
1

Presenters: Mark S. Shephard, Vijay S. Mahadevan,
 Glen Hansen and Cameron W. Smith

FASTMath Unstructured Mesh Technologies

FASTMath SciDAC Institute!

2
2!

Argonne National Laboratory
! Vijay Mahadevan
!  Jim Jiao (Stony Brook)
! Paul Wilson (U. Wisconsin)
Lawrence Livermore National Lab.
! Barna Bihari
! Lori Diachin
Sandia National Laboratories
! Andrew Bradley
! Karen Devine
! Glen Hansen
! Vitus Leung

Unstructured Mesh Technology and Application Team

Rensselaer Polytechnic Inst.
! Max Bloomfield
! Brian Granzow
! Dan Ibanez
! Qiukai Lu
! Onkar Sahni
! Seegyoung Seol
! Mark Shephard
! Cameron Smith
! Gerrett Diamond
! Ken Jansen (U. Colorado)

! Michel Rasquin (U. Colorado)

3
3!

! Unstructured mesh methods and the need for unstructured
mesh components for use by analysis code developers

! Core unstructured mesh components:
•  Parallel Mesh infrastructures
•  Mesh Generation, Adaptation, Optimization
•  Fields
•  Solution transfer

! Dynamic load balancing
! Unstructured mesh/solver developments
! Creation of parallel adaptive loops using in-memory methods
! An extendable unstructured mesh environment
!  Introduction to the Hands-On Session

Presentation Outline

4
4!

Unstructured mesh – a spatial domain discretization composed
of topological entities with general connectivity and shape
Advantages of unstructured mesh methods
! Fully automated procedures to go from CAD to valid mesh
! Can provide highly effective solutions
•  Easily fitted to geometric features
•  General mesh anisotropy to account

for anisotropic physics possible
! Given a complete geometry, with analysis

attributes defined on that model, the entire
simulation work flow can be automated

! Meshes can easily be adaptively modified

Unstructured Mesh Methods

5
5!

Disadvantages of unstructured meshes
! More complex data structures than structured meshes
•  Increased program complexity, particularly in parallel

! Can provide the highest accuracy on a per degree of
freedom – requires careful method and mesh control
•  The quality of element shapes influences solution

accuracy – the degree to which this happens a function of
the discretization method

•  Poorly shaped elements increase condition number of
global system – iterative solvers increase time to solve

•  Require careful a priori, and/or good a posteriori, mesh
control to obtain good mesh configurations

Unstructured Mesh Methods

6
6!

Goal of FASTMath unstructured mesh developments include:
! Provide component-based tools that take full advantage of

unstructured mesh methods and are easily used by analysis
code developers and users

! Develop those components to operate through multi-level
APIs that increase interoperability and ease of integration

! Address technical gaps by developing specific unstructured
mesh tools to address needs and eliminate/minimize
disadvantages of unstructured meshes

! Work with DOE applications on the integration of these
technologies with their tools and to address new needs that
arise

Unstructured Mesh Methods

7
7!

!  Accelerator Modeling (ACE3P)
!  Climate data analysis (Par-NCL)
!  Multi-tracer transport (MBCSLAM)
!  FE-based neutron transport (PROTEUS)
!  Fluid/Structure interaction (AthenaVMS)
!  Fusion Edge Physics (XGC)
!  Fusion Plasmas (M3DC1)
!  High-order CFD on (Nektar++)
!  High-speed viscous flows (FUN3D)
!  Mesh-oriented FEA library (MoFEM)
!  Monte Carlo neutron transport (DAG-MCNP)
!  Mortar element Structural Mechanics (Diablo)
!  Multiphase reactor flows (PHASTA)
!  SEM-based CFD (Nek5000)
!  General IM Multiphysics (Albany)
!  IMEX FE Shock Multiphysics (Alegra/Alexa)

Applications using FASTMath
Unstructured Mesh Components

8
8!

Parallel Mesh Infrastructure

Key unstructured mesh technology needed by applications
! Effective parallel mesh representation
! Base parallel functions
•  Partitioned mesh control and modification
•  Read only copies for application needs
•  Associated data, grouping, etc.

! Key services
•  Load balancing
•  Mesh-to-mesh solution transfer
•  Mesh optimization and adaptation

! Two FASTMath Implementations
•  SIGMA and PUMI

i!M!0!

j!M1!

1!P!

0!P!
2!P!

 inter-process part
boundary!

 intra-process part
boundary!

 Proc j! Proc i!

9
9!

A ‘part’ is a set of mesh entities
assigned to a process
! Treated as a serial mesh with

inter-process part boundaries
! Entities on part boundaries

maintain links to remote copies
Mesh Migration
! Moving mesh entities between parts as dictated by operations
! Entities to migrate are determined based on adjacencies
!  Interpart links updated based on mesh adjacencies
! Performance issues: synchronization, communications, load

balance and scalability

Partition Model and Migration

10
10!

Copy of off-part mesh data
to avoid inter-process
communications
! Read-only, duplicate entity

copies not on part boundary
! Copy rule: triplet (entity

dim, bridge dim, # layers)
•  Entity dim: dimension for copied entities
•  Bridge dim: used to define copies through adjacency
•  # layers: # of layers measured from the part boundary

! E.g, to get two layers of region entities in the ghost layer,
measured from faces on part boundary – ghost_dim=3,
bridge_dim=2, and # layers=2

General Functions for Read Only Copies

11
11!

Mesh Generation
! Must be able to create meshes over complex domains
! Already doing meshes approaching 100 billion elements
! High levels of automation needed to avoid meshing bottleneck
Mesh Adaptation must
! Use a posteriori information to improve mesh
! Account for curved geometry (fixed and evolving)
! Support general, and specific, anisotropic adaptation
Mesh Shape Optimization
! Control element shapes as needed by the various

discretization methods for maintaining accuracy and efficiency
Parallel execution of all three functions critical on large meshes

Mesh Generation, Adaptation and Optimization

12
12!

Need to support the definition of, and operations on, fields
defined over space/time domains
!  Input fields can be defined over geometric model and meshes
! Output fields defined over meshes
! Fields are tensors and defined in terms of:
•  Tensor order and symmetries
•  Relationship to domain entities
•  Distributions of components over entities

! Must support operations on fields including:
•  Interrogations – pointwise and distributions
•  Basic – integration, differentiation, projection, etc.
•  Complex – mesh-to-mesh transfer, conservation, etc.

Fields and Solution Transfer

13
13!

Geometry and mesh (data) generation/handling infrastructure
with flexible solver interfaces. (http://sigma.mcs.anl.gov)

SIGMA Geometry-Mesh-Solver Interfaces

" MOAB – Mesh Oriented datABase
for handling unstructured meshes!

" Solver interfaces!
" CouPE – Coupled multi-

physics Environment!
" PETSc – MOAB (DMMoab)

Discretization Manager!
" Scalable HDF5 serialization
"  In-situ visualization (h5m/vtk/exo)

" CGM – Common Geometry Module for solid engines
" MeshKit – Mesh generation toolKit !

14
14!

! CGM: Geometry engine with interfaces to ACIS/OCC.
! MeshKit: Graph-based plugin design (point#line#tri#tet)
! Several efficient native algorithms and links to external mesh

generation libraries (CUBIT, Netgen, Tetgen, CAMAL, GMsh)
! Accepts conventional text (templates) or CAD descriptions.

SIGMA Geometry-Mesh-Solver Interfaces

Geometry/BC Setup! Generate unstructured mesh!
and link with solvers! Check-point/Analyze/Visualize!

15
15!

! Array-based unstructured mesh data-structure
•  Support stencil and block structured computations
•  Support thread safety for portable performance

! Dynamic load balancing: Zoltan, PARMetis
! Discretization kernels: cG, dG, Spectral, GFD, <user>
! Uniform mesh refinement hierarchy generation
•  Recover high order projection through reconstruction
•  Quantify geometry errors in absence of CAD models

! Adaptive mesh refinement

MOAB Parallel Mesh Infrastructure

•  Conformal: TRI/TET straightforward but QUAD/HEX is hard!
•  Non-conformal (hanging nodes): Memory conserving

designs in array-based setting is tricky.

16
16!

! Array-based unstructured mesh data-structure
•  Support stencil and block structured computations
•  Support thread safety for portable performance

! Dynamic load balancing: Zoltan, PARMetis
! Discretization kernels: cG, dG, Spectral, GFD, <user>
! Uniform mesh refinement hierarchy generation
•  Recover high order projection through reconstruction
•  Quantify geometry errors in absence of CAD models

! Adaptive mesh refinement

MOAB Parallel Mesh Infrastructure

a) Original!
b) Non-conformal!
c) Conformal!

17
17!

! Goals: Simplify geometry search and
unify discretization kernels with a flexible
interface for coupled problems.

! Geometry search: support parallel point-
in-element query for various element
topologies (edge, tri/quad/polygon, tet/
hex/prism/pyramid)

! Discretization: support transformations,
higher-order basis functions (lagrange,
spectral) for optimized local FE/FV

! Mesh smoothing: Laplace, Lloyd,
Anisotropic – for deformation problems

! Other focus: Parallel I/O scalability
harder than mesh manipulation!

MOAB Parallel Mesh Infrastructure

18
18!

MOAB Solution Transfer: Algorithm

4. Normalization!
!

5. Conservation!

SpatialCoupler uses
“crystal-router” aggregated
communication to minimize
data transfer costs.

19
19!

MOAB Solution Transfer: Scalability

!  Demonstrated 60% strong scalability of the solution transfer
implementation in MOAB up to 512K cores on BG/Q.

!  Bottleneck: Kd-tree scales as O(nlog(n)); Consider BVH/
BIH trees to attain O(log(n)) time complexity.

!  Real problems: location vs interpolation, O(1) vs O(Δt)
!  Initialization costs amortized over multiple interpolations!

10
0

20
0

30
0

40
0

50
0

60
0

Strong Scaling

Number of Processes

C
ou

pl
in

g
Ti

m
e

(s
)

32768 65536 131072 262144 524288

1024^3 grid
Perfect scaling

Strong Scaling by Component

Number of Processes
Ti

m
e

(s
)

0

100

200

300

400

500

600

32K 64K 128K 256K 512K

Point Loc
Init

5e
−0

5
1e
−0

4
2e
−0

4
5e
−0

4
1e
−0

3
2e
−0

3
5e
−0

3

Tet −> Hex RMS Element Coupling Error

Number of Processes

R
M

S
Er

ro
r i

n
El

em
en

t V
al

ue
s

32 256 2048 16384 131072

1 tet : 1000 hex
1 tet : 100 hex
1 tet : 10 hex
1 tet : 1 hex

Points/rank = [2K, 32K]!

20
20!

Distributed mesh!Partition model!

! Complete representation to provide any adjacency in O(1) time
! Array-based storage for reduced memory size
! Parallel control through partition model that supports
•  All interprocess communications
•  Effective migration of mesh entities
•  Generalized read only copies

PUMI Unstructured Mesh Infrastructure

Geometric model!

21
21!

! Focused on supporting massively parallel evolving meshes as
needed for adaptive mesh and/or evolving geometry problems

! Used in the construction of parallel adaptive simulation loops
by combining with:
•  Fully automatic parallel mesh generation for general non-

manifold domains supported by Simmetrix meshing
•  General mesh modification to adapt meshes to control

discretion errors, account for evolving geometry
•  Multiple dynamic load balancing tools as needed to

effectively load balance the steps in an evolving mesh
simulation

! Supported evolving meshes with 92 billion elements

PUMI Unstructured Mesh Infrastructure

22
22!

Unstructured meshes that effectively use high
core-count, hybrid parallel compute nodes
! A parallel control utility (PCU) that supports hybrid threading

and message passing operations on partitioned PUMI meshes
! 16 threads per process on BG/Q

saves 20% of memory
•  Critical for many-core nodes

where memory/core is limited
Use of Intel Phi accelerators
•  On an equal number of Phi

and BG/Q nodes
� 1024 → 2048 partitioning is 40% faster on Stampede
� 2048 → 4096 partitioning 8% slower on Stampede

Architecture Aware PUMI

23
23!

! Complete representation supports any application need
! Have made extensive use of Simmetrix meshing component
•  Any combinations of CAD and triangulations
•  Voxel (image) to model to mesh capabilities
•  Extensive control of mesh types,

orders and layouts – boundary layer,
anisotropic, gradation, etc.

•  Curved element meshes
•  Parallel mesh and distributed geometry
� 1B element mesh generated in

8 minutes on 256 cores
� 13 billion elements on

up to 2048 cores

Mesh Generation

The image cannot be displayed. Your computer
may not have enough memory to open the
image, or the image may have been corrupted.
Restart your computer, and then open the file
again. If the red x still appears, you may have to
delete the image and then insert it again.

24
24!

General Mesh Modification for Mesh Adaptation

! Goal is the flexibility of remeshing with added advantages
! Strategy
•  Employ a “complete set” of mesh modification operations to

alter the mesh into one that matches the given mesh size field
•  Driven by an anisotropic mesh size field that can be set by

any combination of criteria
! Advantages
•  Supports general anisotropic meshes
•  Can deal with any level of geometric domain complexity
•  Can obtain level of accuracy desired
•  Solution transfer can be applied incrementally - provides more

control to satisfy constraints (like mass conservation)

25
25!

! Controlled application of mesh modification operations including
dealing with curved geometries, anisotropic meshes

! Base operators
•  Swap, collapse,

split, move

! Compound operators chain single step operators
•  Double split collapse operator
•  Swap(s) followed by collapse operator
•  Split, then move the created vertex
•  Etc.

! Mesh adapts to
true geometry

! Fully parallel
! Curved element geom.

Edge collapse!
Edge split! face split!

Double split collapse to remove sliver!

Mesh Adaptation by Local Mesh Modification

26
26!

! Attached Parallel Fields (APF) development underway
! Effective storage of solution fields on meshes
! Supports operations on the fields
•  Interrogation
•  Differentiation
•  Integration
•  Interpolation/projection

! Recent efforts
•  Adaptive expansion of Fields from 2D to 3D in M3D-C1
•  History-dependent integration point fields

for Albany plasticity models

Attached Parallel Fields (APF)

27
27!

Local solution transfer during mesh adaptation
! Performed on cavity as local mesh modification performed
! Limited number of elements involved (no search over mesh)
! No accuracy loss with some operations (e.g., refinement)
! Others easier to control due to local nature (e.g., more

accurate conservation correction)
! Applied to primary & secondary variables in multiple applications
!  In the metal forming case

not only was the transfer
faster, the non-linear solve
was much faster since
“equilibrium recovery”
iterations not required

Local Solution Transfer

Zone
updated
by the

operations
shaded!

Before collapse! after collapse!

28
28!

Mesh Adaptation Status
! Applied to very large scale

models – 3.1M processes on
¾ million cores

! Local solution transfer
supported through callback

! Effective storage of solution
fields on meshes

! Supports adaptation with
boundary layer meshes

29
29!

! Supports adaptation of
curved elements

! Adaptation based on
multiple criteria, examples
•  Level sets at interfaces
•  Tracking particles
•  Discretization errors
•  Controlling element

shape in evolving
geometry

Mesh Adaptation Status

30
30!

!  Provide the mesh infrastructure for M3D-C1
•  Geometric model interface defined by

analytic expressions with B-splines
•  Distributed mesh management including
�  process grouping to define plane
�  each plane loaded with the same

distributed 2D mesh then
�  3D mesh and corresponding

partitioning topology constructed
•  Mesh adaptation and load balancing
•  Adjacency-based node ordering
•  Mapping of mesh to PETSc structures

and control of assembly processes

Highlight: Unstructured Mesh Infrastructure for the M3D-
C1 MHD Code for Fusion Plasma Simulations

Fig: 3D mesh constructed from 64
2D planes on 12288 processes [1]
(only the mesh between selected
planes shown)!

[1] S.C.Jardin, et al, Multiple timescale calculations of sawteeth and other macroscopic dynamics of
tokamak plasmas, Computational Science and Discovery 5 (2012) 014002!

31
31!

!  EPSI PIC coupled to mesh simulation
requires high quality meshes meeting a
strict set of layout and other constraints
•  Previous method took >11 hours and

mesh did not have desired quality
•  FASTMath meshing technologies put

together to produce better quality
meshes that meet constraints

•  Controlled meshes now generated in
minutes

!  Particle-in-Cell with distributed mesh
•  Current XGC copies entire mesh on

each process
•  PUMI distributed mesh being extended

to support parallel mesh with particles
than can move through the mesh

Highlight: Unstructured Mesh Techniques for
Edge Plasma Fusion Simulations

32
32!

Highlight: Parallel Mesh Adaptation with Curved Mesh
Geometry for High-Order Accelerator EM Simulations

! Provide parallel mesh modification
procedure capable of creating/
adapting curved mesh geometry

! Parallel mesh adaptation procedure
developed that supports quadratic
curved meshes

! Ongoing efforts to support higher
order G1 mesh geometry

! The procedure integrated with high-
order electro-magnetic solver,
ACE3P from the SLAC National
Accelerator Laboratory

33
33!

! Purpose: to rebalance load during mesh modification and
before each key step in the parallel workflow
•  Equal “work load” with minimum inter-process

communications
! FASTMATH load balancing tools
•  Zoltan/Zoltan2 libraries

provide multiple dynamic
partitioners with general control
of partition objects and weights

•  ParMA – Partitioning using
mesh adjacencies

•  ParMA and Zoltan2 can use
each other’s methods

Dynamic Load Balancing

34
34!

Initialize  
Application!

Partition 
Data!

Redistribute  
Data!

Compute  
Solutions  
& Adapt!

Output 
& End!

! Dynamic repartitioning (load balancing) in an application:
•  Data partition is computed.
•  Data are distributed according to partition map.
•  Application computes and, perhaps, adapts.
•  Process repeats until the application is done.

!  Ideal partition:
•  Processor idle time is minimized.
•  Inter-processor communication costs are kept low.
•  Cost to redistribute data is also kept low.

Dynamic Load Balancing

35
35!

Static vs. Dynamic: Usage and Implementation

Static:
! Pre-processor to

application.
! Can be implemented

serially.
! May be slow,

expensive.
! File-based interface

acceptable.
! No consideration of

existing decomposition
required.

Dynamic:
! Must run side-by-side with application.
! Must be implemented in parallel.
! Must be fast and scale.
! Library application interface required.
! Should be easy to use.
!  Incremental algorithms preferred.
•  Small changes in input result in

small changes in partitions.
•  Explicit or implicit incrementally

acceptable.

36
36!

Zoltan/Zoltan2 Toolkits: Partitioners

Recursive Coordinate Bisection!
Recursive Inertial Bisection!
Multi-Jagged Multi-section!

Space Filling Curves

PHG Graph Partitioning!
Interface to ParMETIS (U. Minnesota)!
Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning!
Interface to PaToH (Ohio St.)

Suite of partitioners supports a wide range of applications;  
no single partitioner is best for all applications.!

Geometric!

Topology-based!

37
37!

Goal: Create parts containing physically close data
!  RCB/RIB: Compute cutting planes that recursively bisect workloads
!  MJ: Multi-section instead of bisection to reduce cost of partitioning
!  SFC: Partition linear ordering given by space-filling curve

Advantages:
!  Conceptually simple; fast and inexpensive
!  Effective when connectivity info is not available (e.g., in particle methods)
!  Enable efficient searches for contact detection, particle methods
!  RCB/MJ: Regular parts useful in structured or

unstructured meshes on elongated domains
!  SFC: Linear ordering may improve cache performance

Disadvantages:
!  No explicit control of communication costs
!  Geometric coordinates needed

Geometric Partitioners in Zoltan/Zoltan2

38
38!

Goal: Balance work while minimizing data dependencies
between parts
!  Represent data with vertices of graph/hypergraph
!  Represent dependencies with graph/hypergraph edges

Advantages:
!  High quality partitions for many applications
!  Explicit control of communication costs
!  Available tools
•  Serial: Chaco, METIS, Scotch, PaToH, Mondriaan
•  Parallel: Zoltan, ParMETIS, PT-Scotch, Jostle

Disadvantages:
!  More expensive than geometric approaches
!  Require explicit dependence info

Topology-based Partitioners

39
39!

! Partition with respect to the machine hierarchy
•  Network, nodes, cores
•  Improved data locality

in each level

! Example: Matrix-vector
multiplication with 96 parts
on Hopper
•  Reduced matvec time

by partitioning with
respect to nodes,
then cores

Hierarchical Partitioning in Zoltan

G3-
Circuit

Thermo-
mech_TC

Parabolic
_FEM

Bmw7st
_1

#rows 1.6M 102K 526K 141K
#nonzeros 7.7M 712K 3.7M 7.3M

Matvec time normalized wrt flat 96-part partition 
!flat 96 cores !!
!hierarchical 4 nodes x 24 cores/node!

40
40!

Partitioning using Mesh Adjacencies (ParMA)

Mesh and partition model adjacencies directly used
! Directly account for multiple entity types – important for the

solve process – most computationally expensive step
! Avoid graph construction
! Easy to use with diffusive procedures
! Algorithm: From high to low priority if separated by ‘>’ and From

low to high dimension entity types if separated by ‘=’
•  (1) Compute the migration schedule. (2) Select regions for

migration. (3) Migrate the selected regions.
! Partition improvement applications to date
•  Account for multiple entity types and cost functions –

improved scalability of solvers
•  Support meshes with billions of elements on up to 1M cores

41
41!

Example of C0, linear shape function finite elements
! Assembly sensitive to mesh element imbalances
! Solve sensitive to vertex imbalances - they hold the dof
•  Heaviest loaded part dictates solver performance

! Element-based partitioning
results in spikes of dofs

! ParMA diffusion reduces
equation solution time in
PHASTA CFD by 52%
on 1M cores
•  Elm imb. 11% to 4%
•  Vtx imb. 86% to 6%

ParMA Application Partition Improvement

Improvement of PHASTA performance with ParMA.!

42
42!

Predictive Load Balancing

~20 parts with > 200%
imbalance, peak

imbalance is ~430%!

120 parts with ~30% of
the average load !

Histogram of element imbalance in 1024
part adapted mesh on Onera M6 wing if
no balancing applied prior to adaptation.!

! Mesh modification before load balancing can lead to memory
problems - common to see 400% increase on some parts

! Employ predictive load balancing to avoid the problem
•  Assign weights based on what will be refined/coarsened
•  Apply dynamic load balancing using those weights
•  Perform mesh modifications

43
43!

Dynamic Load Balancing to Ensure the Ability of
Applications to Achieve and Maintain Scalability

!  Results/Impact
•  Zoltan2’s MJ provides scalable

partitioning on up to 524K cores
in multigrid solver MueLu

•  ParMA improves PHASTA CFD
code scaling by balancing
multiple entity types

•  Predictive load balancing
increases performance of
parallel mesh adaptation

•  Multi-level/multi-method
partitioning enables partitioning
of 92B-element mesh to 3.1M
parts on ¾ million cores

Reduced data movement in MultiJagged partitioner
enables better scaling than Recursive Coordinate

Bisection on NERSC’s Hopper.!

0"

2"

4"

6"

8"

10"

12"

14"

1" 24" 96" 384" 1536"6144"

MJ"
RCB"

Number of cores!

Ex
ec

ut
io

n
tim

e
 

no
rm

. w
rt

Se
ria

l R
CB

!

For very little cost, ParMA improves application
scalability by dramatically decreasing vertex

imbalance while maintaining element balance.!

44
44!

Goal: Assign MPI tasks to cores so that application communication costs are low
!  Especially important in non-contiguous node allocations (e.g., Hopper Cray XE6)

Approach: Use Zoltan2’s MJ geometric partitioner to map interdependent tasks to
“nearby” cores in the allocation
!  Using geometric proximity as a proxy for communication cost

Example: Task Placement in Finite Difference Mini-app MiniGhost (Barrett et al.)
!  Communication pattern: 7-pt stencil
!  Mapping methods:

•  None: default linear task layout
(first in x, then y, then z)

: accounts for Cielo’s
16 core/node architecture

•  Geometric: also accounts for proximity
of allocated nodes in network

!  On 64K cores of Cielo, geometric mapping
reduced MiniGhost execution time
•  by 34% on average relative to default
•  by 24% relative to node only grouping

Architecture-Aware Task Placement in Zoltan2

Default!
2x2x4 Grouping for Node!
Zoltan2 Geometric!

45
45!

Need to effectively integrate parallel mesh infrastructures with
unstructured mesh analysis codes
! Two key steps in unstructured mesh analysis codes
•  Evaluation of element level contributions – easily supported

with FASTMath partitioned mesh infrastructures support
mesh level information including link to geometry

•  Formation and solution of the global equations – interactions
needed here are more complex with multiple alternatives

Two FASTMath activities related to mesh/solver interactions
! MOAB-based Discretization Manager (DM) linked with the

PETSc solver library
! PHASTA massively parallel unstructured mesh code including

integration with PETSC

Unstructured Mesh/Solver Developments

46
46!

Need uniform interface to solve multi-component problems on
unstructured meshes with FD/FEM/FVM on both structured
and unstructured meshes.
$ Create a native MOAB implementation that exposes the

underlying array-based mesh data structures through the
DM (Discretization Manager) object in PETSc (DMMoab)

$ Discretize the physics PDE described on MOAB mesh while
leveraging the scalability of PETSc solvers.

$ Provide routines to build simple meshes in-memory or load
an unstructured grid from file.

$ Analyze efficient unstructured mesh traversal, FD/FEM-type
operator assembly for relevant multi-dimensional, multi-
component problems.

MOAB Discretization Manager

47
47!

$  Design resembles structured (DMDA) and unstructured
(DMPlex) interfaces; software productivity.

$  Support both strided and interleaved access of field
components; Opens up better preconditioning strategies.

$  Provide a uniform interface to solve nonlinear problems with
FEM/FDM on both structured and unstructured meshes.

$  Dimension-independent operator assembly routines
$  Capabilities to define field components, manage degrees-

of-freedom, local-to-global transformations.
$  Optimized physics residual computation using PETSc Vec

that reuses contiguous memory provided by MOAB tags.

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html

MOAB Discretization Manager

48
48!

$ Reduce total memory usage by sharing vector spaces and
allowing block filling of coupled component terms.

$ Fast stiff ODE-solvers for reaction-diffusion equations via
IMEX methods (PETSc) that accommodate sparse coupling
in high-order multi-component solvers.

$ Some relevant tutorial examples in PETSc:
"  Multi-component time-dependent Brusselator reaction-diffusion PDE

FEM solver in 1-d. (ts/examples/ex35.cxx)
"  2-D/3-D, verifiable Diffusion-Reaction FEM steady state solver with

geometric multigrid. (ksp/examples/ex35.cxx and ksp/examples/ex36.cxx)
"  2-D Generalized Finite Difference poisson solver with GMG (ts/

examples/GFD/ex2.cxx).
"  2-D Bratu (Solid Fuel Ignition) nonlinear PDE solver (snes/examples/

ex36.cxx)

MOAB Discretization Manager – Examples

49
49!

Implicit, Adaptive Grid CFD
! Extreme Scale Applications:
•  Aerodynamics flow control
•  Multiphase flow

! Full Machine Strong scaling
•  Variable MPI processes/core
•  92 Billion tetrahedra
•  262144 to 3,145,728 parts
•  1/core 100% scaling
•  2/core 146-155% scaling
•  4/core 178-226% scaling

Massively Parallel Unstructured Mesh Solver (PHASTA)

0.00

0.50

1.00

1.50

2.00

2.50

256 512 768

S
ca

lin
g

K cores

92 billion tetrehedra

1 mpi/core

2 mpi/core

4 mpi/core

50
50!

! PETSc functions assemble LHS and
RHS including matrix assembly

! New cached assembly – dramatically
decreased assembly times

! Need to consider adaptive meshes –
can we keep the improvements

PHASTA/PETSc Coupling

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

2"

8" 16" 32" 64" 128"

Sc
al
in
g(
(

K(cores(

Equa1on(Solu1on(Scaling((45(dB(NL(Residual(Reduc1on)(

PETSc"1mpi/core"

PETSc"2mpi/core"

PETSc"4mpi/core"

Na8ve"1mpi/core"

Na8ve"2mpi/core"

Na8ve"4mpi/core"

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

20"

8" 16" 32" 64" 128"

!m
e$
(s
ec
on

ds
)$

K$Cores$

Equa!on$Solu!on$Time$(45$dBNLResidual$Reduc!on)$

PETSc"1mpi/core"

PETSc"2mpi/core"

PETSc"4mpi/core"

Na7ve"1mpi/core"

Na7ve"2mpi/core"

Na7ve"4mpi/core"

51
51!

! Automation and adaptive methods
critical to reliable simulations

! Users want flexibility to apply best
in class analysis codes
•  Component-based approach to

integrate automated adaptive
methods with analysis codes

•  All components operate in
parallel, including fast in-
memory coupling

! Developing parallel adaptive loops
for DOE, DoD and industry using
multiple analysis engines

Creation of Parallel Adaptive Loops

t=0.0!

t=2e-4!

t=5e-4!

52
52!

Parallel data and services are the core
! Abstraction of geometric model

topology for domain linkage
! Mesh also based on topology –

it must be distributed
! Simulation fields distributed over

geometric model and mesh entities
! Partition control must coordinate

communication and partition updates
! Dynamic load balancing required at multiple steps in the

workflow to account for mesh changes and application needs
! Providing parallel data as services with various combinations

of FASTMath and other parallel mesh components

Creation of Parallel Adaptive Loops

Parallel&Data&&&Services!

&Domain&Topology&

Mesh&Topology/Shape&

Dynamic&Load&Balancing&

Simula=on&Fields&

&Par==on&Control&

53
53!

Parallel&Data&&&Services!

&Domain&Topology&

Mesh&Topology/Shape&

Dynamic&Load&Balancing&

Simula=on&Fields&

Physics&and&Model&Parameters& Input&Domain&Defini=on&with&ADributes&

MeshFBased&

Analysis&

Complete&

Domain&

Defini=on&

Mesh&Genera=on&and/

or&Adapta=on&

Postprocessing/

Visualiza=on&

Solu=on&

Transfer&

Correc=on&

Indicator&

PDE’s&and&
discre=za=on&
methods&

Solu=on&&transfer&constraints&

mesh&with&fields&

mesh&with&
fields&

&calculated&fields&

mesh&size&&
&&&&&&&&&&field&

meshes&
and&fields&

meshing&&

opera=on& geometric&
&&&&&&&&&&interroga=on&

ADributed&&
&&&&topology&&

nonFmanifold&
model&construc=on&

geometry&updates&

mesh&size&&
field&

mesh&&

&Par==on&Control&

Components in Parallel Adaptive Analysis

54
54!

Approaches to avoid significant bottleneck of file based coupling
! Serialized data streams using existing file reading and writing

protocol
•  Minimal code changes - ideal for components already

coupled via files
! API based transfer procedures
•  Flexibility to extend functionality - ideal for components with

APIs that support querying and modifying data structures
In-memory has far superior parallel performance

In-Memory Coupling of Simulation Components

55
55!

Parallel&Data&&&Services!

&Domain&Topology&

Mesh&Topology/Shape&

Dynamic&Load&Balancing&

Simula=on&Fields&

Physics&and&Model&Parameters& Input&Domain&Defini=on&with&ADributes&

PHASTA&

Parasolid&

or&

GeomSim&

MeshSim&and&

MeshSim&Adapt&

Paraview&

Solu=on&

Transfer&

HessianFbased&

error&indicator&

NS,&FE&
Level&set&

Solu=on&&transfer&constraints&

mesh&with&fields&

mesh&with&
fields&

&calculated&fields&

mesh&size&&
&&&&&&&&&&field&

meshes&
and&fields&

meshing&&

opera=on& geometric&
&&&&&&&&&&interroga=on&

ADributed&&
&&&&topology&&

nonFmanifold&
model&construc=on&

geometry&updates&

mesh&size&&
field&

mesh&&

&Par==on&Control&

Adaptive Active Flow Control

56
56!

Case\AoA
(L/D)

14 Up 14 Down

Baseline 10.2236 3.2286
Forced 10.6265 9.9921
!

Dynamic pitch with angle of attack of 140 ± 5.50!

•  Slab model – pitch rate of 10Hz!
•  Baseline (without jets) and forced/controlled  

(with jets)!

Jets cause!
significant  
difference!

15 m/s!

Leading-edge synthetic  
jets: 5 along span!

Adaptive Active Flow Control

57
57!

Parallel&Data&&&Services!

&Domain&Topology&

Mesh&Topology/Shape&

Dynamic&Load&Balancing&

Simula=on&Fields&

Injec=on&Process&Control& Input&Domain&Defini=on&with&ADributes&

PHASTA&

Parasolid&

or&

GeomSim&

MeshSim&and&

MeshSim&Adapt&

Paraview&

Solu=on&

Transfer&

HessianFbased&

error&indicator&

NS,&FE,&
Level&set&

Solu=on&&transfer&constraints&

mesh&with&fields&

mesh&with&
fields&

&flow&fields,&&

zero&level&set&

mesh&size&&
&&&&&&&&&&field&

meshes&
and&fields&

meshing&&

opera=on& geometric&
&&&&&&&&&&interroga=on&

aDributed&
&&&&

&&&&topology&

nonFmanifold&
model&construc=on&

mesh&size&&
field&

mesh&

&Par==on&Control&

Adaptive Two-Phases Flow

58
58!

!
•  Two-phase modeling using level-sets  

coupled to structural activation!
•  Adaptive mesh control –  

reduces mesh required  
from 20 million elements  
to 1 million elements!

Adaptive Two-Phases Flow

59
59!

Aerodynamics Simulations

Parallel&Data&&&Services!

&Domain&Topology&

Mesh&Topology/Shape&

Dynamic&Load&Balancing&

Simula=on&Fields&

High&speed&flow&scenarios& Parasolid&

FUN3D&from&

NASA&

Parasolid&

or&

GeomSim&

MeshSim&and&

MeshSim&Adapt&

Paraview&

Solu=on&

Transfer&

Goal&oriented&

error&es=mator&

NS,&
Finite&volumes&

Mass&&conserva=on&

mesh&with&fields&

mesh&with&
fields&

&flow&fields&

mesh&size&&
&&&&&&&&&&field&

meshes&
and&fields&

meshing&&

opera=on& geometric&
&&&&&&&&&&interroga=on&

aDributed&
&&&&

&&&&topology&

nonFmanifold&
model&construc=on&

mesh&size&&
field&

mesh&

&Par==on&Control&

60
60!

Application Result - Scramjet Engine!

Initial Mesh

Adapted Mesh

61
61!

Electromagnetics Analysis

62
62!

! Adaptation based on
•  Tracking particles
•  Discretization errors

! Full accelerator models
•  Approaching 100 cavities
•  Substantial internal structure
•  Meshes with several

hundred million high-
order curved elements

High-Order EM Coupled with PIC

63
63!

Structural Analysis for Integrated Circuits

64
64!

Must construct 3-D non-manifold solid from input geometry
!  Input domain defined in terms of 2-D layouts (gdsII/OASIS)
! Third dimension based on process knowledge
! A component has been developed to construct the model
Adaptive loop constructed for thermally loaded case including
thin liner

Structural Analysis for Integrated Circuits

Model of liner film only!

65
65!

Combination of the FASTMath unstructured
mesh technologies with agile multiphysics
components and modules to develop:
! Albany: a finite element general implicit

multiphysics application for large
deformation mechanics, quantum
electronics design, CFD, ice sheet and
atmosphere modeling, additive
manufacturing and topology optimization,
multiscale analysis, and more

! Alexa: a new approach at ferro-electric
implicit-explicit (IMEX) shock multiphysics
focused on near-Lagrangian methods
enabled by unstructured adaptation

Adaptive Multiphysics Applications

66
66!

Albany Ecosystem

Application!
!
!

!

!

!

!

!

Embedded UQ

Nonlinear Solvers and Inversion!

Application Impact: Ice Sheets

Scalable Linear Algebra! Performance Portability

Mesh Adaptivity!

Application Impact: Computational Mechanics Additional Application Impact

Number of Concurrent Evaluations
0 5 10 15 20 25 30 35

Ti
m

e
Re

la
tiv

e
to

 O
ne

 S
ca

la
r E

va
lu

at
io

n

0

5

10

15

20

25

30

35
Total Run Time, 3000 Time Steps

Concurrent Evaluations in Inner Loop
Ensemble as Outer Loop

•  Surface flow velocities for
Greenland and Antarctic Ice
Sheets!

•  Demonstrates nonlinear
solves, linear solves, UQ,
adaptivity, and performance
portability!

•  Employs automatic
differentiation, discretizations,
partitioning, mesh database!

•  Homotopy and Anderson
Acceleration in Trilinos::NOX!

•  The robustness of nonlinear
solvers are critical when an
application is to be called as a
sub-component within a larger
application code.!

•  Uses Automatic Differentiation,
Preconditioning,  
Optimization algorithms from
Trilinos!

•  New Ensemble
data type in
Sacado
package!

•  Vectorization
of kernels over
ensembles!

•  Contiguous
memory
access in
arrays!

•  Scalability of
simulations
requires
effective
preconditioning!

•  Multi-level
solves are
essential for
the largest
problems!

•  The Kokkos
programming mode
supports
performance
portability of
kernels.!

•  Kokkos’ abstraction
layer allows code to
be tailored for
specific devices!

•  Mesh adaptation can
be essential for
efficiency and
robustness!

•  Cube geometry
subjected to large
deformation (elasticity
and J2 plasticity results
shown)!

•  Largest implicit problem solved in
Albany to date: 1.7B degrees of
freedom!

•  Initial capabilities for Schwarz
multiscale coupling!

67
67!

Albany – Agile Component Architecture

Main!

!

PDE Assembly!
!
!
!
!

Nonlinear Solvers!

Field Manager!

Discretization!

Albany!
Glue Code!

Nonlinear
Model

Nonlinear!
Transient!

Optimization!
UQ!

Analysis Tools!
!
!
!

Iterative!
Linear Solvers!

!
!
!Multi-Level!

Mesh Tools!
!
!
!
!
!
!

Mesh!
Adapt!

PUMI!
!

Problem
Discretization

ManyCore Node

Multi-Core!
Accelerators!

Application

Linear Solve

Input Parser!

Node Kernels!
!
!
!

Libraries!

Interfaces

PDE Terms!

Load !
Balancing!

68
68!

Develop and support a robust and scalable land ice
solver based on the “First-Order” (FO) Stokes physics
!  Uses dozens of libraries from Trilinos
!  Scalable Multi-level linear solves (ML)

!  Convergence Study to 1.1B unknowns; 16K cores
!  Weak Scaling: 4096x size; 2.1x time

!  Robust nonlinear solves (NOX)
!  Same code base as PAALS adaptivity work

% Linked to Dakota
 for UQ and Calibration
 (KLE & PCE & MCMC)

Integrated Technologies Highlight:
PISCEES BER SciDAC: 1. Albany/FELIX

Greenland Ice Sheet!
Surface Velocities!−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000

4000

5000

6000

7000
Mode 1

range of j

sa

m
pl

es

69
69!

Albany/FELIX Parallel Scaling and Portability

Courtesy of: Irina Tezaur (SNL)!

cores
10 3 10 4

tim
e

(s
ec

)

10 -2

10 0

10 2

Strong scalability for 1km GIS (ILU)

Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.
Slope = 1

1024
cores

16,384
cores

cores
10 1 10 2 10 3 10 4

tim
e

(s
ec

)

10 -2

10 0

10 2

10 4

10 6 Antarctica Scalability (AMG)
Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.

16
cores

1024
cores

Weak scaling:
8km, 5 layers to
2km, 20 layers!

Strong
scaling:
143M DOFs!

Kernel Serial 16 Thds
OpenMP

GPU

Viscosity Jacobian 20.39 s 2.06 s 0.54s

Basis Functions w/ FE
Transforms

8.75 s 0.94 s 1.23s

Gather Coordinates 0.097 s 0.107 s 5.77s

Note: Gather
Coordinates routine

requires copying
data from host to

GPU.

•  Albany finite element assembly mini-app
results suggests ~100 elements on the Phi
and ~1000 element on the GPU is required
to “break even”!

•  Table shows “speedup” using multicore
and GPU in FELIX analysis!

70
70!

Adaptive simulations of finite deformation
plasticity with Albany
! Projects include modeling large

deformations and weld failures
Efforts on adaptive loops that supports
! Solution accuracy via error estimation
•  Error estimation library

! Element shape controlled each load step
! Accurate state variable transfer
! Predictive load balancing (ParMA,

Zoltan) at each adaptive stage
! Adding adjoint capabilities for goal

oriented error estimation

Modeling Large Deformation Structural Failures

71
71!

Microelectronics processing is very exacting and mechanical
responses impact reliability and manufacturability
! Multi-layer nature of chips interacts with thermal

cycles, creep, and intrinsic stress of films
!  Intrinsic stress in film deposited onto surface and

into features causes macroscopic deflection of wafer
! Combined thermoelastic, plastic, and creep model constitutive

model implemented in ALBANY
! Creep and delamination in solder joints

Mechanical Failures in Integrated Circuits

Displacement vs time
curves for combined
thermo-elastic, plastic,
and creep model.!

72

Two tracks:
•  Using SIGMA tools to construct mesh and its

discretization for solving 3-D Laplacian
•  Workflow demonstration using Simmetrix/PUMI/

PAALS for parallel adaptive simulations

FASTMath Unstructured Mesh Hand-On Session

FASTMath SciDAC Institute!

73

ATPESC 2015
Vijay Mahadevan and Iulian Grindeanu

Tutorial Session for
Scalable Interfaces for Geometry and Mesh based

Applications (SIGMA)

FASTMath SciDAC Institute!

74
74!

!  Capabilities: Geometry and Mesh (data) generation/handling
infrastructure with flexible solver interfaces.

SIGMA: Introduction Website: http://sigma.mcs.anl.gov!

$  CGM supports both open-source (OCC) and commercial (ACIS) geometry
modeling engines.!

$ MOAB provides scalable mesh (data) usage in applications through efficient
array-based access; Support parallel I/O, visualization.!

$ MeshKit provides unified meshing interfaces to advanced algorithms and to
external packages (Cubit/Netgen).!

$  PETSc – MOAB interface (DMMoab) simplifies efficient discretization and
solution of PDE on unstructured meshes with FEM.!

75
75!

! To utilize the SIGMA tools effectively, follow workflow to
solve a simple 3-D Laplacian on an unit cube mesh.
" Example 1: HelloParMOAB
�  Introduction to some MOAB objects and load mesh from file

" Example 2: LargeMesh
� Generate d-dimensional parallel mesh with given partition/element

information (HEX/TET/QUAD/TRI)
� Define Tags on entities (vertex or elements)
� Write to file in parallel with partition

" Example 3: GetEntities
� Query the parallel mesh to list the entities of various dimensions

(elements, faces, edges, vertices)
� Get entities and report non-vertex entity connectivity and vertex

adjacencies.

SIGMA Tutorial

76
76!

" Example 4: DMMoab Laplacian Solver
�  Introduction to some DMMoab concepts
� Create DMMoab from file loaded
� Define field to be solved
� Setup linear operators and PETSc objects
� Solve linear operator
� Output and visualize

! Please consult the SIGMA website for help on examples.
http://sigma.mcs.anl.gov/sigma/atpesc-2015

! All other MOAB questions can be directed to
moab-dev@mcs.anl.gov

SIGMA Tutorial

77

Presenters: Cameron W. Smith and Glen Hansen

Workflow demonstration using Simmetrix/PUMI/
PAALS for parallel adaptive simulations

FASTMath SciDAC Institute!

78
78!

Hands-on Exercise Outline
! Parallel Mesh Generation
•  Generate a 13M element mesh on

128 cores using Simmetrix tools
•  Complex geometric model of vehicle

suspension upright
•  In-memory conversion to SCOREC

mesh data structures
! Partition via Zoltan and ParMA
•  Recursive inertial

bisection method
•  ParMA Vtx>Elm
•  Partition on 512 cores

79
79!

Hands-on Exercise Outline
! PAALS
•  In-memory parallel adaptive loop

to analyze thermo-mechanical breach
•  Running on 1024 cores
•  Combining
� Parallel Mesh Adapt
� Quadratic mesh elements

� SPR based error estimation
� Local solution transfer of history

dependent state variables
� Predictive load balancing

! Visualization with ParaView

80
80!

! Hands-on exercise
•  https://github.com/gahansen/Albany/wiki/PAALS-Tutorial

! Capabilities:
•  Agile Component-based, massively parallel solution adaptive

multiphysics analysis
•  Fully-coupled, in-memory adaptation and solution transfer
•  Parallel mesh infrastructure and services
•  Dynamic load balancing
•  Generalized error estimation drives adaptation

! Download:
!  Albany (http://gahansen.github.io/Albany)
!  SCOREC Adaptive Components (https://github.com/SCOREC)

! Further information: Mark Shephard [shephard@rpi.edu]
 Glen Hansen [gahanse@sandia.gov]

Parallel Albany Adaptive Loop
with SCOREC

