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Over the next two days 

2 

Today	
  -­‐	
  Applica-ons	
  

Architec(ng	
  Community	
  Codes	
   Anshu	
  Dubey	
  

The	
  Impact	
  of	
  Community	
  Codes	
  on	
  Astrophysics	
  	
   Sean	
  Couch	
  

Designing	
  Scalable	
  Scien(fic	
  So=ware	
   Bill	
  Tang	
  

Modern	
  Features	
  of	
  Produc(on	
  Scien(fic	
  Code	
   Mar(n	
  Berzins	
  

HEP	
  –	
  Complex	
  Workflows	
  	
   Tom	
  LeCompte	
  

HACC	
  –	
  Applica(on	
  Performance	
  Across	
  Diverse	
  
Architectures	
  	
  

Salman	
  Habib	
  
	
  

Tomorrow	
  –	
  Process	
  (mostly	
  

So=ware	
  Engineering	
  Prac(ces	
   Aron	
  Ahmadia	
  

NAMD	
   Jim	
  Phillips	
  

Types	
  of	
  Workflows	
  	
   Tom	
  Uram	
  

Swi=	
  as	
  a	
  Workflow	
  Solu(on	
   Mike	
  Wilde	
  

Data	
  Provenance	
   David	
  Koop	
  



Real Application Experience 

¤  Experience is almost everything 

¤  Speakers are PIs with a lot of experience in their domain science 
and computational science 

¤  Look for lessons that might be relevant – even from far outside your 
domain 
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Workflows & Provenance 

¤  You all have a computational workflow 
¤  Capturing that is important 

¥  Document it!   

¤  Provenance – where does your data come from? 
¥  Can you track the exact run and the conditions of that run? 
¥  Critical part of software engineering and scientific process 
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Goals 

¤  Expose some of the processes required for developing scientific codes 
¤  Show you the approach and effectiveness of code cooperation in a 

variety of domains 
¤  Illustrate some of the challenges of those approaches 

¥  Sociological & Technical 
¤  Ensure you know the importance and specifics of the software & 

scientific process  

¤  We are not trying to teach you the applications 
¤  We are passing on experience 
¤  A lot of people have spent a lot of time thinking about maintain codes 

that use the largest systems in the world 
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Scientific applications are complex 

¤  Physics/Domain 
Problem 

¤  Applied 
Mathematics 

¤  Computer Science 
¤  I/O  
¤  Verification 
¤  Validation 
¤  Software 

Architecture & 
Engineering 
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Using	
  the	
  largest	
  computer	
  systems	
  pushes	
  the	
  boundaries	
  of	
  
all	
  of	
  these	
  



Scientific applications are complex 

¤  Physics/Domain 
Problem 

¤  Applied 
Mathematics 

¤  Computer Science 
¤  I/O  
¤  Verification 
¤  Validation 
¤  Software 

Architecture & 
Engineering 

7 
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  the	
  largest	
  computer	
  systems	
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  the	
  boundaries	
  of	
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  of	
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ATPESC Material Covered so far 

ATPESC Topics 
¤  Hardware Architecture 
¤  Programming Models 

¥  Low Level - MPI, OpenMP, 
Acceleratos/OpenACC 

¥  High Level - Chapel, Charm++, UPC, 
ADLB, etc 

¤  Numerical Algorithms 
¥  Libraries, toolkits, etc 

¤  Tools & Performance 
¤  Visualizing & Analyzing Data  

(coming) 
¤  I/O & Data 

Next Two Days 
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¤  How do you integrate all the 
concepts? 

¤  Real examples of applications 
¤  Good process 
¤  Software practices & engineering 
¤  Data provenance and workflows 

You	
  should	
  not	
  just	
  bang	
  
these	
  together.	
  

•  There	
  are	
  no	
  perfect	
  
answers.	
  

•  Ask	
  of	
  everyone	
  



Doing It Right Can Be Hard 
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So=ware	
  Prac(ce	
   Scien(fic	
  Process	
  

Producing	
  Domain	
  
Science	
  



Doing It Right Can Be Hard 
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So=ware	
  Prac(ce	
   Scien(fic	
  Process	
  

Producing	
  Domain	
  
Science	
  

¤  Wri-ng	
  the	
  code	
  well	
  
¤  So=ware	
  Architecture	
  –	
  code	
  

design	
  
¤  So=ware	
  Engineering	
  –	
  

development	
  prac(ces	
  



Putting all this to use 
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So=ware	
  Prac(ce	
   Scien(fic	
  Process	
  

Producing	
  Domain	
  
Science	
  

¤  Doing	
  Your	
  Science	
  Well	
  
¤  So=ware	
  engineering	
  	
  
¤  Trade-­‐offs	
  	
  



Putting all this to use 
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So=ware	
  Prac(ce	
   Scien(fic	
  Process	
  

Producing	
  Domain	
  
Science	
  

Why?	
  
¤  Time	
  
¤  People	
  
¤  Recogni(on	
  (papers)	
  
¤  Conflic(ng	
  Priori(es	
  



Doing It Right Can Be Hard 

13 

So=ware	
  Prac(ce	
   Scien(fic	
  Process	
  

Producing	
  Domain	
  
Science	
  

It	
  is	
  geZng	
  friendlier	
  
It	
  Has	
  To	
  



Doing It Right Can Be Hard 
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So=ware	
  Prac(ce	
   Scien(fic	
  Process	
  Performance	
   Portability	
  

Readability	
  



Implementations vs. Process 
Implementation 
¤  Architecture 
¤  Programming Models 

¥  MPI, OpenMP, Acceleratos/
OpenACC 

¥  Chapel, Charm++, UPC, ADLB, 
etc 

¤  Numerical Algorithms 
¥  Libraries, toolkits, etc 

¤  Tools & Performance 
¤  Visualizing & Analyzing Data 
¤  I/O 

Process – The Life 
¤  Software Practices 
¤  Scientific Process 
¤  Portability 
¤  Extensibility 
¤  Performance 
¤  Provenance 
¤  Resilience 
¤  Reproducibility 
¤  Verification and Validation 

¤ And more… 
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Your	
  code	
  will	
  live	
  longer	
  than	
  you	
  think	
  it	
  will.	
  



Much matters and it all impacts 

¤  Besides science.. 
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Software Engineering and HPC 
Efficiency vs. Other Quality Metrics 

Source:!
Code Complete!
Steve McConnell!



Key Practices for Scientific Process 
Prac-ce	
   Descrip-on	
   Ac-ons	
  

Valida-on	
   •  Compare	
  to	
  experiments	
  
•  Reproducibility	
  

•  Prove	
  it	
  represents	
  the	
  real	
  world	
  
•  Very	
  science	
  driven	
  

Verifica-on	
   •  All	
  parts	
  of	
  the	
  code	
  keep	
  
giving	
  what	
  you	
  expect	
  

•  Reproducibility	
  

•  Unit	
  tes(ng	
  
•  Regular	
  tes(ng	
  –	
  on	
  scale	
  of	
  
development	
  speed	
  

Error	
  
	
  

•  Numerical	
  Sensi(vity	
  
•  Machine	
  rounding	
  
•  Reproducibility	
  

•  Numerical	
  &	
  Sensi(vity	
  analysis	
  of	
  
methods	
  chosen	
  and	
  implementa(on	
  of	
  
them	
  

Repro-­‐
ducibility	
  

•  Exact	
  code	
  used	
  
•  Documented	
  
•  Method	
  transparency	
  
•  Data	
  availability	
  
•  Coding	
  Standards	
  

•  Version	
  tag	
  code	
  used	
  for	
  simula(ons	
  
•  Clear	
  documenta(on	
  on	
  code	
  –	
  even	
  
publish	
  it	
  

•  Data	
  provenance	
  
•  Data	
  archiving	
  
•  Understand	
  &	
  document	
  workflow	
  
•  Agree	
  &	
  Document	
  coding	
  standards	
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Scien-st's	
  Nightmare:	
  SoGware	
  Problem	
  Leads	
  to	
  Five	
  Retrac-ons	
  
Greg	
  Miller	
  
Science	
  22	
  December	
  2006:	
  314	
  (5807),	
  1856-­‐1857.	
  [DOI:10.1126/science.314.5807.1856]	
  



Collaboration is Hard Without Process 

¤  Modern scientific computing is no longer a solo effort  
¥  Should not be a solo effort 
¥  Most interesting modeling questions that could be simulated by 

the heroic individual programming scientist have already been 
investigated  

¥  “Productivity languages” have not delivered yet  
¥  Coding is complicated and requires division of roles and 

responsibilities.  

¤  Working on a common code is difficult unless there is a 
software process  

¤  Even if solo 
¥  Code will live longer than expected 
¥  You need to trust results 
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Building a Scientific Code 
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Domain	
  component	
  interfaces	
  
•  Data	
  mediator	
  interac(ons	
  
•  Hierarchical	
  organiza(on	
  
•  Mul(scale/mul(physics	
  coupling	
  

Na(ve	
  code	
  &	
  Data	
  objects	
  
•  Single	
  use	
  code	
  
•  Coordinated	
  component	
  use	
  
•  Applica(on	
  specific	
  

Documenta(on	
  
•  Source	
  markup	
  
•  Embedded	
  examples	
  

Build	
  Content	
  
•  Rules	
  
•  Parameters	
  

Shared	
  data	
  objects	
  
•  Meshes	
  
•  Matrices	
  

Library	
  Interfaces	
  
•  Data	
  

transforma(on	
  
•  Parameter	
  config	
  

Libraries	
  
•  Solvers	
  

Frameworks	
  &	
  
tools	
  

SW	
  Engineering	
  
•  Produc(vity	
  tools	
  
•  Models,	
  processes	
  

Programming	
  
Model	
  &	
  
Languages	
  

Tes(ng	
  Content	
  
•  Unit	
  Tests	
  
•  Glue	
  Tes(ng	
  

Adapted	
  	
  a	
  
slide	
  from	
  
Mike	
  Heroux,	
  
SNL	
  



How to start the Software Process 

¤ Science + 
Architecture + Future 

¤ Decide on crucial 
data structures 
¥  Data movement 
¥  Data flow through 

functionality 

¤ Architecture of code 
¥  Functional abstractions 
¥  Parallel abstractions 
¥  Data ownership clear 
¥  Interplay between 

architecture and 
performance 

¥  Coding Standards 

¤ Understand workflow 
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Software Process Components 

For All Codes 
¤ Code Repository 
¤ Build Process 
¤ Code Architecture 
¤ Coding Standards 
¤ Verification Process 
¤ Maintenance (Support) 

Practices  

Publicly Distributed 
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¤ Distribution Policies 
¤ Contribution Policies 
¤ Attribution Policies  
 



Obstacles for Reusing Code 
¤  Using externally developed software seen as risk 

¥  Can be hard to learn 
¥  May not not be what you need 
¥  May not be what you think you need 
¥  Upgrades of external software can be risky 

¡  Backward compatible? 
¡  Regression in capability? 

¥  Support model may not be sufficient 
¥  Long term commitment may be missing 

¤  What can reduce the risk of depending on external 
software? 
¥  Use strong software engineering processes and practices 

¡  high quality, low defects, frequent releases, regulated backward 
compatibility, …  

¡  10-30 year commitment 
¡  Develop self-sustaining software  
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Many Choices for Codes and Trade-Offs 
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   None	
   Depends	
   High	
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code	
  base	
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   Fast	
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   Depends	
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Assuming	
  best	
  case	
  scenarios	
  



Many Choices for Codes and Trade-Offs 
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Assuming	
  best	
  case	
  scenarios	
  

•  This	
  is	
  
all	
  an	
  iss

ues	
  of	
  c
ontrol	
  a

nd	
  effor
t	
  

•  People	
  	
  

•  Exper(s
e	
  

•  Sustaina
bility	
  	
  

•  Require
ments	
  



Considerations 

Some of the technical 
considerations 

¤  Choosing your tools, codes, etc 
¥  Libraries 
¥  Frameworks 
¥  Open source code 
¥  Community code 
¥  Closed or commercial code 

¤  Writing the code 
¥  Data structures 
¥  Data structures 
¥  Data structures from storage to 

memory to cache and back to 
storage (locality) 

¥  Parallelization of work and data 
¥  Languages 

Everything else 
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¤  Development 
¥  Availability where and when you 

need them 
¥  Sustained support 
¥  Feature support 

¤  The future of the code 
¥  HPC is the land of low level 

languages 
¥  HPC is the land of some bleeding 

¤  Flexibility to replace libraries 
¤  Flexibility to adapt to 

architectures 
¤  .. 



Models for Developing Scientific Codes 

¤  Open source community 
developed codes 
¥  Always available, any contribution 

open source code 
¥  Central controls of code development 
¥  Closed non-commercial codes 
¥  Commercial code 

¤  Speed of change  
¤  Key design ideas 

¥  Scientific mission – scientists involved 
¥  Always capable of science 
¥  Portability – range of platform scale 

very beneficial 
¥  Documented 
¥  Clear design 
¥  Prove the code 

¤  Solo development 
¤  Small team 
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Self Sustaining Software 
¤  Open-source: The software has a sufficiently loose open-source license 

allowing the source code to be arbitrarily modified and used and reused in a 
variety of contexts (including unrestricted usage in commercial codes).  

¤  Core domain distillation document: The software is accompanied with a short 
focused high-level document describing the purpose of the software and its 
core domain model.  

¤  Exceptionally well testing: The current functionality of the software and its 
behavior is rigorously defined and protected with strong automated unit and 
verification tests.  

¤  Clean structure and code: The internal code structure and interfaces are 
clean and consistent.  

¤  Minimal controlled internal and external dependencies: The software has 
well structured internal dependencies and minimal external upstream software 
dependencies and those dependencies are carefully managed.  

¤  Properties apply recursively to upstream software: All of the dependent 
external upstream software are also themselves self-sustaining software.  

¤  All properties are preserved under maintenance: All maintenance of the 
software preserves all of these properties of self-sustaining software (by 
applying Agile/Emergent Design and Continuous Refactoring and other good 
Lean/Agile software development practices).  
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Side note on legacy codes 

Productivity in science fundamentally depends 
on productivity in software 

Grand- 
Challenge 
Science 

Effective 
Use of HPC 

Science 
Applications 

Complex 
Legacy 

Applications 

HPC SW 
& Libs 

Computational 
Science 

Billion-way 
concurrency! 

Non- 
professional 
Developers 

Extreme-scale 
Computational 

Software 

Computational 
Science 

Expertise 

Productive Collaborations 

Research Need: 
Software Productivity for 

Extreme-scale Science 
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Software 
Engineering 
Expertise 

¤  People 
disagree 

¤  Scientific 
applications 
are huge 
investment 

¤  Applications 
last for 
decades 

28 

From	
  a	
  set	
  of	
  DOE	
  workshops	
  on	
  
HPC	
  produc(vity	
  



Consider the HPC ecosystem 

¤  Developing code exclusively for a small cluster is not the same as 
developing code for HPC 

¤  You can develop HPC code that will work well on your cluster and 
your laptop 

¤  In HPC, the trade-off with design and performance is omnipresent 
¤  Have reached a complexity point that code reuse & design is very 

important 
¤  All your lessons from software engineering do not apply 
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C"
14"

C++"
22"

F"
30"

Python
2"

Charm
++"
1"

Languages 
Code	
  Availability	
  

Open	
   52%	
  

Closed	
   26%	
  

Fuzzy	
   22%	
  

Quick	
  glimpse	
  of	
  some	
  stats	
  
on	
  Mira	
  applica(ons.	
  	
  	
  
100%	
  MPI,	
  65%	
  threaded	
  



Thoughts Going In 

¤  Use your science goals to guide software process choices 
¤  Explore how to incorporate these practices 

¤  Process is important 
¤  Every application is unique 
¤  We cannot give you the perfect answer 

¤  Architectures evolving; think forward 
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Over the next two days 
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  of	
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  Scalable	
  Scien(fic	
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   David	
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Goals 

¤  Expose some of the processes around developing large, production 
scientific codes 

¤  Show you the approach and effectiveness of code cooperation in a 
variety of domains 

¤  Illustrate some of the challenges of those approaches 
¥  Sociological & Technical 

¤  Ensure you know the importance and specifics of the scientific process  

¤  We are not trying to teach you these codes 
¤  We are passing on experience 
¤  A lot of people have spent a lot of time thinking about maintain codes 

that use the largest systems in the world 
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Questions 
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