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! Unstructured mesh methods and the need for unstructured 
mesh components for use by analysis code developers 

! Core unstructured mesh components: 
•  Parallel Mesh infrastructures 
•  Mesh Generation, Adaptation, Optimization 
•  Fields 
•  Solution transfer 

! Dynamic load balancing 
! Unstructured mesh/solver developments 
! Creation of parallel adaptive loops using in-memory methods 
! An extendable unstructured mesh environment 
!  Introduction to the Hands-On Session 

Presentation Outline 
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Unstructured mesh – a spatial domain discretization composed 
of topological entities with general connectivity and shape 
Advantages of unstructured mesh methods 
! Fully automated procedures to go from CAD to valid mesh 
! Can provide highly effective solutions 
•  Easily fitted to geometric features 
•  General mesh anisotropy to account  

for anisotropic physics possible 
! Given a complete geometry, with analysis  

attributes defined on that model, the entire  
simulation work flow can be automated 

! Meshes can easily be adaptively modified 

Unstructured Mesh Methods 
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Disadvantages of unstructured meshes 
! More complex data structures than structured meshes 
•  Increased program complexity, particularly in parallel  

! Can provide the highest accuracy on a per degree of 
freedom – requires careful method and mesh control 
•  The quality of element shapes influences solution 

accuracy – the degree to which this happens a function of 
the discretization method 

•  Poorly shaped elements increase condition number of 
global system – iterative solvers increase time to solve 

•  Require careful a priori, and/or good a posteriori, mesh 
control to obtain good mesh configurations 

Unstructured Mesh Methods 



6 
6!

Goal of FASTMath unstructured mesh developments include: 
! Provide component-based tools that take full advantage of 

unstructured mesh methods and are easily used by analysis 
code developers and users 

! Develop those components to operate through multi-level 
APIs that increase interoperability and ease of integration 

! Address technical gaps by developing specific unstructured 
mesh tools to address needs and eliminate/minimize 
disadvantages of unstructured meshes 

! Work with DOE applications on the integration of these 
technologies with their tools and to address new needs that 
arise 

Unstructured Mesh Methods 
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!  Accelerator Modeling (ACE3P) 
!  Climate data analysis (Par-NCL) 
!  Multi-tracer transport (MBCSLAM) 
!  FE-based neutron transport (PROTEUS) 
!  Fluid/Structure interaction (AthenaVMS) 
!  Fusion Edge Physics (XGC) 
!  Fusion Plasmas (M3DC1) 
!  High-order CFD on (Nektar++) 
!  High-speed viscous flows (FUN3D) 
!  Mesh-oriented FEA library (MoFEM) 
!  Monte Carlo neutron transport (DAG-MCNP) 
!  Mortar element Structural Mechanics (Diablo) 
!  Multiphase reactor flows (PHASTA) 
!  SEM-based CFD (Nek5000)  
!  General IM Multiphysics (Albany) 
!  IMEX FE Shock Multiphysics (Alegra/Alexa) 

Applications using FASTMath  
Unstructured Mesh Components 
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Parallel Mesh Infrastructure 

Key unstructured mesh technology needed by applications 
! Effective parallel mesh representation 
! Base parallel functions 
•  Partitioned mesh control and modification  
•  Read only copies for application needs 
•  Associated data, grouping, etc. 

! Key services 
•  Load balancing 
•  Mesh-to-mesh solution transfer 
•  Mesh optimization and adaptation 

! Two FASTMath Implementations 
•  SIGMA and PUMI 

i!M!0!

j!M1!

1!P!

0!P!
2!P!

 inter-process part  
boundary!

 intra-process part  
boundary!

 Proc j! Proc i!
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A ‘part’ is a set of mesh entities  
assigned to a process 
! Treated as a serial mesh with  

inter-process part boundaries 
! Entities on part boundaries  

maintain links to remote copies 
Mesh Migration 
! Moving mesh entities between parts as dictated by operations 
! Entities to migrate are determined based on adjacencies 
!  Interpart links updated based on mesh adjacencies 
! Performance issues: synchronization, communications, load 

balance and scalability 

Partition Model and Migration 
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Copy of off-part mesh data  
to avoid inter-process 
communications 
! Read-only, duplicate entity  

copies not on part boundary 
! Copy rule: triplet (entity 

dim, bridge dim, # layers) 
•  Entity dim: dimension for copied entities 
•  Bridge dim: used to define copies through adjacency 
•  # layers: # of layers measured from the part boundary 

! E.g, to get two layers of region entities in the ghost layer, 
measured from faces on part boundary – ghost_dim=3, 
bridge_dim=2, and # layers=2 

General Functions for Read Only Copies 



11 
11!

Mesh Generation 
! Must be able to create meshes over complex domains 
! Already doing meshes approaching 100 billion elements 
! High levels of automation needed to avoid meshing bottleneck 
Mesh Adaptation must 
! Use a posteriori information to improve mesh 
! Account for curved geometry (fixed and evolving) 
! Support general, and specific, anisotropic adaptation 
Mesh Shape Optimization 
! Control element shapes as needed by the various 

discretization methods for maintaining accuracy and efficiency 
Parallel execution of all three functions critical on large meshes 

Mesh Generation, Adaptation and Optimization 
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Need to support the definition of, and operations on, fields 
defined over space/time domains 
!  Input fields can be defined over geometric model and meshes 
! Output fields defined over meshes 
! Fields are tensors and defined in terms of: 
•  Tensor order and symmetries 
•  Relationship to domain entities 
•  Distributions of components over entities  

! Must support operations on fields including: 
•  Interrogations – pointwise and distributions 
•  Basic – integration, differentiation, projection, etc. 
•  Complex – mesh-to-mesh transfer, conservation, etc. 

Fields and Solution Transfer 
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Geometry and mesh (data) generation/handling infrastructure 
with flexible solver interfaces. (http://sigma.mcs.anl.gov) 

SIGMA Geometry-Mesh-Solver Interfaces 

" MOAB – Mesh Oriented datABase 
for handling unstructured meshes!

" Solver interfaces!
" CouPE – Coupled multi-

physics Environment!
" PETSc – MOAB (DMMoab) 

Discretization Manager!
" Scalable HDF5 serialization 
"  In-situ visualization (h5m/vtk/exo) 

" CGM – Common Geometry Module for solid engines 
" MeshKit – Mesh generation toolKit !
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! CGM: Geometry engine with interfaces to ACIS/OCC. 
! MeshKit: Graph-based plugin design (point#line#tri#tet) 
! Several efficient native algorithms and links to external mesh 

generation libraries (CUBIT, Netgen, Tetgen, CAMAL, GMsh) 
! Accepts conventional text (templates) or CAD descriptions. 

SIGMA Geometry-Mesh-Solver Interfaces 

Geometry/BC Setup! Generate unstructured mesh!
and link with solvers! Check-point/Analyze/Visualize!
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! Array-based unstructured mesh data-structure 
•  Support stencil and block structured computations  
•  Support thread safety for portable performance 

! Dynamic load balancing: Zoltan, PARMetis 
! Discretization kernels: cG, dG, Spectral, GFD, <user> 
! Uniform mesh refinement hierarchy generation 
•  Recover high order projection through reconstruction 
•  Quantify geometry errors in absence of CAD models 

! Adaptive mesh refinement 

MOAB Parallel Mesh Infrastructure 

•  Conformal: TRI/TET straightforward but QUAD/HEX is hard! 
•  Non-conformal (hanging nodes): Memory conserving 

designs in array-based setting is tricky. 
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! Array-based unstructured mesh data-structure 
•  Support stencil and block structured computations  
•  Support thread safety for portable performance 

! Dynamic load balancing: Zoltan, PARMetis 
! Discretization kernels: cG, dG, Spectral, GFD, <user> 
! Uniform mesh refinement hierarchy generation 
•  Recover high order projection through reconstruction 
•  Quantify geometry errors in absence of CAD models 

! Adaptive mesh refinement 

MOAB Parallel Mesh Infrastructure 

a) Original!
b) Non-conformal!
c) Conformal!
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! Goals: Simplify geometry search and 
unify discretization kernels with a flexible 
interface for coupled problems. 

! Geometry search: support parallel point-
in-element query for various element 
topologies (edge, tri/quad/polygon, tet/
hex/prism/pyramid) 

! Discretization: support transformations, 
higher-order basis functions (lagrange, 
spectral) for optimized local FE/FV 

! Mesh smoothing: Laplace, Lloyd, 
Anisotropic – for deformation problems 

! Other focus: Parallel I/O scalability  
harder than mesh manipulation! 

MOAB Parallel Mesh Infrastructure 
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MOAB Solution Transfer: Algorithm  

4. Normalization!
!

5. Conservation!

SpatialCoupler uses 
“crystal-router” aggregated 
communication to minimize 
data transfer costs. 
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MOAB Solution Transfer: Scalability 

!  Demonstrated 60% strong scalability of the solution transfer 
implementation in MOAB up to 512K cores on BG/Q. 

!  Bottleneck: Kd-tree scales as O(nlog(n)); Consider BVH/
BIH trees to attain O(log(n)) time complexity. 

!  Real problems: location vs interpolation, O(1) vs O(Δt) 
!  Initialization costs amortized over multiple interpolations! 
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Distributed mesh!Partition model!

! Complete representation to provide any adjacency in O(1) time 
! Array-based storage for reduced memory size 
! Parallel control through partition model that supports 
•  All interprocess communications  
•  Effective migration of mesh entities 
•  Generalized read only copies 

PUMI Unstructured Mesh Infrastructure 

Geometric model!
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! Focused on supporting massively parallel evolving meshes as 
needed for adaptive mesh and/or evolving geometry problems 

! Used in the construction of parallel adaptive simulation loops 
by combining with: 
•  Fully automatic parallel mesh generation for general non-

manifold domains supported by Simmetrix meshing 
•  General mesh modification to adapt meshes to control 

discretion errors, account for evolving geometry 
•  Multiple dynamic load balancing tools as needed to 

effectively load balance the steps in an evolving mesh 
simulation 

! Supported evolving meshes with 92 billion elements 

PUMI Unstructured Mesh Infrastructure 
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Unstructured meshes that effectively use high  
core-count, hybrid parallel compute nodes 
! A parallel control utility (PCU) that supports hybrid threading 

and message passing operations on partitioned PUMI meshes  
! 16 threads per process on BG/Q  

saves 20% of memory 
•  Critical for many-core nodes  

where memory/core is limited 
Use of Intel Phi accelerators 
•  On an equal number of Phi  

and BG/Q nodes 
� 1024 → 2048 partitioning is 40% faster on Stampede  
� 2048 → 4096 partitioning 8% slower on Stampede 

Architecture Aware PUMI 
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! Complete representation supports any application need 
! Have made extensive use of Simmetrix meshing component 
•  Any combinations of CAD and triangulations 
•  Voxel (image) to model to mesh capabilities 
•  Extensive control of mesh types,  

orders and layouts – boundary layer,  
anisotropic, gradation, etc. 

•  Curved element meshes 
•  Parallel mesh and distributed geometry 
� 1B element mesh generated in  

8 minutes on 256 cores 
� 13 billion elements on  

up to 2048 cores 

Mesh Generation 

The image cannot be displayed. Your computer 
may not have enough memory to open the 
image, or the image may have been corrupted. 
Restart your computer, and then open the file 
again. If the red x still appears, you may have to 
delete the image and then insert it again.
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General Mesh Modification for Mesh Adaptation 

! Goal is the flexibility of remeshing with added advantages 
! Strategy 
•  Employ a “complete set” of mesh modification operations to 

alter the mesh into one that matches the given mesh size field 
•  Driven by an anisotropic mesh size field that can be set by 

any combination of criteria 
! Advantages   
•  Supports general anisotropic meshes 
•  Can deal with any level of geometric domain complexity 
•  Can obtain level of accuracy desired 
•  Solution transfer can be applied incrementally - provides more 

control to satisfy constraints (like mass conservation) 
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! Controlled application of mesh modification operations including 
dealing with curved geometries, anisotropic meshes  

! Base operators 
•  Swap, collapse, 

split, move 

! Compound operators chain single step operators 
•  Double split collapse operator 
•  Swap(s) followed by collapse operator 
•  Split, then move the created vertex 
•  Etc. 

! Mesh adapts to  
true geometry 

! Fully parallel 
! Curved element geom.  

Edge collapse!
Edge split! face split!

Double split collapse to remove sliver!

Mesh Adaptation by Local Mesh Modification 
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! Attached Parallel Fields (APF) development underway 
! Effective storage of solution fields on meshes 
! Supports operations on the fields 
•  Interrogation 
•  Differentiation 
•  Integration 
•  Interpolation/projection 

! Recent efforts 
•  Adaptive expansion of Fields from 2D to 3D in M3D-C1 
•  History-dependent integration point fields  

for Albany plasticity models 

Attached Parallel Fields (APF)  
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Local solution transfer during mesh adaptation 
! Performed on cavity as local mesh modification performed 
! Limited number of elements involved (no search over mesh) 
! No accuracy loss with some operations (e.g., refinement) 
! Others easier to control due to local nature (e.g., more  

accurate conservation correction) 
! Applied to primary & secondary variables in multiple applications 
!  In the metal forming case  

not only was the transfer 
faster, the non-linear solve 
was much faster since 
“equilibrium recovery”  
iterations not required 

Local Solution Transfer 

Zone 
updated 
by the 

operations
shaded!

Before collapse! after collapse!
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Mesh Adaptation Status 
! Applied to very large scale 

models – 3.1M processes on 
¾ million cores 

! Local solution transfer 
supported through callback 

! Effective storage of solution 
fields on meshes 

! Supports adaptation with 
boundary layer meshes 
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! Supports adaptation of 
curved elements 

! Adaptation based on 
multiple criteria, examples 
•  Level sets at interfaces 
•  Tracking particles 
•  Discretization errors 
•  Controlling element 

shape in evolving 
geometry 

Mesh Adaptation Status 
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!  Provide the mesh infrastructure for M3D-C1 
•  Geometric model interface defined by 

analytic expressions with B-splines 
•  Distributed mesh management including 
�  process grouping to define plane 
�  each plane loaded with the same 

distributed 2D mesh then 
�  3D mesh and corresponding 

partitioning topology constructed 
•  Mesh adaptation and load balancing 
•  Adjacency-based node ordering 
•  Mapping of mesh to PETSc structures 

and control of assembly processes 

Highlight: Unstructured Mesh Infrastructure for the M3D-
C1 MHD Code for Fusion Plasma Simulations 

Fig: 3D mesh constructed from 64 
2D planes on 12288 processes [1] 
(only the mesh between selected 
planes shown)!

[1] S.C.Jardin, et al, Multiple timescale calculations of sawteeth and other macroscopic dynamics of 
tokamak plasmas, Computational Science and Discovery 5 (2012) 014002!
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!  EPSI PIC coupled to mesh simulation 
requires high quality meshes meeting a 
strict set of layout and other constraints 
•  Previous method took >11 hours and 

mesh did not have desired quality 
•  FASTMath meshing technologies put 

together to produce better quality 
meshes that meet constraints 

•  Controlled meshes now generated in 
minutes 

!  Particle-in-Cell with distributed mesh 
•  Current XGC copies entire mesh on 

each process 
•  PUMI distributed mesh being extended 

to support parallel mesh with particles 
than can move through the mesh 

Highlight: Unstructured Mesh Techniques for 
Edge Plasma Fusion Simulations 
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Highlight: Parallel Mesh Adaptation with Curved Mesh 
Geometry for High-Order Accelerator EM Simulations 

! Provide parallel mesh modification 
procedure capable of creating/
adapting curved mesh geometry 

! Parallel mesh adaptation procedure 
developed that supports quadratic 
curved meshes 

! Ongoing efforts to support higher 
order G1 mesh geometry 

! The procedure integrated with high-
order electro-magnetic solver, 
ACE3P from the SLAC National 
Accelerator Laboratory 
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! Purpose: to rebalance load during mesh modification and 
before each key step in the parallel workflow 
•  Equal “work load” with minimum inter-process 

communications 
! FASTMATH load balancing tools 
•  Zoltan/Zoltan2 libraries  

provide multiple dynamic  
partitioners with general control 
of partition objects and weights 

•  ParMA – Partitioning using 
mesh adjacencies 

•  ParMA and Zoltan2 can use 
each other’s methods 

Dynamic Load Balancing 
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Initialize  
Application!

Partition 
Data!

Redistribute  
Data!

Compute  
Solutions  
& Adapt!

Output 
& End!

! Dynamic repartitioning (load balancing) in an application: 
•  Data partition is computed. 
•  Data are distributed according to partition map. 
•  Application computes and, perhaps, adapts. 
•  Process repeats until the application is done. 

!  Ideal partition: 
•  Processor idle time is minimized. 
•  Inter-processor communication costs are kept low. 
•  Cost to redistribute data is also kept low. 

Dynamic Load Balancing 
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Static vs. Dynamic: Usage and Implementation 

Static: 
! Pre-processor to 

application. 
! Can be implemented 

serially. 
! May be slow, 

expensive. 
! File-based interface 

acceptable. 
! No consideration of 

existing decomposition 
required. 

Dynamic: 
! Must run side-by-side with application. 
! Must be implemented in parallel. 
! Must be fast and scale. 
! Library application interface required. 
! Should be easy to use. 
!  Incremental algorithms preferred. 
•  Small changes in input result in 

small changes in partitions. 
•  Explicit or implicit incrementally 

acceptable. 
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Zoltan/Zoltan2 Toolkits: Partitioners 

Recursive Coordinate Bisection!
Recursive Inertial Bisection!
Multi-Jagged Multi-section!

Space Filling Curves  

PHG Graph Partitioning!
Interface to ParMETIS  (U. Minnesota)!
Interface to PT-Scotch (U. Bordeaux) 

PHG Hypergraph Partitioning!
Interface to PaToH (Ohio St.) 

Suite of partitioners supports a wide range of applications;  
no single partitioner is best for all applications.!

Geometric!

Topology-based!
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Goal: Create parts containing physically close data 
!  RCB/RIB: Compute cutting planes that recursively bisect workloads 
!  MJ:  Multi-section instead of bisection to reduce cost of partitioning 
!  SFC: Partition linear ordering given by space-filling curve 

Advantages: 
!  Conceptually simple; fast and inexpensive 
!  Effective when connectivity info is not available (e.g., in particle methods) 
!  Enable efficient searches for contact detection, particle methods 
!  RCB/MJ: Regular parts useful in structured or  

unstructured meshes on elongated domains 
!  SFC: Linear ordering may improve cache performance 

Disadvantages: 
!  No explicit control of communication costs 
!  Geometric coordinates needed 

Geometric Partitioners in Zoltan/Zoltan2 
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Goal: Balance work while minimizing data dependencies 
between parts 
!  Represent data with vertices of graph/hypergraph 
!  Represent dependencies with graph/hypergraph edges  

Advantages: 
!  High quality partitions for many applications 
!  Explicit control of communication costs 
!  Available tools 
•  Serial:  Chaco, METIS, Scotch, PaToH, Mondriaan 
•  Parallel:  Zoltan, ParMETIS, PT-Scotch, Jostle 

Disadvantages: 
!  More expensive than geometric approaches 
!  Require explicit dependence info 

Topology-based Partitioners 
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! Partition with respect to the machine hierarchy  
•  Network, nodes, cores 
•  Improved data locality 

in each level 

! Example: Matrix-vector  
multiplication with 96 parts 
on Hopper 
•  Reduced matvec time 

by partitioning with 
respect to nodes,  
then cores 

Hierarchical Partitioning in Zoltan 

G3-
Circuit 

Thermo-
mech_TC 

Parabolic
_FEM 

Bmw7st
_1 

#rows 1.6M 102K 526K 141K 
#nonzeros 7.7M 712K 3.7M 7.3M 

Matvec time normalized wrt flat 96-part partition 
!flat 96 cores !!
!hierarchical 4 nodes x 24 cores/node!



40 
40!

Partitioning using Mesh Adjacencies (ParMA) 

Mesh and partition model adjacencies directly used 
! Directly account for multiple entity types – important for the 

solve process –  most computationally expensive step 
! Avoid graph construction  
! Easy to use with diffusive procedures 
! Algorithm: From high to low priority if separated by ‘>’ and From 

low to high dimension entity types if separated by ‘=’  
•  (1) Compute the migration schedule. (2) Select regions for 

migration. (3) Migrate the selected regions. 
! Partition improvement applications to date 
•  Account for multiple entity types and cost functions – 

improved scalability of solvers 
•  Support meshes with billions of elements on up to 1M cores 
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Example of C0, linear shape function finite elements 
! Assembly sensitive to mesh element imbalances 
! Solve sensitive to vertex imbalances - they hold the dof 
•  Heaviest loaded part dictates solver performance 

! Element-based partitioning  
results in spikes of dofs 

! ParMA diffusion reduces  
equation solution time in  
PHASTA CFD by 52%  
on 1M cores  
•  Elm imb. 11% to  4%  
•  Vtx imb. 86% to 6% 

ParMA Application Partition Improvement 

Improvement of PHASTA performance with ParMA.!
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Predictive Load Balancing  

~20 parts with > 200% 
imbalance, peak 

imbalance is ~430%!

120 parts with ~30% of 
the average load !

Histogram of element imbalance in 1024 
part adapted mesh on Onera M6 wing if 
no balancing applied prior to adaptation.!

! Mesh modification before load balancing can lead to memory 
problems - common to see 400% increase on some parts 

! Employ predictive load balancing to avoid the problem 
•  Assign weights based on what will be refined/coarsened 
•  Apply dynamic load balancing using those weights 
•  Perform mesh modifications 
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Dynamic Load Balancing to Ensure the Ability of 
Applications to Achieve and Maintain Scalability  

!  Results/Impact 
•  Zoltan2’s MJ provides scalable 

partitioning on up to 524K cores 
in multigrid solver MueLu 

•  ParMA improves PHASTA CFD 
code scaling by balancing 
multiple entity types 

•  Predictive load balancing 
increases performance of 
parallel mesh adaptation 

•  Multi-level/multi-method 
partitioning enables partitioning 
of 92B-element mesh to 3.1M 
parts on ¾ million cores 

Reduced data movement in MultiJagged partitioner 
enables better scaling than Recursive Coordinate 

Bisection on NERSC’s Hopper.!
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For very little cost, ParMA improves application 
scalability by dramatically decreasing vertex 

imbalance while maintaining element balance.!
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Goal:  Assign MPI tasks to cores so that application communication costs are low 
!  Especially important in non-contiguous node allocations (e.g., Hopper Cray XE6) 

Approach:  Use Zoltan2’s MJ geometric partitioner to map interdependent tasks to 
“nearby” cores in the allocation 
!  Using geometric proximity as a proxy for communication cost 

Example:  Task Placement in Finite Difference Mini-app MiniGhost (Barrett et al.) 
!  Communication pattern:  7-pt stencil  
!  Mapping methods: 

•  None: default linear task layout  
(first in x, then y, then z) 

:  accounts for Cielo’s  
16 core/node architecture 

•  Geometric:  also accounts for proximity  
of allocated nodes in network 

 

!  On 64K cores of Cielo, geometric mapping 
reduced MiniGhost execution time 
•  by 34% on average relative to default  
•  by 24% relative to node only grouping  

Architecture-Aware Task Placement in Zoltan2 

Default!
2x2x4 Grouping for Node!
Zoltan2 Geometric!
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Need to effectively integrate parallel mesh infrastructures with 
unstructured mesh analysis codes 
! Two key steps in unstructured mesh analysis codes 
•  Evaluation of element level contributions – easily supported 

with FASTMath partitioned mesh infrastructures support 
mesh level information including link to geometry 

•  Formation and solution of the global equations – interactions 
needed here are more complex with multiple alternatives 

Two FASTMath activities related to mesh/solver interactions 
! MOAB-based Discretization Manager (DM) linked with the 

PETSc solver library 
! PHASTA massively parallel unstructured mesh code including 

integration with PETSC 

Unstructured Mesh/Solver Developments 
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Need uniform interface to solve multi-component problems on 
unstructured meshes with FD/FEM/FVM on both structured 
and unstructured meshes. 
$ Create a native MOAB implementation that exposes the 

underlying array-based mesh data structures through the 
DM (Discretization Manager) object in PETSc (DMMoab) 

$ Discretize the physics PDE described on MOAB mesh while 
leveraging the scalability of PETSc solvers. 

$ Provide routines to build simple meshes in-memory or load 
an unstructured grid from file. 

$ Analyze efficient unstructured mesh traversal, FD/FEM-type 
operator assembly for relevant multi-dimensional, multi-
component problems. 

MOAB Discretization Manager 
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$  Design resembles structured (DMDA) and unstructured 
(DMPlex) interfaces; software productivity. 

$  Support both strided and interleaved access of field 
components; Opens up better preconditioning strategies. 

$  Provide a uniform interface to solve nonlinear problems with 
FEM/FDM on both structured and unstructured meshes. 

$  Dimension-independent operator assembly routines 
$  Capabilities to define field components, manage degrees-

of-freedom, local-to-global transformations. 
$  Optimized physics residual computation using PETSc Vec 

that reuses contiguous memory provided by MOAB tags. 
 
 

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html 

MOAB Discretization Manager 
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$ Reduce total memory usage by sharing vector spaces and 
allowing block filling of coupled component terms. 

$ Fast stiff ODE-solvers for reaction-diffusion equations via 
IMEX methods (PETSc) that accommodate sparse coupling 
in high-order multi-component solvers. 

$ Some relevant tutorial examples in PETSc: 
"  Multi-component time-dependent Brusselator reaction-diffusion PDE 

FEM solver in 1-d. (ts/examples/ex35.cxx) 
"  2-D/3-D, verifiable Diffusion-Reaction FEM steady state solver with 

geometric multigrid. (ksp/examples/ex35.cxx and ksp/examples/ex36.cxx) 
"  2-D Generalized Finite Difference poisson solver with GMG (ts/

examples/GFD/ex2.cxx). 
"  2-D Bratu (Solid Fuel Ignition) nonlinear PDE solver (snes/examples/

ex36.cxx) 

MOAB Discretization Manager – Examples 
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Implicit, Adaptive Grid CFD 
! Extreme Scale Applications: 
•  Aerodynamics flow control  
•  Multiphase flow  

! Full Machine Strong scaling 
•  Variable MPI processes/core 
•  92 Billion tetrahedra 
•  262144 to 3,145,728 parts 
•  1/core 100% scaling  
•  2/core 146-155% scaling 
•  4/core 178-226% scaling 

 

Massively Parallel Unstructured Mesh Solver (PHASTA) 
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! PETSc functions assemble LHS and 
RHS including matrix assembly 

! New cached assembly – dramatically 
decreased assembly times 

! Need to consider adaptive meshes – 
can we keep the improvements 

PHASTA/PETSc Coupling 
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! Automation and adaptive methods 
critical to reliable simulations 

! Users want flexibility to apply best 
in class analysis codes  
•  Component-based approach to 

integrate automated adaptive 
methods with analysis codes 

•  All components operate in 
parallel, including fast in-
memory coupling 

! Developing parallel adaptive loops 
for DOE, DoD and industry using 
multiple analysis engines 

Creation of Parallel Adaptive Loops 

t=0.0!

t=2e-4!

t=5e-4!
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Parallel data and services are the core 
! Abstraction of geometric model  

topology for domain linkage 
! Mesh also based on topology –  

it must be distributed  
! Simulation fields distributed over  

geometric model and mesh entities  
! Partition control must coordinate  

communication and partition updates 
! Dynamic load balancing required at multiple steps in the 

workflow to account for mesh changes and application needs 
! Providing parallel data as services with various combinations 

of FASTMath and other parallel mesh components 

Creation of Parallel Adaptive Loops 

Parallel&Data&&&Services!

&Domain&Topology&

Mesh&Topology/Shape&

Dynamic&Load&Balancing&

Simula=on&Fields&

&Par==on&Control&
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Parallel&Data&&&Services!
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Components in Parallel Adaptive Analysis 
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Approaches to avoid significant bottleneck of file based coupling 
! Serialized data streams using existing file reading and writing 

protocol 
•  Minimal code changes - ideal for components already 

coupled via files 
! API based transfer procedures 
•  Flexibility to extend functionality - ideal for components with 

APIs that support querying and modifying data structures 
In-memory has far superior parallel performance  

In-Memory Coupling of Simulation Components 
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Parallel&Data&&&Services!
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Adaptive Active Flow Control 
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Case\AoA 
(L/D) 
 

14 Up 14 Down 

Baseline 10.2236 3.2286 
Forced 10.6265 9.9921 
!

Dynamic pitch with angle of attack of 140 ± 5.50!

•  Slab model – pitch rate of 10Hz!
•  Baseline (without jets) and forced/controlled  

(with jets)!

Jets cause!
significant  
difference!

15 m/s!

Leading-edge synthetic  
jets: 5 along span!

Adaptive Active Flow Control 



57 
57!

Parallel&Data&&&Services!
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Adaptive Two-Phases Flow 
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!
•  Two-phase modeling using level-sets  

coupled to structural activation!
•  Adaptive mesh control –  

reduces mesh required  
from 20 million elements  
to 1 million elements!

Adaptive Two-Phases Flow 
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Aerodynamics Simulations 
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Application Result - Scramjet Engine!

Initial Mesh 

Adapted Mesh 
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Electromagnetics Analysis 
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! Adaptation based on 
•  Tracking particles  
•  Discretization errors 

! Full accelerator models 
•  Approaching 100 cavities 
•  Substantial internal structure 
•  Meshes with several  

hundred million high- 
order curved elements 

 

High-Order EM Coupled with PIC 
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Structural Analysis for Integrated Circuits 
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Must construct 3-D non-manifold solid from input geometry 
!  Input domain defined in terms of 2-D layouts (gdsII/OASIS) 
! Third dimension based on process knowledge 
! A component has been developed to construct the model 
Adaptive loop constructed for thermally loaded case including 
thin liner 

Structural Analysis for Integrated Circuits 

Model of liner film only!
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Combination of the FASTMath unstructured 
mesh technologies with agile multiphysics 
components and modules to develop: 
! Albany: a finite element general implicit 

multiphysics application for large 
deformation mechanics, quantum 
electronics design, CFD, ice sheet and 
atmosphere modeling, additive 
manufacturing and topology optimization, 
multiscale analysis, and more  

! Alexa: a new approach at ferro-electric 
implicit-explicit (IMEX) shock multiphysics 
focused on near-Lagrangian methods 
enabled by unstructured adaptation 

Adaptive Multiphysics Applications 
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Albany Ecosystem 

Application!
!
!

!

!

!

!

!

Embedded UQ 

Nonlinear Solvers and Inversion!

Application Impact: Ice Sheets 

Scalable Linear Algebra! Performance Portability 

Mesh Adaptivity!

Application Impact: Computational Mechanics Additional Application Impact 
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Concurrent Evaluations in Inner Loop
Ensemble as Outer Loop

•  Surface flow velocities for 
Greenland and Antarctic Ice 
Sheets!

•  Demonstrates nonlinear 
solves, linear solves, UQ, 
adaptivity, and performance 
portability!

•  Employs automatic 
differentiation, discretizations, 
partitioning, mesh database!

•  Homotopy and Anderson 
Acceleration in Trilinos::NOX!

•  The robustness of nonlinear 
solvers are critical when an 
application is to be called as a 
sub-component within a larger 
application code.!

•  Uses Automatic Differentiation, 
Preconditioning,  
Optimization algorithms from 
Trilinos!

•  New Ensemble 
data type in 
Sacado 
package!

•  Vectorization 
of kernels over 
ensembles!

•  Contiguous 
memory 
access in 
arrays!

•  Scalability of 
simulations 
requires 
effective 
preconditioning!

•  Multi-level 
solves are 
essential for 
the largest 
problems!

•  The Kokkos 
programming mode 
supports 
performance 
portability of 
kernels.!

•  Kokkos’ abstraction 
layer allows code to 
be tailored for 
specific devices!

•  Mesh adaptation can 
be essential for 
efficiency and 
robustness!

•  Cube geometry 
subjected to large 
deformation (elasticity 
and J2 plasticity results 
shown)!

•  Largest implicit problem solved in 
Albany to date: 1.7B degrees of 
freedom!

•  Initial capabilities for Schwarz 
multiscale coupling!



67 
67!

Albany – Agile Component Architecture 

Main!

!

PDE Assembly!
!
!
!
!

Nonlinear Solvers!

Field Manager!

Discretization!

Albany!
Glue Code!

Nonlinear 
Model 

Nonlinear!
Transient!

Optimization!
UQ!

Analysis Tools!
!
!
!

Iterative!
Linear Solvers!

!
!
!Multi-Level!

Mesh Tools!
!
!
!
!
!
!

Mesh!
Adapt!

PUMI!
!

Problem 
Discretization 

ManyCore Node 

Multi-Core!
Accelerators!

Application 

Linear Solve 

Input Parser!

Node Kernels!
!
!
!

Libraries!

Interfaces 

PDE Terms!

Load !
Balancing!
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Develop and support a robust and scalable land ice 
solver based on the “First-Order” (FO) Stokes physics 
!  Uses dozens of libraries from Trilinos 
!  Scalable Multi-level linear solves (ML) 

!  Convergence Study to 1.1B unknowns; 16K cores 
!  Weak Scaling: 4096x size; 2.1x time 

!  Robust nonlinear solves (NOX) 
!  Same code base as PAALS adaptivity work 

 
 

% Linked to Dakota 
 for UQ and Calibration 
 (KLE & PCE & MCMC) 

 

Integrated Technologies Highlight: 
PISCEES BER SciDAC: 1. Albany/FELIX 

Greenland Ice Sheet!
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Albany/FELIX Parallel Scaling and Portability 

Courtesy of: Irina Tezaur (SNL)!
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Strong scalability for 1km GIS (ILU)

Total Time - I/O
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Slope = 1

1024 
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16,384 
cores  
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10 6 Antarctica Scalability (AMG)
Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.

16 
cores  

1024 
cores  

Weak scaling: 
8km, 5 layers to 
2km, 20 layers!

Strong 
scaling: 
143M DOFs!

Kernel Serial 16 Thds 
OpenMP  

GPU 

Viscosity Jacobian 20.39 s 2.06 s 0.54s 

Basis Functions w/ FE 
Transforms 

8.75 s 0.94 s 1.23s 

Gather Coordinates 0.097 s 0.107 s 5.77s 

Note: Gather 
Coordinates routine 

requires copying 
data from host to 

GPU. 

•  Albany finite element assembly mini-app 
results suggests ~100 elements on the Phi 
and ~1000 element on the GPU is required 
to “break even”!

•  Table shows “speedup” using multicore 
and GPU in FELIX analysis!
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Adaptive simulations of finite deformation  
plasticity with Albany 
! Projects include modeling large  

deformations and weld failures 
Efforts on adaptive loops that supports 
! Solution accuracy via error estimation 
•  Error estimation library 

! Element shape controlled each load step 
! Accurate state variable transfer 
! Predictive load balancing (ParMA, 

Zoltan) at each adaptive stage 
! Adding adjoint capabilities for goal 

oriented error estimation 

Modeling Large Deformation Structural Failures 
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Microelectronics processing is very exacting and mechanical 
responses impact reliability and manufacturability  
! Multi-layer nature of chips interacts with thermal  

cycles, creep, and intrinsic stress of films 
!  Intrinsic stress in film deposited onto surface and  

into features causes macroscopic deflection of wafer  
! Combined thermoelastic, plastic, and creep model constitutive 

model implemented in ALBANY 
! Creep and delamination in solder joints  
 

Mechanical Failures in Integrated Circuits 

Displacement vs time 
curves for combined 
thermo-elastic, plastic, 
and creep model.!
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Two tracks:  
•  Using SIGMA tools to construct mesh and its 

discretization for solving 3-D Laplacian 
•  Workflow demonstration using Simmetrix/PUMI/

PAALS for parallel adaptive simulations 

FASTMath Unstructured Mesh Hand-On Session 

FASTMath SciDAC Institute!
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ATPESC 2015 
Vijay Mahadevan and Iulian Grindeanu 

Tutorial Session for 
Scalable Interfaces for Geometry and Mesh based 

Applications (SIGMA) 

FASTMath SciDAC Institute!
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!  Capabilities: Geometry and Mesh (data) generation/handling 
infrastructure with flexible solver interfaces. 

SIGMA: Introduction Website: http://sigma.mcs.anl.gov!

$  CGM supports both open-source (OCC) and commercial (ACIS) geometry 
modeling engines.!

$ MOAB provides scalable mesh (data) usage in applications through efficient 
array-based access; Support parallel I/O, visualization.!

$ MeshKit provides unified meshing interfaces to advanced algorithms and to 
external packages (Cubit/Netgen).!

$  PETSc – MOAB interface (DMMoab) simplifies efficient discretization and 
solution of PDE on unstructured meshes with FEM.!
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! To utilize the SIGMA tools effectively, follow workflow to 
solve a simple 3-D Laplacian on an unit cube mesh. 
" Example 1: HelloParMOAB 
�  Introduction to some MOAB objects and load mesh from file 

" Example 2: LargeMesh 
� Generate d-dimensional parallel mesh with given partition/element 

information (HEX/TET/QUAD/TRI) 
� Define Tags on entities (vertex or elements) 
� Write to file in parallel with partition 

" Example 3: GetEntities 
� Query the parallel mesh to list the entities of various dimensions 

(elements, faces, edges, vertices) 
� Get entities and report non-vertex entity connectivity and vertex 

adjacencies. 

SIGMA Tutorial   
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" Example 4: DMMoab Laplacian Solver 
�  Introduction to some DMMoab concepts 
� Create DMMoab from file loaded 
� Define field to be solved  
� Setup linear operators and PETSc objects 
� Solve linear operator 
� Output and visualize 

! Please consult the SIGMA website for help on examples. 
http://sigma.mcs.anl.gov/sigma/atpesc-2015 

! All other MOAB questions can be directed to                 
moab-dev@mcs.anl.gov 

SIGMA Tutorial   
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Presenters: Cameron W. Smith and Glen Hansen 

Workflow demonstration using Simmetrix/PUMI/
PAALS for parallel adaptive simulations 

FASTMath SciDAC Institute!
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Hands-on Exercise Outline 
! Parallel Mesh Generation 
•  Generate a 13M element mesh on  

128 cores using Simmetrix tools 
•  Complex geometric model of vehicle  

suspension upright 
•  In-memory conversion to SCOREC  

mesh data structures 
! Partition via Zoltan and ParMA 
•  Recursive inertial  

bisection method 
•  ParMA Vtx>Elm  
•  Partition on 512 cores 
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Hands-on Exercise Outline 
! PAALS 
•  In-memory parallel adaptive loop  

to analyze thermo-mechanical breach 
•  Running on 1024 cores  
•  Combining 
� Parallel Mesh Adapt 
� Quadratic mesh elements 

� SPR based error estimation 
� Local solution transfer of history  

dependent state variables 
� Predictive load balancing 

! Visualization with ParaView 
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! Hands-on exercise 
•  https://github.com/gahansen/Albany/wiki/PAALS-Tutorial 

! Capabilities: 
•  Agile Component-based, massively parallel solution adaptive 

multiphysics analysis 
•  Fully-coupled, in-memory adaptation and solution transfer 
•  Parallel mesh infrastructure and services 
•  Dynamic load balancing 
•  Generalized error estimation drives adaptation 

! Download: 
!  Albany (http://gahansen.github.io/Albany) 
!  SCOREC Adaptive Components (https://github.com/SCOREC) 

! Further information: Mark Shephard [shephard@rpi.edu]  
         Glen Hansen [gahanse@sandia.gov] 

 

Parallel Albany Adaptive Loop 
with SCOREC 


