
Community Codes and Good Software
Techniques

 Scientific codes are complex
 Introduction to the next two days

Katherine Riley
August 10, 2015

Over the next two days

2

Today	
 -­‐	
 Applica-ons	

Architec(ng	
 Community	
 Codes	
 Anshu	
 Dubey	

The	
 Impact	
 of	
 Community	
 Codes	
 on	
 Astrophysics	
 	
 Sean	
 Couch	

Designing	
 Scalable	
 Scien(fic	
 So=ware	
 Bill	
 Tang	

Modern	
 Features	
 of	
 Produc(on	
 Scien(fic	
 Code	
 Mar(n	
 Berzins	

HEP	
 –	
 Complex	
 Workflows	
 	
 Tom	
 LeCompte	

HACC	
 –	
 Applica(on	
 Performance	
 Across	
 Diverse	

Architectures	
 	

Salman	
 Habib	

	

Tomorrow	
 –	
 Process	
 (mostly	

So=ware	
 Engineering	
 Prac(ces	
 Aron	
 Ahmadia	

NAMD	
 Jim	
 Phillips	

Types	
 of	
 Workflows	
 	
 Tom	
 Uram	

Swi=	
 as	
 a	
 Workflow	
 Solu(on	
 Mike	
 Wilde	

Data	
 Provenance	
 David	
 Koop	

Real Application Experience

¤  Experience is almost everything

¤  Speakers are PIs with a lot of experience in their domain science
and computational science

¤  Look for lessons that might be relevant – even from far outside your
domain

3

Workflows & Provenance

¤  You all have a computational workflow
¤  Capturing that is important

¥  Document it!

¤  Provenance – where does your data come from?
¥  Can you track the exact run and the conditions of that run?
¥  Critical part of software engineering and scientific process

4

Goals

¤  Expose some of the processes required for developing scientific codes
¤  Show you the approach and effectiveness of code cooperation in a

variety of domains
¤  Illustrate some of the challenges of those approaches

¥  Sociological & Technical
¤  Ensure you know the importance and specifics of the software &

scientific process

¤  We are not trying to teach you the applications
¤  We are passing on experience
¤  A lot of people have spent a lot of time thinking about maintain codes

that use the largest systems in the world

5

Scientific applications are complex

¤  Physics/Domain
Problem

¤  Applied
Mathematics

¤  Computer Science
¤  I/O
¤  Verification
¤  Validation
¤  Software

Architecture &
Engineering

6

Using	
 the	
 largest	
 computer	
 systems	
 pushes	
 the	
 boundaries	
 of	

all	
 of	
 these	

Scientific applications are complex

¤  Physics/Domain
Problem

¤  Applied
Mathematics

¤  Computer Science
¤  I/O
¤  Verification
¤  Validation
¤  Software

Architecture &
Engineering

7

Using	
 the	
 largest	
 computer	
 systems	
 pushes	
 the	
 boundaries	
 of	

all	
 of	
 these	

ATPESC Material Covered so far

ATPESC Topics
¤  Hardware Architecture
¤  Programming Models

¥  Low Level - MPI, OpenMP,
Acceleratos/OpenACC

¥  High Level - Chapel, Charm++, UPC,
ADLB, etc

¤  Numerical Algorithms
¥  Libraries, toolkits, etc

¤  Tools & Performance
¤  Visualizing & Analyzing Data

(coming)
¤  I/O & Data

Next Two Days

8

¤  How do you integrate all the
concepts?

¤  Real examples of applications
¤  Good process
¤  Software practices & engineering
¤  Data provenance and workflows

You	
 should	
 not	
 just	
 bang	

these	
 together.	

•  There	
 are	
 no	
 perfect	

answers.	

•  Ask	
 of	
 everyone	

Doing It Right Can Be Hard

9

So=ware	
 Prac(ce	
 Scien(fic	
 Process	

Producing	
 Domain	

Science	

Doing It Right Can Be Hard

10

So=ware	
 Prac(ce	
 Scien(fic	
 Process	

Producing	
 Domain	

Science	

¤  Wri-ng	
 the	
 code	
 well	

¤  So=ware	
 Architecture	
 –	
 code	

design	

¤  So=ware	
 Engineering	
 –	

development	
 prac(ces	

Putting all this to use

11

So=ware	
 Prac(ce	
 Scien(fic	
 Process	

Producing	
 Domain	

Science	

¤  Doing	
 Your	
 Science	
 Well	

¤  So=ware	
 engineering	
 	

¤  Trade-­‐offs	
 	

Putting all this to use

12

So=ware	
 Prac(ce	
 Scien(fic	
 Process	

Producing	
 Domain	

Science	

Why?	

¤  Time	

¤  People	

¤  Recogni(on	
 (papers)	

¤  Conflic(ng	
 Priori(es	

Doing It Right Can Be Hard

13

So=ware	
 Prac(ce	
 Scien(fic	
 Process	

Producing	
 Domain	

Science	

It	
 is	
 geZng	
 friendlier	

It	
 Has	
 To	

Doing It Right Can Be Hard

14

So=ware	
 Prac(ce	
 Scien(fic	
 Process	
 Performance	
 Portability	

Readability	

Implementations vs. Process
Implementation
¤  Architecture
¤  Programming Models

¥  MPI, OpenMP, Acceleratos/
OpenACC

¥  Chapel, Charm++, UPC, ADLB,
etc

¤  Numerical Algorithms
¥  Libraries, toolkits, etc

¤  Tools & Performance
¤  Visualizing & Analyzing Data
¤  I/O

Process – The Life
¤  Software Practices
¤  Scientific Process
¤  Portability
¤  Extensibility
¤  Performance
¤  Provenance
¤  Resilience
¤  Reproducibility
¤  Verification and Validation

¤ And more…

15

Your	
 code	
 will	
 live	
 longer	
 than	
 you	
 think	
 it	
 will.	

Much matters and it all impacts

¤  Besides science..

16

Software Engineering and HPC
Efficiency vs. Other Quality Metrics

Source:!
Code Complete!
Steve McConnell!

Key Practices for Scientific Process
Prac-ce	
 Descrip-on	
 Ac-ons	

Valida-on	
 •  Compare	
 to	
 experiments	

•  Reproducibility	

•  Prove	
 it	
 represents	
 the	
 real	
 world	

•  Very	
 science	
 driven	

Verifica-on	
 •  All	
 parts	
 of	
 the	
 code	
 keep	

giving	
 what	
 you	
 expect	

•  Reproducibility	

•  Unit	
 tes(ng	

•  Regular	
 tes(ng	
 –	
 on	
 scale	
 of	

development	
 speed	

Error	

	

•  Numerical	
 Sensi(vity	

•  Machine	
 rounding	

•  Reproducibility	

•  Numerical	
 &	
 Sensi(vity	
 analysis	
 of	

methods	
 chosen	
 and	
 implementa(on	
 of	

them	

Repro-­‐
ducibility	

•  Exact	
 code	
 used	

•  Documented	

•  Method	
 transparency	

•  Data	
 availability	

•  Coding	
 Standards	

•  Version	
 tag	
 code	
 used	
 for	
 simula(ons	

•  Clear	
 documenta(on	
 on	
 code	
 –	
 even	

publish	
 it	

•  Data	
 provenance	

•  Data	
 archiving	

•  Understand	
 &	
 document	
 workflow	

•  Agree	
 &	
 Document	
 coding	
 standards	

17

Scien-st's	
 Nightmare:	
 SoGware	
 Problem	
 Leads	
 to	
 Five	
 Retrac-ons	

Greg	
 Miller	

Science	
 22	
 December	
 2006:	
 314	
 (5807),	
 1856-­‐1857.	
 [DOI:10.1126/science.314.5807.1856]	

Collaboration is Hard Without Process

¤  Modern scientific computing is no longer a solo effort
¥  Should not be a solo effort
¥  Most interesting modeling questions that could be simulated by

the heroic individual programming scientist have already been
investigated

¥  “Productivity languages” have not delivered yet
¥  Coding is complicated and requires division of roles and

responsibilities.

¤  Working on a common code is difficult unless there is a
software process

¤  Even if solo
¥  Code will live longer than expected
¥  You need to trust results

18

Building a Scientific Code

19

Domain	
 component	
 interfaces	

•  Data	
 mediator	
 interac(ons	

•  Hierarchical	
 organiza(on	

•  Mul(scale/mul(physics	
 coupling	

Na(ve	
 code	
 &	
 Data	
 objects	

•  Single	
 use	
 code	

•  Coordinated	
 component	
 use	

•  Applica(on	
 specific	

Documenta(on	

•  Source	
 markup	

•  Embedded	
 examples	

Build	
 Content	

•  Rules	

•  Parameters	

Shared	
 data	
 objects	

•  Meshes	

•  Matrices	

Library	
 Interfaces	

•  Data	

transforma(on	

•  Parameter	
 config	

Libraries	

•  Solvers	

Frameworks	
 &	

tools	

SW	
 Engineering	

•  Produc(vity	
 tools	

•  Models,	
 processes	

Programming	

Model	
 &	

Languages	

Tes(ng	
 Content	

•  Unit	
 Tests	

•  Glue	
 Tes(ng	

Adapted	
 	
 a	

slide	
 from	

Mike	
 Heroux,	

SNL	

How to start the Software Process

¤ Science +
Architecture + Future

¤ Decide on crucial
data structures
¥  Data movement
¥  Data flow through

functionality

¤ Architecture of code
¥  Functional abstractions
¥  Parallel abstractions
¥  Data ownership clear
¥  Interplay between

architecture and
performance

¥  Coding Standards

¤ Understand workflow

20

Software Process Components

For All Codes
¤ Code Repository
¤ Build Process
¤ Code Architecture
¤ Coding Standards
¤ Verification Process
¤ Maintenance (Support)

Practices

Publicly Distributed

21

¤ Distribution Policies
¤ Contribution Policies
¤ Attribution Policies

Obstacles for Reusing Code
¤  Using externally developed software seen as risk

¥  Can be hard to learn
¥  May not not be what you need
¥  May not be what you think you need
¥  Upgrades of external software can be risky

¡  Backward compatible?
¡  Regression in capability?

¥  Support model may not be sufficient
¥  Long term commitment may be missing

¤  What can reduce the risk of depending on external
software?
¥  Use strong software engineering processes and practices

¡  high quality, low defects, frequent releases, regulated backward
compatibility, …

¡  10-30 year commitment
¡  Develop self-sustaining software

22

Many Choices for Codes and Trade-Offs

Sp
ee
d	

to
	

sc
ie
nc
e	

Sp
ee
d	

of
	

Ch
an

ge
	

Fe
at
ur
es
	

Co
nt
ro
l	

M
et
ho

ds
	
 &
	

Ac
cu
ra
cy
	

Co
m
pl
ex
ity

	
 o
f	

us
e	

Va
lid

a-
on

	

Ve
rifi

ca
-o

n	

Blackbox	
 user	
 Fast	
 Slow	
 ??	
 None	
 Depends	
 High	
 High	

Alter	
 exis(ng	

code	
 base	

Med	
 Fast	
 Depends	
 Par(al	
 Med	
 to	

High	

Med/
Low	

Med/
Low	

Use	
 of	
 libraries	
 Dep.	
 Med	
 High	
 Par(al	
 to	
 Low	
 Med	
 Med	
 Med	

Use	
 of	

framework	

Med	
 Med	
 High	
 Par(al	
 to	

High	

High	
 Shared	
 Shared	

Development	
 of	

new	
 code	

Slow	
 Fast	
 Low	
 High	
 Depends	
 All	
 you	
 All	
 you	

23

Assuming	
 best	
 case	
 scenarios	

Many Choices for Codes and Trade-Offs

Sp
ee
d	

to
	

sc
ie
nc
e	

Sp
ee
d	

of
	

Ch
an

ge
	

Fe
at
ur
es
	

Co
nt
ro
l	

M
et
ho

ds
	
 &
	

Ac
cu
ra
cy
	

Co
m
pl
ex
ity

	
 o
f	

us
e	

Va
lid

a-
on

	

Ve
rifi

ca
-o

n	

Blackbox	
 user	
 Fast	
 Slow	
 ??	
 None	
 Depend
s	

High	
 High	

Alter	
 exis(ng	

code	
 base	

Med	
 Fast	
 Depends	
 Par(al	
 Med	
 to	

High	

Med/
Low	

Med/
Low	

Use	
 of	
 libraries	
 Dep.	
 Med	
 High	
 Par(al	
 to	
 Low	
 Med	
 Med	
 Med	

Use	
 of	

framework	

Med	
 Med	
 High	
 Par(al	
 to	

High	

High	
 Shared	
 Shared	

Development	
 of	

new	
 code	

Slow	
 Fast	
 Low	
 High	
 Depend
s	

All	
 you	
 All	
 you	

24

Assuming	
 best	
 case	
 scenarios	

•  This	
 is	

all	
 an	
 iss

ues	
 of	
 c
ontrol	
 a

nd	
 effor
t	

•  People	
 	

•  Exper(s
e	

•  Sustaina
bility	
 	

•  Require
ments	

Considerations

Some of the technical
considerations

¤  Choosing your tools, codes, etc
¥  Libraries
¥  Frameworks
¥  Open source code
¥  Community code
¥  Closed or commercial code

¤  Writing the code
¥  Data structures
¥  Data structures
¥  Data structures from storage to

memory to cache and back to
storage (locality)

¥  Parallelization of work and data
¥  Languages

Everything else

25

¤  Development
¥  Availability where and when you

need them
¥  Sustained support
¥  Feature support

¤  The future of the code
¥  HPC is the land of low level

languages
¥  HPC is the land of some bleeding

¤  Flexibility to replace libraries
¤  Flexibility to adapt to

architectures
¤  ..

Models for Developing Scientific Codes

¤  Open source community
developed codes
¥  Always available, any contribution

open source code
¥  Central controls of code development
¥  Closed non-commercial codes
¥  Commercial code

¤  Speed of change
¤  Key design ideas

¥  Scientific mission – scientists involved
¥  Always capable of science
¥  Portability – range of platform scale

very beneficial
¥  Documented
¥  Clear design
¥  Prove the code

¤  Solo development
¤  Small team

26

Self Sustaining Software
¤  Open-source: The software has a sufficiently loose open-source license

allowing the source code to be arbitrarily modified and used and reused in a
variety of contexts (including unrestricted usage in commercial codes).

¤  Core domain distillation document: The software is accompanied with a short
focused high-level document describing the purpose of the software and its
core domain model.

¤  Exceptionally well testing: The current functionality of the software and its
behavior is rigorously defined and protected with strong automated unit and
verification tests.

¤  Clean structure and code: The internal code structure and interfaces are
clean and consistent.

¤  Minimal controlled internal and external dependencies: The software has
well structured internal dependencies and minimal external upstream software
dependencies and those dependencies are carefully managed.

¤  Properties apply recursively to upstream software: All of the dependent
external upstream software are also themselves self-sustaining software.

¤  All properties are preserved under maintenance: All maintenance of the
software preserves all of these properties of self-sustaining software (by
applying Agile/Emergent Design and Continuous Refactoring and other good
Lean/Agile software development practices).

27

Side note on legacy codes

Productivity in science fundamentally depends
on productivity in software

Grand-
Challenge
Science

Effective
Use of HPC

Science
Applications

Complex
Legacy

Applications

HPC SW
& Libs

Computational
Science

Billion-way
concurrency!

Non-
professional
Developers

Extreme-scale
Computational

Software

Computational
Science

Expertise

Productive Collaborations

Research Need:
Software Productivity for

Extreme-scale Science

11

Software
Engineering
Expertise

¤  People
disagree

¤  Scientific
applications
are huge
investment

¤  Applications
last for
decades

28

From	
 a	
 set	
 of	
 DOE	
 workshops	
 on	

HPC	
 produc(vity	

Consider the HPC ecosystem

¤  Developing code exclusively for a small cluster is not the same as
developing code for HPC

¤  You can develop HPC code that will work well on your cluster and
your laptop

¤  In HPC, the trade-off with design and performance is omnipresent
¤  Have reached a complexity point that code reuse & design is very

important
¤  All your lessons from software engineering do not apply

29

C"
14"

C++"
22"

F"
30"

Python
2"

Charm
++"
1"

Languages
Code	
 Availability	

Open	
 52%	

Closed	
 26%	

Fuzzy	
 22%	

Quick	
 glimpse	
 of	
 some	
 stats	

on	
 Mira	
 applica(ons.	
 	
 	

100%	
 MPI,	
 65%	
 threaded	

Thoughts Going In

¤  Use your science goals to guide software process choices
¤  Explore how to incorporate these practices

¤  Process is important
¤  Every application is unique
¤  We cannot give you the perfect answer

¤  Architectures evolving; think forward

30

Over the next two days

31

Architec(ng	
 Community	
 Codes	
 Anshu	
 Dubey	

The	
 Impact	
 of	
 Community	
 Codes	
 on	
 Astrophysics	
 	
 Sean	
 Couch	

Desinging	
 Scalable	
 Scien(fic	
 So=ware	
 Bill	
 Tang	

Modern	
 Features	
 of	
 Produc(on	
 Scien(fic	
 Code	
 Mar(n	
 Berzins	

HEP	
 –	
 Complex	
 Workflows	
 	
 Tom	
 LeCompte	

HACC	
 –	
 Applica(on	
 Performance	
 Across	
 Diverse	

Architectures	
 	

Salman	
 Habib	

	

So=ware	
 Engineering	
 Prac(ces	
 Aron	
 Ahmadia	

Types	
 of	
 Workflows	
 	
 Tom	
 Uram	

Swi=	
 as	
 a	
 Workflow	
 Solu(on	
 Mike	
 Wilde	

Data	
 Provenance	
 David	
 Koop	

Goals

¤  Expose some of the processes around developing large, production
scientific codes

¤  Show you the approach and effectiveness of code cooperation in a
variety of domains

¤  Illustrate some of the challenges of those approaches
¥  Sociological & Technical

¤  Ensure you know the importance and specifics of the scientific process

¤  We are not trying to teach you these codes
¤  We are passing on experience
¤  A lot of people have spent a lot of time thinking about maintain codes

that use the largest systems in the world

32

Questions

33

