SCALABLE SCIENTIFIC SOFTWARE FOR EXTREME SCALE APPLICATIONS: FUSION ENERGY SCIENCE

William M. Tang*
Princeton University, Princeton, NJ USA

ARGONNE TRAINING PROGRAM ON EXTREME SCALE COMPUTING (ATPESC 2015)

St. Charles, Illinois

August 10, 2015

*Collaborators: Bei Wang (PU), S. Ethier (PPPL), K. Ibrahim (LBNL), K. Madduri (Penn State U), S. Williams (LBNL), L. Oliker (LBNL), T. Williams (ANL), C. Rosales-Fernandez (TACC), T. Hoefler (ETH-Zurich), G. Kwasniewski (ETH-Zurich), Yutong Lu (NUDT)
INTRODUCTION

I. FOCUS: HPC Performance Scalability and Portability in a representative DOE application domain

 → Illustration of domain application that delivers discovery science, good performance scaling, while also helping provide viable metrics on top supercomputing systems such as “portability,” “time to solution,” & associated “energy to solution”

II. HPC APPLICATION DOMAIN: Fusion Energy Science

III. CURRENT PROGRESS: Deployment of innovative algorithms within modern code that delivers new scientific insights on world-class systems → currently: Mira; Sequoia; K-Computer; Titan; Piz Daint; Blue Waters; Stampede; TH-2

& in near future on: Summit (via CAAR), Cori, Stampede-II, Tsubame 3.0, -----

IV. COMMENTS ON FUTURE PROGRESS: need algorithmic & solver advances enabled by Applied Mathematics – in an interdisciplinary “Co-Design” type environment together with Computer Science & Extreme-Scale HPC Domain Applications
Performance Development of HPC over the Last 22 Years from the Top 500 (J. Dongarra)

- 59.7 GFlop/s
- 400 MFlop/s
- 1.17 TFlop/s
- 33.9 PFlop/s
- 153 TFlop
- 309 PFlop/s

My Laptop 70 Gflop/s
My iPhone 4 Gflop/s

SUM N=1
N=500
Applications Impact ➔ Actual value of extreme Scale HPC to scientific domain applications & industry

Context: recent White House announcement of NATIONAL STRATEGIC COMPUTING INITIATIVE

• Practical Considerations: “Better Buy-in” from Science & Industry requires:
 - Moving beyond “voracious” (more of same - just bigger & faster) to “transformational” (achievement of major new levels of scientific understanding)
 - Improving experimental validation, verification & uncertainty quantification to enhance realistic predictive capability of both hypothesis-driven and big-data-driven statistical approaches
 - Deliver software engineering tools to improve “time to solution” and “energy to solution”
 - David Keyes: Billions of $ of scientific software worldwide hangs in the balance until better algorithms arrive to span the “architecture-applications gap.”

• Associated Challenges:
 - Hardware complexity: Heterogeneous multicore; gpu+cpu ➔ Summit; mic+cpu ➔ Aurora
 - Software challenges: Rewriting code focused on data locality

• Applications Imperative: “Accountability” aspect
 ➔ Need to provide specific examples of impactful scientific and mission advances enabled by progress from terascale to petascale to today’s multi-petascale HPC capabilities
HPC SCIENCE APPLICATION DOMAIN: MAGNETIC FUSION ENERGY (MFE)

- Extremely hot plasma (several hundred million degree) confined by strong magnetic field

- **Turbulence** → *Physics mechanism for energy leakage from magnetic confinement system*
ITER Goal: Demonstration of Scientific and Technological Feasibility of Fusion Power

- **ITER** ~$25B facility located in France & involving 7 governments representing over half of world’s population
 - dramatic next-step for Magnetic Fusion Energy (MFE) producing a sustained burning plasma
 -- Today: 10 MW(th) for 1 second with gain ~1
 -- ITER: 500 MW(th) for >400 seconds with gain >10

- **“DEMO”** demonstration fusion reactor after ITER
 -- 2500 MW(th) continuous with gain >25, in a device of similar size and field as ITER

- Ongoing R&D programs worldwide [experiments, theory, computation, and technology] essential to provide growing knowledge base for ITER operation targeted for ~ 2025

- Realistic HPC-enabled simulations required to cost-effectively plan, “steer,” & harvest key information from expensive (~$1M/long-pulse) ITER shots
Boltzmann-Maxwell System of Equations

- The Boltzmann equation (Nonlinear PDE in Lagrangian coordinates):
 \[
 \frac{dF}{dt} = \frac{\partial F}{\partial t} + \mathbf{v} \cdot \frac{\partial F}{\partial \mathbf{x}} + \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right) \cdot \frac{\partial F}{\partial \mathbf{v}} = C(F).
 \]

- “Particle Pushing” (Linear ODE’s)
 \[
 \frac{dx_j}{dt} = v_j, \quad \frac{dv_j}{dt} = \frac{q}{m} \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)_{x_j}.
 \]

- Klimontovich-Dupree representation,
 \[
 F = \sum_{j=1}^{N} \delta(x - x_j) \delta(v - v_j),
 \]

- Poisson’s Equation: (Linear PDE in Eulerian coordinates (lab frame))
 \[
 \nabla^2 \phi = -4\pi \sum_{\alpha} q_{\alpha} \sum_{j=1}^{N} \delta(x - x_{\alpha j})
 \]

- Ampere’s Law and Faraday’s Law [Linear PDE’s in Eulerian coordinates (lab frame)]
• **Mathematics:** 5D Gyrokinetic Vlasov-Poisson Equations

• **Numerical Approach:** Gyrokinetic Particle-in-Cell (PIC) Method

131 million grid points, 30 billion particles, 10 thousand time steps

• **Objective** → Develop efficient numerical tool to realistically simulate turbulence and associated transport in magnetically-confined plasmas (e.g., “tokamaks”) using high end supercomputers
Picture of Particle-in-Cell Method

- Charged particles sample distribution function
- Interactions occur on a grid with the forces determined by gradient of electrostatic potential (calculated from deposited charges)
- Grid resolution dictated by Debye length ("finite-sized" particles) up to gyro-radius scale

Specific PIC Operations:
- "SCATTER", or deposit, charges as "nearest neighbors" on the grid
- Solve Poisson Equation for potential
- "GATHER" forces (gradient of potential) on each particle
- Move particles (PUSH)
- Repeat…
BASIC STRUCTURE OF PIC METHOD

• System represented by set of particles
• Each particle carries components: position, velocity and weight (x, v, w)
• Particles interact with each other through long range electromagnetic forces
• Forces evaluated on grid and then interpolated to the particle
 ~ $O(N+M\log M)$
• PIC approach involves two different data structures and two types of operations
 – **Charge**: Particle to grid interpolation (**SCATTER**)
 – **Poisson/Field**: Poisson solve and field calculation
 – **Push**: Grid to particle interpolation (**GATHER**)

Microturbulence in Fusion Plasmas – Mission Importance:
Fusion reactor size & cost determined by balance between loss processes & self-heating rates

- "Scientific Discovery" - Transition to favorable scaling of confinement produced in simulations for ITER-size plasmas
 - $a/\rho_i = 400$ (JET, largest present lab experiment)
 - $a/\rho_i = 1000$ (ITER, ignition experiment)

- **Multi-TF simulations** using 3D PIC code [Z. Lin, et al, 2002] \(\rightarrow \) 1B particles, 100M spatial grid points; 7K time steps \(\rightarrow \) 1st ITER-scale simulation with ion gyroradius resolution

- BUT, **physics understanding** of problem size scaling demands **high resolution** requiring **modern LCF’s, new algorithms, & modern diagnostics for VV&UQ**

\(\rightarrow \) **Progress enabled by DOE INCITE Projects on LCF’s & G8 Fusion Exascale Project on major international facilities**

\(\rightarrow \) **Excellent Scalability of 3D PIC Codes on modern HPC platforms enables resolution/physics fidelity needed for physics understanding of large fusion systems**

\(\rightarrow \) **BUT – efficient usage of current LCF’s worldwide demands code re-write featuring modern CS/AM methods addressing locality & memory demands**
• Broad range of leading multi-PF supercomputers worldwide
• Percentage indicates fraction of overall nodes currently utilized for GTC-P experiments
• NOTE: Results in this figure are only for CPU nodes on Stampede and TH-2
New Physics Results: Fusion system size-scaling study of “trapped-electron-mode” turbulence showing the “plateauing” of the radial electron heat flux as size of tokamak increases.
GTC-P: six major subroutines

- **Charge**: particle to grid interpolation (**SCATTER**)
- **Smooth/Poisson/Field**: grid work (local stencil)
- **Push**:
 - grid to particle interpolation (**GATHER**)
 - update position and velocity
- **Shift**: in distributed memory environment, exchange particles among processors
Operational breakdown of time per step when using 80M grid points, 8B ions, and 8B kinetic electrons on 4K nodes of *Mira, Titan, and Piz Daint.*
“True weak scaling study” carried out on *increasing problem size* (four different sized plasmas labeled A to D) on a variety of leadership-class supercomputers worldwide

- Roughly 3.2M particles per process in these computations
- Both *1 MPI process per node* and *1 MPI process per NUMA* node are considered in these studies.

for non-uniform-memory access [NUMA] issues
Performance Evaluation Platforms (1)

<table>
<thead>
<tr>
<th>Systems</th>
<th>IBM BG/Q (Mira)</th>
<th>Cray XK7 (Titan)</th>
<th>Cray XC 30 (Piz Daint)</th>
<th>NVIDIA Kepler</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUs per node</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Custom 5D Torus</td>
<td>Gemini 3D Torus</td>
<td>Aries Dragonfly</td>
<td>-</td>
</tr>
<tr>
<td>Core</td>
<td>IBM A2</td>
<td>AMD Opteron 6274 (Interlagos)</td>
<td>Intel Xeon E5-2670 (Sandy Bridge)</td>
<td>K20x</td>
</tr>
<tr>
<td>Frequency (GHz)</td>
<td>1.6</td>
<td>2.2</td>
<td>2.6</td>
<td>0.732</td>
</tr>
<tr>
<td>Data cache per core (KB)</td>
<td>32</td>
<td>16+2048¹</td>
<td>32+256</td>
<td>64</td>
</tr>
<tr>
<td>Cores per CPU</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>14 (SMX’s)</td>
</tr>
<tr>
<td>Last-level cache per CPU (MB)</td>
<td>32</td>
<td>8</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>DP GFlop/s per node</td>
<td>204.8</td>
<td>140.8</td>
<td>166.4</td>
<td>1311</td>
</tr>
<tr>
<td>STREAM GB/s per node</td>
<td>28</td>
<td>31²</td>
<td>38</td>
<td>171</td>
</tr>
</tbody>
</table>

¹Each pair of cores shared 2048 KB L2 cache ²NUMA
Performance Evaluation Platforms (2)

<table>
<thead>
<tr>
<th>Systems</th>
<th>Dell Cluster (Stampede)</th>
<th>Cray XE6 (Blue Waters)</th>
<th>Intel Xeon Phi (Stampede)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUs per node</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Interconnect</td>
<td>InfiniBand Fat-Tree</td>
<td>Gemini 3D Torus</td>
<td>InfiniBand Fat-Tree</td>
</tr>
<tr>
<td>Core</td>
<td>Intel Xeon E5-2680</td>
<td>AMD Opteron 6276</td>
<td>Intel Xeon Phi SE10P</td>
</tr>
<tr>
<td></td>
<td>(Sandy Bridge)</td>
<td>(Interlagos)</td>
<td></td>
</tr>
<tr>
<td>Frequency (GHz)</td>
<td>2.7</td>
<td>2.45</td>
<td>1.1</td>
</tr>
<tr>
<td>Data cache per core (KB)</td>
<td>32+256</td>
<td>16+2048(^1)</td>
<td>32+512</td>
</tr>
<tr>
<td>Cores per CPU</td>
<td>8</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>Last-level cache per CPU (MB)</td>
<td>20</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>DP GFlop/s per node</td>
<td>345.6</td>
<td>313.6</td>
<td>1070</td>
</tr>
<tr>
<td>STREAM GB/s per node</td>
<td>78(^2)</td>
<td>62(^2)</td>
<td>160</td>
</tr>
</tbody>
</table>

\(^1\)Each pair of cores shared 2048 KB L2 cache \(^2\)NUMA
Weak Scaling of GTC-P (GPU-version) on Heterogenous (GPU/CPU) “Titan” and “Piz Daint”

The number of particles per cell is 100

GTC-P GPU obtains 1.7x speed up

Same code for all cases → Performance difference solely due to hardware/system software
GTC-P Weak Scaling Results on Various Supercomputers
[Titan, Blue Waters, Mira, Piz Daint, Stampede: 1 MPI per NUMA node]
vertical scale = wall-clock time for 100 time-steps

A (MPI ranks: 64)

B (MPI ranks: 256)

C (MPI ranks: 1024)

D (MPI ranks: 4096)

PIC Operations
- smooth
- field
- poisson
- sort
- shift
- push
- charge
GTC-P Weak Scaling Results on Various Supercomputers
[Titan, Blue Waters, Mira, Piz Daint, Stampede: 1 MPI per node]
vertical scale = wall-clock time for 100 time-steps

A (MPI ranks: 64)

B (MPI ranks: 256)

C (MPI ranks: 1024)

D (MPI ranks: 4096)

PIC Operations:
- smooth
- field
- poisson
- sort
- shift
- push
- charge
GTC-P (adiabatic electron model) strong scaling for the 131M grid points, 13B particles case from 512 nodes on Titan (GPU), Mira and Piz Daint (GPU).

Note: plotted on log-log axes
GTC-P (kinetic electron model) strong scaling for the 80M grid points, 8B ion and 8B electron case on Titan (GPU), Mira and Piz Daint (GPU).

Note → plotted on log-log axes
Comparative Weak Scaling Time to Solution for 6 HPC Platforms

- GTC-P (adiabatic electron model) results for 4 problem sizes (2.1M, 8.2M, 32.8M, 131.3M grid points) each using 100 ions per grid point (with 200 on Sequoia);
- Problems ran at 12.5%, 25%, 50%, and 100% of maximum nodes used for each system.
GTC-P (kinetic electron) weak scaling performance using a fixed problem size per node across all systems allows comparisons of node performance.
Collaborative Studies with TH-2

- Measure MPI bandwidth between CPU to CPU (“host”), MIC to MIC (“native”) and CPU to MIC (“symmetric”) operation on TH-2 using the Intel MPI benchmark.
- “Offload” mode version of GTC-P developed to facilitate using many MICS on one compute node.
- Associated investigations include:
 - True weak scaling performance with increasing problem size and phase-space resolution.
 - starting from A100 problem size on 224 TH-2 nodes to D100 (ITER) problem size on 8192 nodes.
 - Deployment of 1MIC, 2MIC’s and 3MIC’s respectively for these weak scaling performance studies.
Collaborative Studies with “Stampede”

Tasks:

- Improve intra-node communication between the host and the MICs to reduce overhead in the MPI Scatter operation in GTC-P
- Improve inter-node communication between MIC’s (for particle shift operation)
- (Intel – R. Rahman): optimize particle loading for symmetric runs; explore KNC intrinsics
- Move actively into next phase of true weak scaling performance studies with increasing problem size – using up to 4K MIC nodes.
GTC-P (kinetic electron model) weak scaling time-to-solution results:

- 4 problems (5M, 20M, 80M, and 321M grid points) run on each system using 100 ions and 100 electrons per grid point
- 4 configurations are run at 12.5%, 25%, 50%, and 100% of the maximum nodes used for each system.
“ENERGY TO SOLUTION” ESTIMATES
(for Mira, Titan, and Piz Daint)

<table>
<thead>
<tr>
<th></th>
<th>CPU-Only</th>
<th>CPU+GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mira</td>
<td>Titan</td>
</tr>
<tr>
<td>Nodes</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Power/node (W)</td>
<td>69.7</td>
<td>254.1</td>
</tr>
<tr>
<td>Time/step (s)</td>
<td>13.77</td>
<td>15.46</td>
</tr>
<tr>
<td>Energy (KWh)</td>
<td>1.09</td>
<td>4.47</td>
</tr>
</tbody>
</table>

- Energy per ion time step (KWh) by each system/platform for the weak-scaling, kinetic electron studies using 4K nodes.
 (Watts/node) * (#nodes) * (seconds per step) * (1KW/1000W) * (1hr/3600s)

- **Power/Energy estimates** obtained from system instrumentation including compute nodes, network, blades, AC to DC conversion, etc.
• Number of “Lines of Code (LOC)” modified provides quantitative measure of “Level of Effort” made to port and optimize GTC-P code to a specific architecture.
 -- considered “pushe” and “sorte” operations in GTC-P code
 -- speed-up measures:
 ➔ GPU: single-node Kepler vs. single Sandybridge node
 ➔ Xeon-Phi: single MIC vs. two Sandybridge nodes
Current Collaborative Studies for Intel MIC (TACC and ETH Zurich)

• LOCAL MEMORY ISSUES:
 “Holes Removal” → Moving particles out of a local domain creates "a hole" (no longer a valid particle location) in the associated memory space
→ efficient "particle removal algorithm” to avoid exhausting the existent local memory.

→ need to remove the hole periodically -- but best to remove holes completely

“Vectorization” → Improve "PUSH" & "CHARGE” operations: need to deal with two particles exhibiting different behavior at different consecutive memory locations.

→ This necessitates two separate instructions down to the computer level;
→ "Vectorization" means using a single instruction for multiple data;

“Latency”
implementation of one-side MPI communication →
 2 sided: synchronized; increases latency
 1 sided: unsynchronized; helps with reducing latency
APPLIED MATH LOCALITY CHALLENGE: GEOMETRIC HAMILTONIAN APPROACH TO SOLVING GENERALIZED VLASOV-MAXWELL EQUATIONS

Hamiltonian \rightarrow Lagrangian \rightarrow Action \rightarrow Variational Optimization \rightarrow Discretized Symplectic Orbits for Particle Motion

I. “Ultrahigh Performance 3-Dimensional Electromagnetic Relativistic Kinetic Plasma Simulation

\rightarrow Basic foundation for symplectic integration of particle orbits in electromagnetic fields without frequency ordering constraints
\rightarrow Foundational approach for present-day simulations of laser-plasma interactions on modern supercomputing systems
\rightarrow Limited applicability with respect to size of simulation region and geometric complexity

II. “Geometric Gyrokinetic Theory for Edge Plasmas”

\rightarrow Basic foundation for symplectic integration of particle orbits in electromagnetic low-frequency plasma following GK ordering
\rightarrow Still outstanding challenge: Address reformulation of non-local Poisson Equations structure for electromagnetic field solve
Concluding Comments

• Presentation of a modern HPC domain application code capable of scientific discovery while providing good performance scaling and portability on top supercomputing systems worldwide – together with illustrating the key metrics of “time to solution” and associated “energy to solution”

• Illustrative HPC domain application considered: Fusion Energy Science

• Current progress achieved included deployment of innovative algorithms within a modern application code (GTC-P) that delivers new scientific insights on world-class systems → currently: Mira; Sequoia; K-Computer; Titan; Piz Daint; Blue Waters; Stampede;TH-2

w/ future targets: Summit (via CAAR), Cori, Aurora, Stampede-II, Tsubame 3.0, -----

• Future progress will require algorithmic & solver advances enabled by Applied Mathematics – in an interdisciplinary “Co-Design” type environment together with Computer Science & Extreme-Scale HPC Domain Applications