3 Aug 2015



Extrapolating exponentials eventually fails

® Scientific computing at a crossroads w.r.t. extreme
scale

® Proceeded steadily for decades from giga- (1988) to
tera- (1998) to peta- (2008) with
o same BSP programming model

+ same assumptions about who (hardware, systems software,
applications software etc.) is responsible for what
(resilience, performance, processor mapping, etc.)

+ same classes of algorithms (cf. 25 yrs. of Gordon Bell
Prizes)

ATPESC 3 Aug 2015



Extrapolating exponentials eventually fails

® Exa- is qualitatively different and looks more
difficult

+ but we once said that about message passing

® Core numerical analysis and scientific computing
will confront exascale to maintain relevance
+ not a “distraction,” but an intellectual stimulus

+ potentially big gains in adapting to new hardware
environment

+ the journey will be as fun as the destination

ATPESC 3 Aug 2015



Main challenge going forward for BSP

® Almost all “good” algorithms in linear algebra,
differential equations, integral equations, signal
analysis, etc., require frequent synchronizing
global communication

+ inner products, norms, and fresh global residuals are
“addictive” idioms
+ tends to hurt efficiency beyond 100,000 processors

+ can be fragile for smaller concurrency, as well, due to
algorithmic load imbalance, hardware performance variation,
etc.

® Concurrency is heading into the billions of cores

¢ already 3 million on the most powerful system today

ATPESC 3 Aug 2015



Conclusions, up front

® Plenty of ideas exist to adapt or substitute for
favorite solvers with methods that have
¢ reduced synchrony (in frequency and/or span)
+ greater arithmetic intensity
+ greater SIMD-style shared-memory concurrency

+ built-in resilience (“algorithm-based fault tolerance” or ABFT)
to arithmetic/memory faults or lost/delayed messages

® Programming models and runtimes may have to be
stretched to accommodate

® Everything should be on the table for trades,
beyond disciplinary thresholds = “co-design”

ATPESC 3 Aug 2015



Warning: not all accept this 4-fold agenda

® Non-controversial:
¢ reduced synchrony (in frequency and/or span)

+ greater arithmetic intensity
® Semi-controversial, when it comes to serving real
applications:

+ greater SIMD-style shared-memory concurrency

® Controversial:

¢ built-in resilience (“algorithm-based fault tolerance” or ABFT)
to arithmetic/memory faults or lost/delayed messages

ATPESC 3 Aug 2015



Bad news/good news (1) i/

® One will have to explicitly control more of
the data motion
® carries the highest energy cost in the exascale

computational environment

® One finally will get the privilege of
controlling the vertical data motion

® horizontal data motion under control of users already

® but vertical replication into caches and registers was
(until recently with GPUs) mainly scheduled and laid

out by hardware and runtime systems, mostly invisibly
to users

ATPESC 3 Aug 2015



Bad news/good news (2) {/

e “Optimal” formulations and algorithms may lead
to poorly proportioned computations for exascale
hardware resource balances

® today’s “optimal” methods presume flops are
expensive and memory and memory bandwidth are
cheap
® Architecture may lure scientific and engineering
users into more arithmetically intensive
formulations than (mainly) PDEs

® tomorrow’s optimal methods will (by definition) evolve
to conserve whatever is expensive

ATPESC 3 Aug 2015



Bad news/good news (3) {/

e FKully hardware-reliable executions may be regarded as
too costly/synchronization-vulnerable

® Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability

® developers will partition their data and their program units into
two sets

® asmall set that must be done reliably (with today’s standards for
memory checking and IEEE ECC)

® alarge set that can be done fast and unreliably, knowing the errors
can be either detected, or their effects rigorously bounded

e Examples already in direct and iterative linear algebra

® Anticipated by Von Neumann, 1956 (“Synthesis of reliable
organisms from unreliable components”)

ATPESC 3 Aug 2015



Bad news/good news (4) {/

® Default use of (uniform) high precision in nodal bases on
dense grids may decrease, to save storage and bandwidth

® representation of a smooth function in a hierarchical basis or on
sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

® we will have to compute and communicate “deltas” between states
rather than the full state quantities, as when double precision was
once expensive (e.g., iterative correction in linear algebra)

® a generalized “combining network” node or a smart memory
controller may remember the last address, but also the last values,
and forward just the deltas
® Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

ATPESC 3 Aug 2015



Bad news/good news (5) {/

® FKully deterministic algorithms may be regarded as
too synchronization-vulnerable

® rather than wait for missing data, we may predict it using various
means and continue

® we do this with increasing success in problems without models
(“big data”)
® should be fruitful in problems coming from continuous models

® ‘“apply machine learning to the simulation machine”

® A rich numerical analysis of algorithms that make
use of statistically inferred “missing” quantities may
emerge

@ future sensitivity to poor predictions can often be estimated

e numerical analysts will use statistics, signal processing, ML, etc.

ATPESC 3 Aug 2015



What will first “general purpose” exaflop/s
machines look like?

® Hardware: many potentially exciting paths beyond
today’s CMOS silicon-etched logic, but not
commercially at scale within the decade

® Software: many ideas for general-purpose and
domain-specific programming models beyond
“MPI + X”, but not penetrating the mainstream
CS&E workforce for the next few years
¢ “X”is CUDA, OpenMP, OpenACC, OpenCL, etc.,
or MPI, itself

ATPESC 3 Aug 2015



Philosophy

® Algorithms must adapt to span the gulf between
aggressive applications and austere architectures

¢ full employment program for computational
scientists and engineers

¢ see, e.g., recent postdoc announcements from
m Berkeley (8) for Cori Project (Cray & Intel MIC)

m Oak Ridge (8) for CORAL Project (IBM & NVIDIA NVLink)
m IBM (10) for Data-Centric Systems initiative

for porting applications to emerging hybrid

architectures

ATPESC 3 Aug 2015



Required software

Model-related

Geometric modelers
Meshers
Discretizers

*

Adapftivity systems
Random no. generators
Subgridscale physics

Uncertainty
quantification

Dynamic load balancing

Graphs and
combinatorial algs.

Compression

Development-related
o Configuration systems

¢ Source-to-source
translators

+ Compilers
¢ Simulators
¢ Messaging systems
¢ Debuggers

o Profilers

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

Production-related

*

Dynamic resource
management

Dynamic performance
optimization
Authenticators

I/O systems
Visualization systems
Workflow controllers
Frameworks

Data miners

Fault monitoring,
reporting, and recovery

ATPESC 3 Aug 2015



Optimal hierarchical algorithms

® At large scale, one must start with algorithms with
optimal asymptotic scaling, O(/V logP V)
® Some optimal hierarchical algorithms
¢ Fast Fourier Transform (1960°s)
¢ Multigrid (1970’s)
+ Fast Multipole (1980°s)
+ Sparse Grids (1990’s)
o ‘H matrices (2000’s)

“With great computational power comes great
algorithmic responsibility.” — Longfe1 Gao

ATPESC 3 Aug 2015



Recap of algorithmic agenda

® New formulations with

+ greater arithmetic intensity (flops per byte moved into and out of
registers and upper cache)

m including assured accuracy with (adaptively) less floating-point
precision

¢ reduced synchronization and communication

n less frequent and/or less global
+ greater SIMD-style thread concurrency for accelerators
+ algorithmic resilience to various types of faults

® Quantification of trades between limited resources

® Plus all of the exciting analytical agendas that exascale
is meant to exploit

+ “post-forward” problems: optimization, data
assimilation, parameter inversion, uncertainty
quantification, etc.

ATPESC 3 Aug 2015



Some algorithmic “points of light”

-

Remaining segment flashes samf)le “points of light”
that accomplish one or more of these agendas

<+ DAG-based datd flow for dense symmetri.c linear algebra

GPU implementations of denéé symmetric linear algebra

Multicore i.mplementatigng of sparse linear: algebra

~ Fast Multipole for Poisson solves
Algebraic Fast Multipole for variable coefficient problems
Nonlinear preconditioning for,Newton’s method

New programming paradigms for PDE codes

NVIDIA.

GPU ; THE SUPERCOMPUTER COMPANY

RESEARCH CENTER OF EXCELLENCE
CENTER ol Faralol Computan Cant




Comment

® Dominant consumers in applications that tie up
major supercomputer centers are:

+ Linear algebra on dense symmetric/Hermitian matrices

m generalized eigenproblems (Schroedinger) in chemistry/
materials

B reduced Hessians in optimization

B covariance matrices in statistics

¢ Poisson solves

m highest order operator in many PDEs in fluid and solid
mechanics, E&M, DFT, MD, etc.

® These are two of the major thrusts of the ECRC at
KAUST

ATPESC 3 Aug 2015



DAG-based data tlow tile algerithms
for dense Ilnear algebra

< Reduce synchrony

.
<~ Increase concurrency®
.

.
.
B




Reducing over-ordering and synchronization
through datatlow: e.g., generalized eigensolver

Ax = ABx
Operation Explanation LAPACK routine name
Q@ B=LxLT" Cholesky factorization POTRF
©@ C=L"1xAxLT application of triangular factors SYGST
or HEGST
© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD
Q Tx= X QR iteration STERF
D)
D)
@ g @
(O g )
> s o C
g © ®
D
(D o ©
o D)
©
© D) &
® ®
S @ @D

A\ c/o H. Ltaief (KAUST) ATPESC 3 Aug 2015




Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

® Diagram shows a dataflow
ordering of the steps of a
4x4 symmetric
generalized eigensolver

® Nodes are tasks, color-
coded by type, and edges
are data dependencies

® Time is vertically
downward

® Wideis good; short is
good

CRORCRCNORCRCNCRCRORCRCNCNCRCNCHCRONCRCNONCRONG

b c/o H. Ltaief (KAUST) ATPESC 3 Aug 2015




GPU implementations of
dense lintar algebra

<~ Increase SIMD-style thread conéurrency

< overcome Iflemory Bandwidth limitations of the :
®  matrix-vector multiply, y=aAx+gy ° |

coalesced memory, accesses

+ double buffering

<~ polyalgarithmic approach based on block size

.,




New linear algebra software, KAUST’s
GPU BLAS, now in NVIDIA’s CUBLAS

80 DSYMV-LOWER Performance on K20c (ECC OFF) DSYMV-LOWER Performance on K20c cluster
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® Highly optimized GEMV/SYMYV Kkernels
e NVIDIA has adopted for its CUBLAS 6.0

library and beyond

c/o A. Abdelfattah (UTenn ICL, KAUST) ATPESC 3 Aug 2015
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CUDA Toolkit v6.0

cuBLAS
1. Introduction
1.1. Data layout

1.2. New and Legacy
CuBLAS API

1.3. Example code

2. Using the cuBLAS API
2.1. General description
2.1.1. Error status
2.1.2. cuBLAS context
2.1.3. Thread Safety

2.1.4. Results
reproducibility

2.1.5. Scalar Parameters

2.1.6. Parallelism with
Streams

2.1.7. Batching Kernels

2.1.8. Cache
configuration

2.1.9. Device API Library

2.2. cuBLAS Datatypes
Reference

2.2.1. cublasHandle_t
2.2.2. cublasStatus_t

2.2.3. cublasOperation_t
2.2.4. cublasFillMode_t
2.2.5. cublasDiagType_t
2.2.6. cublasSideMode _t
2.2.7. cublasPointerMode _t
2.2.8. cublasAtomicsMode_t

2.3. cuBLAS Helper
Function Reference

2.3.1. cublasCreate()
2.3.2. cublasDestroy()
2.3.3. cublasGetVersion()
2.3.4. cublasSetStream()

“KBLAS inside”

DEVELOPER CUDA TOOLKIT DOCUMENTATION
nvinia ZONE
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Applied in European telescope (ELT)
(13X speedup - paper in SC’14)

The European Extremely Large Telescope

The world's biggest eye on the sky

I ||

® ESO, https:/ /www.eso.org/ sci/ facilities /develop /a0 /ao_modeshtml

Charara (KAUST) ATPESC 3 Aug 2015




Multicore implementations of
sparse litear algebra

<~ Increase arithmetic intensity

< Increase coneurrency




Newton-Krylov-Schwarz based CFD

® Our PETSc-FUN3D won an
ACM Gordon Bell Prize in
1999 for distributed memory
scaling of a fully implicit

unstructured grid NASA kT
. ‘ X
external aircraft flow VAVF‘"”"‘"""W“”%gsg‘g&?‘émﬁ%%ﬁgggﬁ
i KD s s
° With Intel-Bangalore, we %Nm%aﬁgﬁ%}%%’lﬁiﬁ’ﬁ%ﬁﬁiﬁsﬁsﬁs&%”“ i
ported this implicit N}VNA, / o :
unstructured grid code to Intel ‘gs)%éi : e i
“ KON KL
° ° “b ‘Slﬁ A /)
multi-core chips for strong ;:"i’k - L
° J ° NW KR W n
shared-memory scaling within é‘%ﬂ«»‘ . . ﬁ%‘ie‘fifii%l« %‘F ;
o ‘%‘;35,5 iy wﬁﬁ%&%&@ﬁ’%ﬂﬂ%ﬂ‘1“1}
a single compute node (and WX%% i ;"‘M%%ﬁg%ﬁgﬁ%ﬁﬁgﬁ
. _ : N AR RN A AR
extension to many-core is AVAWWE&W’?&%%%&%‘ f AV‘H
ongoing) oA e e
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PETSc-FUN3D on Intel “Ivy Town”

Time to Solution (s) m + Pre-fetching

M + Intrinsics
400 - u rest _ 20.6 + Auto-vectoirzation
g N
& Petsc Vec E m + other Alg optimizations
speedup, 6.9 primitives *E ® + Threading
300 . B Petsc VecScatter g ® Initial
1] " .
ILU 9 + Final opt version
o
2
200 ¥ Jacobian E
E
 TRSV 5
=
Q.
100 ® Grad 3 3 2
§
= " m
0 flux grad/Jacobian Full
Baseline Optimized FUN3D
20 threads, 10 cores

c/o A. Deshpande (Intel), IPDPS’15 ATPESC 3 Aug 2015




Fast Multipole for Poisson solves

-
<~ Increase arithmetic intensity

< Reduce synchrony

<~ Increase confurrencyy




Arithmetic intensity of numerical kKernels

2048

— Intel Sandy Bridge
— AMD Abu Dhabi /
__ 1024 — |BM BG/Q f
— Fujitsu FX10
|—NVIDIA Kepler
Intel Xeon Phi

(&)
—_
)]

256

128

®»
N

Double precision performance (Gflop/s
w
N

—_
®

FMM M2L (Spherical)
FMM M2L (Cartesian)

8

116 1/8 1 256

"J/ c/o R. Yokota (TiTech, KAUST)

two orders of magnitude variation ATPESC 3 Aug 2015
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Hierarchical interactions of Fast Multipole
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(b) Fast Multipole Method

(a) Direct method
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Geometrical structure of Fast Multipole

source particles

"
i

ATPESC 3 Aug 2015
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Synchronization reduction - FMM

® Within an FMM application, data pipelines of
different types and different levels can be executed
asynchronously

o FMM simply adds up (hierarchically transformed)
contributions

¢ e.g., P2P and P2M -> M2M -> M2L -> L2L -> L.2P

® Geographically distinct targets can be updated
asynchronously

ATPESC 3 Aug 2015



Salient features of FMM

® High arithmetic intensity
® No all-to-all communication
® O(log P) messages
+ with high concurrency and asynchrony among themselves

® Up to O(N) arithmetic concurrency

® Tunable granularity in the sense of “A-p”

+ based on analytic “admissibility condition”
® Inside 8 Gordon Bell Prizes, 1997-2012
® Many effective implementations on GPUs

® But fragile (based on analytical forms of operators)

ATPESC 3 Aug 2015



FMM vs. FFT in weak scaling

1.2 - Weak scaling of a vortex-

- FMM formulation 3D Navier-Stokes
- Spectral method code simulating decaying

1 pmmm isotropic turbulence,
referenced to the pseudo-
spectral method, which uses
FFT.

FFT: 14% parallel
efficiency at 4096
processes, no GPU use.

o
o

<
™

FMM: 74% going from one
to 4096 processes at one
GPU per MPI process, 3
GPUs per node.

I
N

Parallel efficiency

Largest problem corresponds
to a 4096”3 mesh, i.e., almost
69 billion points (about 17
million points per process).
Run on the TSUBAME 2.0
system of the Tokyo Institute
of Technology.

02

1 8 64 512 4096
Number of processes

c/o R. Yokota (TiTech, KAUST) ATPESC 3 Aug 2015




FMM as preconditioner
®© FMM is a solver for free-space problems for which

one has a Green’s function
® For finite boundaries, FMM combines with BEM

¢ FMM and BEM have controllable truncation
accuracies; can precondition other, different
discretizations of the same PDE

® Can be regarded as a preconditioner for “nearby”

problems, e.g., V- for V - (1+e(x))V

ATPESC 3 Aug 2015



FMM’s role in solving PDEs

u-/ GdT — / dF+/deQ in O
on on

BEM FMM
A A
PR ~ N _ ~ s ™~ ~ N
NQ< Ui | —- Gz’j % - 8(%j Uj 1 Gz’j fj
.\ L L 4 L A L J L _ d L

The preconditioner is reduced to a matvec, like the forward operator itself —
the same philosophy of the sparse approximate inverse (SPAI), but cheaper.

More concurrency, more intensity, less synchrony than ILU, MG, DD, etc.

~ J clo H. Ibeid (KAUST) ATPESC 3 Aug 2015




FMM/BEM preconditioning of
FEM-discretized Poisson accelerated by CG

10°

—=—FMM (e=10"9)
«— FMM (=10}
F N : ——+— FMM (e=1079)
(4] . v ’,v» & N .
10 ;; il 1
o : TG : —B8— GMG
— Inc Chol

Residual

0 5 10 15 20

- /| clo H. Ibeid (KAUST) ATPESC 3 Aug 2015



FMM/BEM preconditioning of
FEM-discretized Poisson: serial scaling

10°

——PCSetUp(FMM) | § i i
~—~PCApply(FMM) |1
-+-PCSetUp(AMG) |} | iHiiit i |1
-+-PCApply(AMG) |: @ iiiip fiiiii i

10" |

time [s]

10°

- J clo H. Ibeid (KAUST) ATPESC 3 Aug 2015



FMM vs AMG preconditioning:
strong scaling on Stampede*®

10*

time [s]

1072

10’ 10° 10°
Number of cores - - = =

‘ * 16M dofs FEM Poisson problem, Dirichlet BCs via BEM (cost included)
-/ clo H. Ibeid (KAUST) ATPESC 3 Aug 2015




Algebraic Fast Multipole-for
variable coefficient problems

< All the benefits of Fast Multipdle
4 plus w»
*%. Make Fast MultipoleJess frégile

.,




* [Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

* By exploiting low rank, £, memory requirements and
operation counts approach optimal in matrix dimension »
— polynomial in &k
— lin-log in n
— constants carry the day

* Such hierarchical representations navigate a compromise

— fewer blocks of larger rank (“weak admissibility”) or

— more blocks of smaller rank (“strong admissibility”)

ATPESC 3 Aug 2015



Example: 1D Laplacian

e e

2 -1
-1 2 -1 <> [
-1 2 |-1

|(=000]

T 1
N WOt
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“Standard(strong)” vs. “weak” admissibility

i

a:l

B

strong admissibility weak admissibility

After [Hackbusch, et al., 2003]

ATPESC 3 Aug 2015



Is there an “algebraic FMM”?

® Consider the H? hierarchical matrix method of
Hackbusch, et al.

;’jﬁl
'y

based on an “admissibility condition”

® Bases can be hierarchically nested |

(.m g)? ¢ U, for columns, V; for rows

o

~ clo G. Turkiyyah (KAUST) ATPESC 3 Aug 2015



An “algebraic FMM”

® One needs to store the unreducible diagonal blocks, A4,

® For the entire rest of the matrix, first the §;;, the U; and V'’ at

l] ’
the finest level

® Then the E; (column basis conversion) and F; (row basis
conversion) blocks at each level

® Two stage compression procedure: SVD each block, then
convert to common bases

bc/o G. Turkiyyah (KAUST) ATPESC 3 Aug 2015



“Algebraic Fast Multipole” (AFM)

* Can we cast general matrix operations (add, multiply,
invert, etc.) in terms of the fast multipole recursive
“tree-based” data structure?

B —
/’—\<” [ PO || | EEEE
/ “\,——————
/_/ :.téf ..... ’_\\\
< . | | || By
T || | —— S
e E———

* Yes, after compressing the matrix in H? form
* presumes hierarchical low rank structure
* may offer breakthrough in application performance
* See Supercomput. Front. Innov. 1:62-83 (2014)

.

" clo G. Turkiyyah (KAUST) ATPESC 3 Aug 2015




=(.

Fast matrix-vector multiply, y = Ax

Z Aij T+ Z UQS,;jV}t
(.7)eD (1,5)EL

)-

Z Az]-T]-I-ZU Z S,] Vt

(i,5)eD iel  (i,j)eL Upsweep
Dense mat-vecs ’
operations Coupling phase D
] = Down‘;weep
Qc/o W. Bukharam (KAUST) ATPESC 3 Aug 2015



Fast matrix-vector multiply, y = Ax

250

200

150

100

50

~—— GPU Sustained BW

= Streaming HICMA+KBLAS
—d— HICMA+KBLAS

~—l— HiICMA+CUSPARSE
e CPU Sustained BW

—4—HiICMA+MKL

achieved bandwidth for rank k=8 and leafsize n=32, integral equation kernel

vl

c/o W. Bukharam (KAUST) ATPESC 3 Aug 2015




Nonlinear preconditioning
for Newton’s method

<~ Reduce synchrony in frequency and scope




IlI-conditioning of nonlinea

’:/_—/:/::ifjjffj, —

r and linear types

* A nonlinear system F(u)=0 may
be “stiff,” in the sense that theiso- | |
contours of the merit function, P
e.g., /(1) =||F(u)||?, are far from
hyperellipsoidal, giving a small
local convergence domain

* This may be combined with linear _
ill-conditioning, in the sense that =
the hyperellipsoids are locally e Ce—]—
badly stretched

ATPESC 3 Aug 2015



* Newton method for a global nonlinear system, F(u)=0,

— computes a global distributed Jacobian matrix and synchronizes
globally in both the Newton step and in solving the global linear
system for the Newton

* Nonlinearly preconditioned Newton replaces this with a
set of local problems on subsets of the global nonlinear
system

— each local problem has only local synchronization

— each of the linear systems for local Newton updates has only local
synchronization

— there is still global synchronization in a number of steps,
hopefully many fewer than required in the original Newton
method



Implemented in PETSc, as “ASPIN”

Key idea
Finding the solution u* by solving an equivalent nonlinear system

F(u*)=0s F(u")=0

using Inexact Newton with Backtracking

How to construct the equivalent nonlinear system?
% .
o (u(To, () =0, =1,
-2 at) Yoo
Assumption

F'(u) is continuous in a neighborhood D of the exact solution u*,
and the matrix F’(u*) is nonsingular.

Theorem
(Cai and Keyes, 2002). F(u) and F(u) are equivalent in the sense

that they have the same solution in a neighborhood of u* in D.

SPE10
reservoir
odel

—+—ASPIN
—=—INB

' Newton convergence

Nonlinear iterations
-
o

®

}k*—************4****&*%—**4‘******

2tk ASPIN convergence

1 1 1 1 1
0 50 100 150 200 250 300
Time (days)

c/o L. Liu (KAUST)
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MSPIN: multiplicative by field
3-field PDE example

1024 x 1024 mesh

~ ASPIN
o MSPIN

| Linear
e subsystems
| solved with
.......... hypre’s
| \ BoomerAMG

Execution time (s)

10 ' : o i

Number of processors

Fic. 5. Strong scaling for the driven cavity flow problem on a 1024 X 1024 mesh at
Reynolds number 1000. The initial guess is still zero for u,v,w. €giobai—linear—rtol = 103,
€global—nonlinear—rtol — 10_8; €sub—rtol = 10_3) and €jac—rtol = 1073, €sub—rtol denotes the
relative tolerance for the subproblems (which are linear in this example), and we specify € j4c—rtol
as the relative tolerance for the linear problems in (2.13) and (2.29). The finite difference step size
for the matriz-free Jacobian applications is 10~8. Ezecution time for ASPIN using 512 processors
is not shown since it fails to converge on this mesh and this Reynolds number from a zero initial

guess.
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New programming paradigm
for PDE codes

< Reduce synchrony




Multiphysics w/ legacy codes:
an endangered species?

Model 1 P& e : '
t0 tl t2

Model
2(subcycled

)
® Many multiphysics codes operate like this, where the models may

occupy the same domain in the bulk (e.g., reactive transport) or
communicate at interfaces (e.g., ocean-atmosphere)*

® The data transfer cost represented by the blue and green arrows
may be much higher than the computation cost of the models,
even apart from first-order operator splitting error and possible
instability
*see “Multiphysics simulations: challenges and opportunities” (IJHPCA) ~ ATPESC 3 Aug 2015




Many codes have the algebraic and
software structure of multiphysics

e Exascale is motivated by these:

® uncertainty quantification, inverse problems,
optimization, immersive visualization and steering

® These may carry auxiliary data structures to/from
which blackbox model data is passed and they act
like just another “physics” to the hardware
® pdfs, Lagrange multipliers, etc.

® Today’s separately designed blackbox algorithms

for these may not live well on exascale hardware: co-
design may be required due to data motion

ATPESC 3 Aug 2015



Multiphysics layouts must invade blackboxes

1518 & Qﬁﬁ T J\ég /] e Each application must

NIRE = ﬂcﬂggﬁ
“‘wﬂ\éﬁﬁ '"?Eu r.

3

27 1% g,,"‘&-‘“ == f) p3
g}jg %‘é“é &QJEHE &Eﬁg
) n @@"&&“'ﬂ‘rmﬂ
27 'W“€\\3€lt‘?€ \Ml 3

first be ported to
extreme scale
(distributed, hierarchical
memory)

Then applications may
need to be interlaced at
the data structure level
to minimize copying and
allow work stealing at
synchronization points

c/o W. D. Gropp (UIUC)
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THE INTERNATIONAL JOURMAL of

HIGH
PERFORMANCE
COMPUTING
APPLICATIONS

The ireerrational jourmal of High
Performasce Compunrg Appiicatiom

Multiphysics simulations: 1) + 92

© The Asthor(s) 3013

Challenges and opportunities oy e

DO 10.01 777103434201 1448 181
hoc Sagepud com

®SAGE

David E Keyes"z, Lois C Mclnnes’, Carol Woodward‘,

William Gropp®, Eric Myra®, Michael Pernice’, John Bell®,

Jed Brown" Alain Clo'.j Connors‘, Emil Constantinescu’, Don Estep',

Kate Evans °, Charbel Farhat ', Ammar Haldmn, Glenn Hammond", Glen Hansen",
Judith Hill'®, Tobin Isaac'®, Xiangmin Jiao'®, Kirk Jordan'’, Dinesh Kaushik’,

Efthimios Kaxiras'?, Alice Koniges®, Kihwan Lee'?, Aaron Lott*, Qiming Lu®®,

John Magerlein'’, Reed Maxwell?', Michael McCourt®?, Miriam Meh!®,

Roger Pawlowski'‘, Amanda P Randles'®, Daniel Reynolds®*, Beatrice Riviére®,

Ulrich Riide®®, Tim Scheibe'?, John Shadid'“, Brendan Sheehan’, Mark Shephard?’,
Andrew Siegel’, Barry Smith’, Xianzhu Tang?®, Cian Wilson® and Barbara Wohlmuth®*

Abstract

We consider multiphysics applications from algorithmic and architectural perspectives, where "algorithmic® includes both
mathematical analysis and computatioral complexity, and "architectural® includes both sofeware and hardware environ-
ments. Mary diverse multiphysics applications can be reduced, en route to their computational simulation, to a cormmon
algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for
realistic applications, but model problems representative of applications discussed herein can provide insight. A variety
of software frameworks for multiphysics applications have been constructed and refined within disciplinary commu-
nities and executed on leading-edge computer systems. We examine several of these, expose some commonalities
among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges
and forecast opportunities.
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How will PDE computations adapt?

Programming model will still be dominantly message-
passing (due to large legacy code base), adapted to
multicore or hybrid processors beneath a relaxed
synchronization MPI-like interface

Load-balanced blocks, scheduled today with nested loop
structures will be separated into critical and non-critical
parts

Critical parts will be scheduled with directed acyclic
graphs (DAGs) through dynamic languages or runtimes
¢ e.g., ADLB, Charm++, Quark, StarPU, OmpSs, Parallex, Argo

Noncritical parts will be made available for NUMA-aware
work-stealing in economically sized chunks

ATPESC 3 Aug 2015



Adaptation to
asynchronous programming styles

® To take full advantage of such asynchronous
algorithms, we need to develop greater
expressiveness in scientific programming

+ create separate threads for logically separate tasks,
whose priority is a function of algorithmic state, not
unlike the way a time-sharing OS works

+ join priority threads in a directed acyclic graph (DAG), a
task graph showing the flow of input dependencies; fill
idleness with noncritical work or steal work

ATPESC 3 Aug 2015



Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

® (Can write code in styles that do not require artifactual
synchronization

® (ritical path of a nonlinear implicit PDE solve is essentially

lin_solve, bound_step, update; lin_solve, bound_step, update ...

® However, we often insert into this path things that could be done
less synchronously, because we have limited language

expressiveness

*

* & o o

Jacobian and preconditioner refresh
convergence testing

algorithmic parameter adaptation
I/0, compression

visualization, data mining

ATPESC 3 Aug 2015



Sources of nonuniformity

System

¢ Already important: manufacturing, OS jitter, TLB/cache

performance variations, network contention,

¢ Newly important: dynamic power management, more soft errors,
more hard component failures, software-mediated resiliency, etc.

Algorithmic

+ physics at gridcell/particle scale (e.g., table lookup, equation of
state, external forcing), discretization adaptivity, solver adaptivity,

precision adaptivity, etc.

Effects of both types are similar when it comes to waiting

at synchronization points

Possible solutions for system nonuniformity will improve

programmability, too

ATPESC 3 Aug 2015



Other, galaxies




Other hopetul algorithmic directions

® 74 two-page whitepapers contributed by the international
community to the Exascale Mathematics Working Group
(EMWGQG) at

® 20-21 August 2013 in Washington, DC
e Randomized algorithms
® On-the-fly data compression
o Algorithmic-based fault tolerance
e Adaptive precision algorithms

e Concurrency from dimensions beyond space (time, phase
space, stochastic parameters)

° etc.

ATPESC 3 Aug 2015



Trends according to Pete Beckman

Trending Up Trending Down
Asynchrony, Latency Hiding Block synchronous
Over Decomp & Load Balancing Static partitioning per core
Massive Parallelism Countable parallelism
Reduced RAM per Flop Whole-socket shared memory
Software-managed memory Simple NUMA
Expensive Data Movement Expensive flops
Fault / Resilience Strategies Pure checkpoint/restart
Low BW to Storage, in-situ analysis | Save all

c/o P. Beckman (Argonne) ATPESC 3 Aug 2015




Trending Up

Trending Down

User-controlled data replication

System-controlled data replication

User-controlled error handling

System-controlled error handling

Adaptive variable precision

Default high precision

Computing with “deltas”

Computing directly with Qol

High order discretizations

Low order discretizations

Exploitation of low rank

Default full rank

An algorithmic theme: defeat the “curses” of dimensionality and
multiple scales with the “blessings” of continuity and low rank

ATPESC 3 Aug 2015
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