Asynchronous Dynamic Load Balancing
(ADLB)

A high-level, non-general-purpose*, but easy-to-
use programming model and portable library for
task parallelism

Rusty Lusk
Mathematics and Computer Science Division
Argonne National Laboratory

*But more than you might think...

é:\ U.S. DEPARTMENT OF
.4/ ENERGY

Two General Approaches to Parallel Algorithms

= Data Parallelism
— Parallelism arises from the fact that physics is largely local

— Same operations carried out on different data representing different
patches of space

— Communication usually necessary between patches (local)
e global (collective) communication sometimes also needed

— Load balancing sometimes needed

= Task Parallelism

— Work to be done consists of largely independent tasks, perhaps not all
of the same type

— Little or no communication between tasks

— Dependencies among tasks must be managed

— Traditionally needs a separate “master” task for scheduling
— Load balancing fundamental

Load Balancing

= Definition: the assignment (scheduling) of tasks (code + data)
to processes so as to minimize the total idle times of
processes

= Static load balancing
— all tasks are known in advance and pre-assigned to processes
— works well if all tasks take the same amount of time

— requires no coordination process

= Dynamic load balancing (old-fashioned version)

— A task is assigned to a worker process by a master process when the
worker process becomes available by completing previous task

— Requires communication between manager and worker processes
— Tasks may create additional tasks
— Tasks may be quite different from one another

Generic Manager/Worker Algorithm

Manager ~—— Shared

Worker Worker Worker Worker Worker

= Easily implemented in MPI

= Solves some problems
— implements dynamic load balancing
— termination
— dynamic task creation
— can implement workflow structure of task dependencies

= Provides some scalability problems
— Manager can become a communication bottleneck (granularity dependent)
— Memory can become a bottleneck (depends on task description size)

The ADLB lIdea

= No explicit master for load balancing; workers make calls to
ADLB library; those subroutines access local and remote data

structures (remote ones via MPI).

= Simple Put/Get interface from application code to distributed
work queue hides MPI calls

= Potential proactive load balancing in background

The ADLB Model (no master)

Worker Worker Worker Worker Worker

put / get

Shared
Work queue

= Doesn’t really change algorithms in workers
= Not anew idea (e.g. Linda)

= But need scalable, portable, distributed implementation of
the shared work queue

— Considerable complexity hidden here

API for a Simple Programming Model

= PBasic calls

ADLB_Init(hum_servers, am_server, app_comm)
ADLB_Server()

ADLB_Put(type, priority, len, buf, target_rank, answer_dest)
ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
ADLB_Get_Reserved(handle, buffer)

ADLB Ireserve(...)

ADLB_Set_Done()

ADLB_Finalize()

= A few others, for optimizing and debugging

ADLB_{Begin,End} Batch_Put()
Getting performance statistics with ADLB_Get_info(key)

= Both C and Fortran bindings

APl Notes

= Types, answer_rank, target_rank can be used to implement
some common patterns

— Sending a message
— Decomposing a task into subtasks
— Maybe should be built into API

= Return codes (defined constants)
— ADLB_SUCCESS
— ADLB_DONE
— ADLB_DONE_BY_EXHAUSTION
— ADLB_NO_CURRENT_WORK (for ADLB_Ireserve)

= Batch puts are for inserting work units that share a large
proportion of their data

More API Notes

" |f some parameters are allowed to default, this becomes a
simple, high-level, work-stealing API

— examples follow

= Use of the “fancy” parameters on Puts and Reserve-Gets
allows variations that allow more elaborate patterns to be
constructed
= This allows ADLB to be used as a low-level execution engine
for higher-level models
— ADLB is being used as execution engine for the Swift
workflow management language

How It Works (production implementation)

0) (O
¢S -
.0‘ put/g e
[y

O Application Processes
() ADLB Servers

10

The ADLB Server Logic

= Main loop:
— MPI_lprobe for message in busy loop
— MPI_Recv message
— Process according to type

e Update status vector of work stored on remote servers

e Manage work queue and request queue
e (may involve posting MPI_Isends to isend queue)

— MPI_Test all requests in isend queue
— Return to top of loop

= The status vector replaces single master or shared
memory
— Circulates among servers at high priority

11

ADLB Uses Multiple MPI Features

ADLB _Init returns separate application communicator, so application
processes can communicate with one another using MPI as well as by using
ADLB features.

Servers are in MPI_lprobe loop for responsiveness.
MPI_Datatypes for some complex, structured messages (status)

Servers use nonblocking sends and receives, maintain queue of active
MPI_Request objects.

Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany. No MPI_Wait.

Client side uses MPI_Ssend to implement ADLB_Put in order to conserve
memory on servers, MPl_Send for other actions.

Servers respond to requests with MPI_Rsend since MPI_Irecvs are known to
be posted by clients before requests.

MPI provides portability: laptop, Linux cluster, BG/Q
MPI profiling library is used to understand application/ADLB behavior.

12

Typical Code Pattern

rc = MPI_Init(&argc, &argv);

aprintf_flag = 0; /* no output from adlb itself */
num_servers = 1; /* one server might be enough */
use_debug_server = 0; /¥ default: no debug server */

rc = ADLB_Init(num_servers, use_debug_server, aprintf_flag, num_t,
type_vec, &am_server, &am_debug_server, &app_comm);

if (am_server) {
ADLB_Server(3000000, 0.0); /* mem limit, no logging */

3
else { /* application process */

code using ADLB_Put and ADLB_Reserve, ADLB_Get_Reserved, etc.
3

ADLB_Finalize();
MPI_Finalize();

13

Some Example Applications

" Fun —Sudoku solver

= Simple but useful Physics application — parameter sweep

= World’s simplest batch scheduler for clusters

= Serious — GFMC: complex Monte Carlo physics application

14

A Tutorial Example: Sudoku

112 9 14
3 6 |1
/ 38
513
I 9 |1 8 |2 6
5|6
1 9
6 |7 1
2 5 3|8

= (The following algorithm is not a good way to solve this, but it fits on one slide.)

15

Parallel Sudoku Solver with ADLB

1|2 9
3 6|1
14 8
53
7 911 8|2
5|6
1 9
6|7 1
2 3) 3
Work unit =

partially completed “board”

Program:

i1f (rank = 0)

ADLB_Put 1initial board
ADLB_Get board (Reserve+Get)
while success (else done)

ooh

find first blank square

1f failure (problem solved!)

print solution
ADLB_Set_Done
else
for each valid value
set blank square to value
ADLB_Put new board
ADLB_Get board
endif
end while

16

How it Works

T Put
112 9 7
S 61
7 8
- Get
7 ¢l i 812 6 <<
516
1 9
7 1

T°T4) 19 7 2T6] 19 7 T°T8) 19 7
5 61 5 6|1 5 61
7 I8 ANE 7118
513 53 513
7] 9|1 [8]2] [6 7] [o]1] [8]2] [6 7] [o]1 [8]2] [6
5|6 5|6 5
aHE A HE aHE
6|7 1 6|7 1 6|7 1
2 5 3le] |2 5 38] 2 5 3]8
Put
|

After initial Put, all processes execute same loop (no master)

3 6
8
3
91 2| |6
516
1
7 1
5 8

17

Optimizing Within the ADLB Framework

= Can embed smarter strategies in this algorithm

— ooh = “optional optimization here”, to fill in more squares inside the
main loop

— Even so, potentially a lot of work units for ADLB to manage

= (Can use priorities to address this problem
— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is enough
work to go around

e How one would do it sequentially

= Exhaustion automatically detected by ADLB (e.g., proof that

there is only one solution, or the case of an invalid input
board)

18

A Physics Application - Parameter Sweep in
Material Science Application

B Finding materials to use in luminescent solar concentrators
— Stationary, no moving parts
— Operate efficiently under diffuse light conditions (northern climates)

— Inexpensive collector, concentrate light on high-performance solar
cell

B |n this case, the authors never learned any parallel programming
approach other than ADLB

(a) incident sunlight

37 @ KQ photovoltalc cell

luminescent material

light guide

‘d

v

19

The “Batcher”: World’s Simplest Job Scheduler for
Linux Clusters

= Simple (100 lines of code) but potentially useful

= |nputis a file (or stream) of Unix command lines, which
become the ADLB work units put into the work pool by one
manager process

= ADLB worker processes execute each one with the Unix
“system” call

= Easy to add priority considerations

20

Green’s Function Monte Carlo - A Complex Application

= Green’s Function Monte Carlo -- the “gold standard” for ab initio
calculations in nuclear physics at Argonne (Steve Pieper, Physics Division)

= A non-trivial manager/worker algorithm, with assorted work types and
priorities; multiple processes create work dynamically; large work units

= Had scaled to 2000 processors on BG/L, then hit scalability wall.

= Needed to get to 10’s of thousands of processors at least, in order to carry
out calculations on 12C, an explicit goal of the UNEDF SciDAC project.

= The algorithm threatened to become even more complex, with more
types and dependencies among work units, together with smaller work
units

= Wanted to maintain master/slave structure of physics code
= This situation brought forth ADLB
= Achieving scalability has been a multi-step process

— balancing processing
— balancing memory
— balancing communication
= Now runs with 100’s of thousands of processes
A 21

Scalability of GFMC/ADLB

40— N

)
-
|
|

- —e— Actual -
- —Ideal s

- 12C - GFMC+ADLB - BG/Q .
- Weak scaling, 2 configs/rank -

Time (minutes)
(\©)
S
|
|

S
|
|

‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘T
0 256 1,024 4,096 16,384 65,536 262,144

Number of MPI ranks

On Mira: 32,768 nodes, 8 ranks/node, 7 OMP threads/rank

22

An Alternate Implementation of the Same API

= Motivation for 1-sided, single-server version:

— Eliminate multiple views of “shared” queue data structure and the effort
required to keep them (almost) coherent

— Free up more processors for application calculations by eliminating most
servers.

— Use larger client memory to store work packages
= Relied on “passive target” MPI-2 remote memory operations
= Single master proved to be a scalability bottleneck at 32,000 processors

(8K nodes on BG/P) not because of processing capability but because of
network congestion.

ADLB_Put ADLB_Get

MPI_Put MPI_Get

23

Getting ADLB

Web site is http://www.cs.mtsu.edu/~rbutler/adlb
— documentation

— download button

R4
L 6L

What you get:
— source code
— configure script and Makefile
— README, with APl documentation
— Examples
e Sudoku
e Batcher

e Traveling Salesman Problem -->

To run your application
— Configure, make to build ADLB library
— Compile your application with mpicc, use Makefile as example

13,509 U.S. cities with populations of more than 500 people

— Run with mpiexec

Problems/questions/suggestions to {lusk,rbutler}@mcs.anl.gov

24

A Problem Starting to Arise With Large Work Units

= As work units get larger (as they do when we apply
Argonne’s GFMC to more nucleons) memory gets

tight. OOOOO
= To store large numbers of large work units, more " ..
servers are needed. "' o ..
= But then they aren’t available for application
computationz. " .4‘¥"‘ <
= ADLB is complicated enough without trying to ‘.ﬁ.
integrate a solution for this problem into it.
= So we chose an orthogonal approach... ‘.‘ .‘.

25

DMEM: a Simple Library for Distributed Memory
Management of Large Items

= APl summary: put, get, copy, free, get-part, update

= User (application or another library) refers to a memory object via a
(small) handle, which encodes its location and size.

= DMEM manages memory on all clients. Runs as separate thread, sharing
memory with application processes, so local operations are fast.

= QOptimization: put and copy operations are local if possible.

= ADLB is then free to manage only DMEM handles, which are tiny, thus
reducing requirement for lots of servers just for memory reasons.

= Looking ahead, object size is of type MPI_Aint, which is typically a long int
in Cand an integer*8 in Fortran.

26

The DMEM API

The C API:
int DMEM _Init(MPI_Comm user_comm, MPI_Aint init_memsize)
int DMEM _Finalize()
int DMEM_Put(void *pkg _addr, MPI_Aint pkg_len, DMEM _handle dh)
int DMEM_Get(DMEM _handle dh, void *buf_addr)
int DMEM_Copy(DMEM _handle orig, DMEM _handle *copy)
int DMEM_Get_part(DMEM_handle dh, MPI_Aint offset, MPI_Aint len, void *buf_addr)
int DMEM_Update(DMEM _handle dh, MPI_Aint offset, MPI_Aint len, void *buf_addr)
int DMEM_Free(DMEM __handle dh)

The Fortran APl is similar, with an extra argument for return codes, as in MPI

Status: implemented, GFMC converted to use it, improved scalability in
progress

27

Conclusions

= There are benefits to limiting generality of approach
= Scalability need not come at the expense of complexity
= ADLB might be handy

= DMEM makes ADLB better, and might be handy in its own
right

28

The End

29

