Accelerators

ATPESC 2015

Tim Warburton
Computational & Applied Mathematics @ Rice University
RIP: Blinky 08/03/15

Blinky was a MacBook Pro with discrete NVIDIA GPU and OpenMP, OpenCL, CUDA … Latest versions come with AMD GPU and/or Intel Iris GPU ,, no CUDA and OpenMP is not default.
It takes more than 3 hours to master GPUs…
It takes more than 3 hours to master GPUs…

… but we can discuss some of the basics …
It takes more than 3 hours to master GPUs…

… but we can discuss some of the basics …

… there are many web resources …
Reality Check

It takes more than 3 hours to master GPUs…

…but we can discuss some of the basics …

… there are many web resources …

…and nothing beats hands on.
Accelerators: slides & repos
Accelerators: slides & repos

Slides:

http://www.caam.rice.edu/~timwar/ATPESC15

http://bit.ly/1JNLqUx

Examples:

`git clone https://github.com/tcew/ATPESC15`

OCCA repo:

`git clone https://github.com/libocca/occa`
Overview

Part 0: Background on instructor.

Part 1: Processor architecture trends.
 - CPU v. GPU.

Part 2: CUDA
 - NVIDIA’s threaded offload programming model.
 - Poisson solver example.

Part 3: Interlude on CUDA optimization.

Part 4: OpenCL
 - Open Computing Language

Part 5: OCCA
 - Unified and extensible many-core programming model.
Advanced SCalable ALgorithms Team

I am fortunate to have worked with a team of excellent researchers.

- JF Remacle: Meshing & Numerics, Sabbatical @ Rice
- Amik St-Cyr: Royal Dutch Shell, Adjunct Assoc Prof
- Jesse Chan: Advanced Numerics, Post-doc
- Axel Modave: Accelerate Numerics, Post-doc
- Florian Kummer: Multi-phase Flows, Visiting scholar
- Ali Karakus: Two Phase Flows, Visiting student
- Nichole Stilwell: CFD, CAAM Grad > USAF
- Rajesh Gandham: Oceans & AMG, Stoneridge Tech
- David Medina: HPC & Accelerators, Two Sigma*
- Reid Atcheson: Adaptivity/Helmholtz, Open Geophysical
- Zheng (Frank) Wang: Wave modeling, CAAM Grad
- Arturo Vargas: Hermite+DG, CAAM Grad
- Tim Moon: Bioheat modeling, Ugrad => Stanford
- Michael Frano: Bioheat modeling, Ugrad => BP

Industrial internships, projects & fellowships:
Shell, BP, Halliburton, Hess, Stoneridge Technology, Hypercomp, Z-terra, ExxonMobil
Advanced SCALable Simulations

Goal: fast, scalable, flexible & accurate numerical PDE solvers adapted for modern many-core architectures.

Methods
Numerical Analysis
Accelerate
Scale
Electromagnetics
Shallow water
Fluid & gas dynamics
Seismic

High order, GPU accelerated, Galerkin & discontinuous Galerkin solvers. GPU programming tools & applications. Industrial collaboration.
Advanced SCALable Simulations

Goal: fast, scalable, flexible & accurate numerical PDE solvers adapted for modern many-core architectures.

Methods
Numerical Analysis
Accelerate
Scale

Electromagnetics
Shallow water
Fluid & gas dynamics
Seismic

High order, GPU accelerated, Galerkin & discontinuous Galerkin solvers. GPU programming tools & applications. Industrial collaboration.
Part 1: Processor Trends

CPU v. GPU
Design goals for CPUs:

- Make a single thread very fast.
- Reduce latency through large caches.
- Predict, speculate.
CPU: simplified core architecture

A loose diagramatic representation of a basic processing core.

Core: minimally a control unit with an independent instruction stream, arithmetic logic units, register, memory interface.
Everything synchronizes to the *Clock*.

Control Unit ("CU"): The brains of the operation. Everything connects to it.

CU controls gates, tells other units about ‘what’ and ‘how’:

- What operation?
- Which register?
 - Which addressing mode?

Bus entries/exits are gated and (potentially) buffered.

From: NYU Lecture notes by Klöckner
An ALU is not a core.

ALUs are the basic compute units on a core.

One or two operands A, B

Operation selector (Op):

- (Integer) Addition, Subtraction.
- (Logical) And, Or, Not.
- (Bitwise) Shifts.
- (Integer) Multiplication, Division.

Specialized ALUs:

- Floating Point Unit (FPU).
- Address ALU.

Operates on binary representations of numbers.

From: NYU Lecture notes by Klöckner
CPU: abstract modern architecture

Modern “CPU-Style” core design emphasizes individual thread performance.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian

Execution context: memory and hardware associated to a specific stream of instructions, e.g. registers.
CPU: example die partition

Older single core processor example.

Die floorplan: VIA Isaiah (2008). 65 nm, 4 SP ops at a time, 1 MiB L2.
Only a small portion of the chip footprint is devoted to computation. Most of the silicon is devoted to managing the flow of instructions.
The main purpose of graphics processing units is to project textured polygons onto the screen in a fiercely competitive consumer-facing industry. This is an embarrassingly parallel process and specialized MPP chips have been created by ATi (now AMD), Intel, NVIDIA et al to perform floating point intensive operations to render scenes in realtime.

Design goals for GPUs:

- Throughput matters and single threads do not.
- Hide memory latency through parallelism.
- Let programmer deal with “raw” storage hierarchy.
- Avoid high frequency clock speed.

GPU: early example

Die floorplan: AMD RV770 (2008) 55 nm, 800 SP ops at a time
The majority of the silicon is devoted to computation
The result is a core that will stall due to code branching and memory fetches.
The result is a core that will stall due to code branching and memory fetches.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
GPU: slim down the core

The first big idea that differentiates GPU and CPU core design: slim down the footprint of each core.

The result is a core that will stall due to code branching and memory fetches.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
The result is a core that will stall due to code branching and memory fetches.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
The result is a core that will stall due to code branching and memory fetches.
GPU: replicate cores

Each simplified core takes less space so double up

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
GPU: replicate cores

... and again ...

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
GPU: the clone cores (ahem)

... and again to yield 16 independent instruction streams ...

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
GPU: the clone cores (ahem)

... and again to yield 16 independent instruction streams ... But: GPU rendering instruction streams are typically very similar.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
The Fetch/Decode units in those 16 clone cores are likely fetching and decoding the same instruction streams for rendering graphics...
GPU: SIMD groups

“single instruction multiple data” SIMD model:
share the cost of the instruction stream across many ALUs

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
In reality the GPU cores are equipped with “substantial” register files and shared memory.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian.
GPU: multiple independent cores

Summary: 128 parallel instruction streams. Organized into 16 independent groups, each with 8 synchronized streams.

The cores are cloned into a massively parallel processor.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
One instruction unit per core impacts instruction branching.

Non branching code;

```c
if(flag > 0) { /* branch */
    x = exp(y);
    y = 2.3*x;
} else {
    x = sin(y);
    y = 2.1*x;
}
```

Non branching code;

Idle ALUs execute NOPs when code branches.
In this example we could see 1/8 of maximum performance.
GPU: high latency memory fetches

Accessing off-chip GPU memory takes a long time (partly latency)

Time

Work on registers; work on registers; work on registers;

Load registers from main memory;

It takes $O(1000)$ cycles to load data from off-chip memory into the SM registers file

These ALUs are idled (stalled) after a load

Slides and graphics based on presentations from Andreas Klöckner and Kayvon Fatahalian
GPU: multiple contexts per core

Fast hardware context switching can help hide high memory latency

Idea: allocate enough registers and shared memory to allow for multiple contexts

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
GPU: high latency memory fetches

We can hide latency if the core can switch SIMD contexts

<table>
<thead>
<tr>
<th>Time</th>
<th>ALU 1</th>
<th>ALU 2</th>
<th>ALU 3</th>
<th>ALU 4</th>
<th>ALU 5</th>
<th>ALU 6</th>
<th>ALU 7</th>
<th>ALU 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Ctx1: work on registers;
- Ctx1: work on registers;
- Ctx1: load request, switch context;
- Ctx3: work on registers;
- Ctx3: work on registers;
- Ctx3: load request, switch context;
- Ctx2: work on registers;
- Ctx2: work on registers;
- Ctx2: load request, switch context;
- Ctx1: load done so continue

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian
GPU: slow threads ok

By design it is ok if a thread stalls as long as we can switch to other threads.

The amount of latency hiding possible depends on how many contexts can be simultaneously resident on the core.

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian.
GPU: summary of architecture

Summary of multi-level GPU parallel architecture

• Multiple cores.

• Each core has one (or more) wide SIMD vector units.
 • Each wide SIMD vector unit executes one instruction stream.

• Each core has a pool of shared memory.

• Each core hardware can switch between multiple contexts to hide memory latency.

• Branching code involves partial serialization.

SIMD here is the number of ALUs in one of the core’s vector unit.
Part 2: NVIDIA GPUs & CUDA

NVIDIA's Compute Unified Device Architecture
GPU programming model
Each discrete GPU is a nearly self-contained daughter card (aka sidecar or accelerator).
Data has to be off loaded from the HOST to the DEVICE. Latest GPUs use the PCI Express 3.0 interface standard.
Discrete GPU cards have one or two graphics processing units. Latest cards from NVIDIA have Kepler GPU chip(s).
The amount of “device memory” and “device bandwidth” depends on the specific model.

GPU: Example Card

Slightly vintage dual GPU consumer card

GDDR5 Memory chips

GDDR5 Memory chips: 1536MB

Memory bus: 384 bit
A high end GPU might draw 250W. See: NVIDIA GPU wiki for detailed specs.

The GPU power requirement is typically limited by the PCI Express standard.

Power inputs:
TDP* 365W

Wiki description of TDP: “The thermal design power (TDP), sometimes called thermal design point, refers to the maximum amount of power the cooling system in a computer is required to dissipate.”
Two GPUs (DEVICEs) plugged into HOST motherboard.
Theoretical peak performance requires ~28 FLOP per float moved between device & memory !!!

Note: for the Fermi generation cards they put the L1 and L2 caches back 😊

Modern GPUs combine: multiple wide vector processing cores with local and global shared-memory.

Each Fermi core (SM) has a SIMD clusters of 32 FPUs
Data streams at ~50 GFLOAT/s and computes up to 1.4 TFLOP/s (SP)
GPU: NIVIDA Titan

GK110: 15 cores that cluster 192 FPU each.

Each Kepler core (SMX) has six SIMD clusters of 32 ALUs
Data streams at ~70 GFLOAT/s and peak 4+ TFLOP/s (SP)

16 Maxwell cores each have four SIMD clusters with 32 ALUs. Data streams at ~56 GFLOAT/s and peak 4.6 TFLOP/s (SP)
The FPU cluster sizes have ballooned: 16 - 24 - 32 - 192 but the shared memory and register file have not grown accordingly.

GPU: Kepler to Maxwell

The FPU clusters ("core") in 2 latest NVIDIA processor architectures

Kepler SMX

Maxwell SMM

http://www.ubergizmo.com/2014/02/nvidia-maxwell-gpu-for-geforce-cards/

Maxwell notes: Partitioned register files, multiple instruction buffers, partitioned core, same shared memory, multiple texture/L1 caches.
Major bump in performance Maxwell - Pascal transition is contingent on stacked memory.

[http://www.anandtech.com/show/7900/nvidia-updates-gpu-roadmap-unveils-pascal-architecture-for-2016]
There is a major bottleneck between the GPU and CPU. Data localization is critical for high-performance.
CUDA was released by NVIDIA in 2007.

CUDA is used to program NVIDIA GPUs.
CUDA includes a HOST API and a DEVICE kernel programming language.
CUDA: offload model

In CUDA the programmer explicitly moves data between HOST and DEVICE.

Key observation: the DEVICE and HOST are asynchronous.

Detail: cudaMemcpy will block until the queued DEVICE actions complete.
CUDA: offload model

In CUDA the programmer explicitly moves data between HOST and DEVICE.

Key observation: the DEVICE and HOST are asynchronous.

Detail: cudaMemcpy will block until the queued DEVICE actions complete.
CUDA: offload model

In CUDA the programmer explicitly moves data between HOST and DEVICE

Key observation: the DEVICE and HOST are asynchronous.

Detail: cudaMemcpy will block until the queued DEVICE actions complete.
CUDA: offload model

In CUDA the programmer explicitly moves data between HOST and DEVICE

Key observation: the DEVICE and HOST are asynchronous.

Detail: cudaMemcpy will block until the queued DEVICE actions complete.
CUDA: offload model

In CUDA the programmer explicitly moves data between HOST and DEVICE

1. cudaMemcpy: copy data from DEVICE to HOST array
2. cudaMemcpy: copy data from HOST to DEVICE array
3. Queue kernel task on DEVICE
4. cudaMemcpy: copy data from DEVICE to HOST array

Key observation: the DEVICE and HOST are asynchronous.

Detail: cudaMemcpy will block until the queued DEVICE actions complete.
CUDA: offload model

In CUDA the programmer explicitly moves data between HOST and DEVICE

1. cudaMemcpy: copy data from DEVICE to HOST array
2. cudaMemcpy: copy data from HOST to DEVICE array
3. Queue kernel task on DEVICE
4. cudaMemcpy: copy data from DEVICE to HOST array

Key observation: the DEVICE and HOST are asynchronous.

Detail: cudaMemcpy will block until the queued DEVICE actions complete.
CUDA

- Is laced (ahem) with terminology derived from weaving like “warp”, “thread”, “texture”.

- We refer instead to a thread array and SIMD groups.

I live with a “weaver” and was just clued in…
GPU: natural thread model

The GPU architecture admits a natural parallel threading model

- Programmer decides how to partition a compute task into independent work-blocks:
 - Work-block assigned to a core with sufficient resources to process it:
 - Each core processes the work-block with a work-group of “threads”
 - The work-group is batch processed in sub-groups of SIMD* work-items.
 - Each work-item processed by a “thread” passing through a SIMD lane (ALU)
 - A stalling SIMD group of “threads” is idled until it can continue.
 - “Threads” in a work-group can collaborate through shared memory.
 - The work-block stays resident until completed by core (blocking context resources).
 - Main assumption: same instructions for independent work-groups.

* SIMD here is the number of ALUs in one of the core’s vector unit.
#include "cuda.h"

int main(int argc,char **argv){
 int N = 3789; // size of array for this DEMO

 float *d_a; // Allocate DEVICE array
 cudaMalloc((void**)&d_a, N*sizeof(float));

 int B = 17;
dim3 dimBlock(B,1,1); // 512 threads per thread-block
dim3 dimGrid((N+B-1)/B, 1, 1); // Enough thread-blocks to cover N

 // Queue kernel on DEVICE
 simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);

 // HOST array
 float *h_a = (float*) calloc(N, sizeof(float));

 // Transfer result from DEVICE array to HOST array
 cudaMemcpy(h_a, d_a, N*sizeof(float), cudaMemcpyDeviceToHost);

 // Print out result from HOST array
 for(int n=0;n<N;++n) printf("h_a[%d] = %f\n", n, h_a[n]);
}
CUDA: host code

Overview of C-like HOST code for a simple kernel that fills a vector of length N

1. Allocate array space on DEVICE:

2. Design thread-array:

3. Queue compute task on DEVICE:

4. Copy results from DEVICE to HOST:

Key API calls: cudaMemcpy, cudaMemcpy
CUDA: host code

Overview of C-like HOST code for a simple *kernel* that fills a vector of length N

1. Allocate array space on DEVICE:

   ```c
   float *d_a; // Allocate DEVICE array (pointers used as array handles)
   cudaMalloc((void**) &d_a, N*sizeof(float));
   ```

2. Design thread-array:

3. Queue compute task on DEVICE:

4. Copy results from DEVICE to HOST:

Key API calls: cudaMalloc, cudaMemcpy
CUDA: host code

Overview of C-like HOST code for a simple *kernel* that fills a vector of length N

1. Allocate array space on DEVICE:

   ```
   float *d_a; // Allocate DEVICE array (pointers used as array handles)
   cudaMalloc((void**) &d_a, N*sizeof(float));
   ```

2. Design thread-array:

   ```
   dim3 dimBlock(512,1,1); // 512 threads per thread-block
   dim3 dimGrid((N+511)/512, 1, 1); // Enough thread-blocks to cover N
   ```

3. Queue compute task on DEVICE:

4. Copy results from DEVICE to HOST:

Key API calls: cudaMalloc, cudaMemcpy
CUDA: host code

Overview of C-like HOST code for a simple *kernel* that fills a vector of length N

1. Allocate array space on DEVICE:

```c
float *d_a; // Allocate DEVICE array (pointers used as array handles)
cudaMalloc((void**) &d_a, N*sizeof(float));
```

2. Design thread-array:

```c
dim3 dimBlock(512,1,1); // 512 threads per thread-block
dim3 dimGrid((N+511)/512, 1, 1); // Enough thread-blocks to cover N
```

3. Queue compute task on DEVICE:

```c
// specify number of threads with <<< block count, thread count >>>
SimpleKernel <<< dimGrid, dimBlock >>> (N, d_a);
```

4. Copy results from DEVICE to HOST:

Key API calls: cudaMalloc, cudaMemcpy
Overview of C-like HOST code for a simple *kernel* that fills a vector of length N

1. Allocate array space on DEVICE:

```c
float *d_a; // Allocate DEVICE array (pointers used as array handles)
cudaMalloc((void**) &d_a, N*sizeof(float));
```

2. Design thread-array:

```c
dim3 dimBlock(512,1,1); // 512 threads per thread-block
dim3 dimGrid((N+511)/512, 1, 1); // Enough thread-blocks to cover N
```

3. Queue compute task on DEVICE:

```c
// specify number of threads with <<< block count, thread count >>>
SimpleKernel <<< dimGrid, dimBlock >>> (N, d_a);
```

4. Copy results from DEVICE to HOST:

```c
float *h_a = (float*) calloc(N, sizeof(float));
cudaMemcpy(h_a, d_a, N*sizeof(float), cudaMemcpyDeviceToHost)
```

Key API calls: cudaMalloc, cudaMemcpy
void serialSimpleKernel(int N, float *d_a){
 for(n=0;n<N;++n){ // loop over N entries
 d_a[n] = n;
 }
}
CUDA: motivating serial function

Consider the case with N=20 - then break the for loop into independent tiles:

```c
void serialSimpleKernel(int N, float *d_a) {
    for (n=0; n<N; ++n) { // loop over N entries
        d_a[n] = n;
    }
}
```

We can think of splitting the n-loop into tiles of size 4: n=t+4b. Here: block dimension = 4 and grid dimension = 5.
We tile the n-loop into equal sized tiles (here tile size is blockDim)

```c
void tiledSerialSimpleKernel(int N, float *d_a){
    for(int b=0;b<gridDim;++b){ // loop over blocks
        for(int t=0;t<blockDim;++t){ // loop inside block
            // Convert thread and thread-block indices into array index
            const int n = t + b*blockDim;

            // If index is in [0,N-1] add entries
            if(n<N) // guard against an inexact tiling
                d_a[n] = n;
        }
    }
}
```

We assume the loop boundaries (gridDim and blockDim) are externally specified variables.
We also assume that: $N \leq \text{gridDim} \times \text{blockDim}$. Tiling also referred to chunking sometimes.
CUDA: tiled serial function

We rename variables to conform with CUDA naming convention. dim3 type intrinsic variables: threadIdx, blockDim, blockIdx, gridDim

```c
void tiledSerialSimpleKernel(int N, float *d_a){
    for(blockIdx.x=0;blockIdx.x<gridDim.x;++blockIdx.x){ // loop over blocks
        for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block
            // Convert thread and thread-block indices into array index
            const int n  = threadIdx.x + blockDim.x*blockIdx.x;

            // If index is in [0,N-1] add entries
            if(n<N)
                d_a[n] = n;
        }
    }
}
```

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: $N \leq \text{gridDim.x} \times \text{blockDim.x}$
CUDA: tiled serial function

We rename variables to conform with CUDA naming convention.
dim3 type intrinsic variables: threadIdx, blockDim, blockIdx, gridDim

```c
void tiledSerialSimpleKernel(int N, float *d_a){
    for(blockIdx.x=0;blockId.x<gridDim.x;++blockIdx.x){ // loop over blocks
        for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block
            // Convert thread and thread-block indices into array index
            const int n = threadIdx.x + blockDim.x*blockIdx.x;
            // If index is in [0,N-1] add entries
            if(n<N)
                d_a[n] = n;
        }
    }
}
```

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: $N \leq \text{gridDim.x*blockDim.x}$
We rename variables to conform with CUDA naming convention.
dim3 type intrinsic variables: threadIdx, blockDim, blockIdx, gridDim

We also assume that: \(N \leq \text{gridDim.x*blockDim.x} \)
Each thread can determine its (multi-dimensional) rank with respect to both its rank in the thread-block and the rank of the thread-block itself.

<table>
<thead>
<tr>
<th>Description</th>
<th>Fastest index</th>
<th>Slowest index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread indices in thread-block</td>
<td>threadIdx.x</td>
<td>threadIdx.y</td>
</tr>
<tr>
<td>Dimensions of thread-block</td>
<td>blockDim.x</td>
<td>blockDim.y</td>
</tr>
<tr>
<td>Block indices.</td>
<td>blockIdx.x</td>
<td>blockIdx.y</td>
</tr>
<tr>
<td>Dimensions of grid of thread-blocks</td>
<td>blockDim.x</td>
<td>blockIdx.x</td>
</tr>
</tbody>
</table>

Remember: we can identify task parallelism by associating tasks with combination of thread-index and block-index.

* Best practice: avoid frequent branching based on threadIdx or blockIdx.
 * three dimensional grid of thread-blocks supported as of CUDA 2.

*
CUDA: limitations

The CUDA compute capability evolves with ongoing NVIDIA GPU hardware revisions.

<table>
<thead>
<tr>
<th>Technical specifications</th>
<th>Compute capability (version)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Maximum dimensionality of grid of thread blocks</td>
<td></td>
</tr>
<tr>
<td>Maximum x-, y-, or z-dimension of a grid of thread blocks</td>
<td></td>
</tr>
<tr>
<td>Maximum dimensionality of thread block</td>
<td></td>
</tr>
<tr>
<td>Maximum x- or y-dimension of a block</td>
<td></td>
</tr>
<tr>
<td>Maximum z-dimension of a block</td>
<td></td>
</tr>
<tr>
<td>Maximum number of threads per block</td>
<td></td>
</tr>
<tr>
<td>Warp size</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident blocks per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident warps per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident threads per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Number of 32-bit registers per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Maximum number of 32-bit registers per thread</td>
<td></td>
</tr>
<tr>
<td>Maximum amount of shared memory per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Number of shared memory banks</td>
<td></td>
</tr>
</tbody>
</table>

We rename variables to conform with CUDA naming convention. dim3 type intrinsic variables: threadIdx, blockDim, blockIdx, gridDim

```c
void tiledSerialSimpleKernel(int N, float *d_a){
    for(blockIdx.x=0;blockIdx.x<gridDim.x;++blockIdx.x){ // loop over blocks
        for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block
            // Convert thread and thread-block indices into array index
            const int n = threadIdx.x + blockDim.x*blockIdx.x;
            // If index is in [0,N-1] add entries
            if(n<N)
                d_a[n] = n;
        }
    }
}
```

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: $N \leq gridDim.x \times blockDim.x$
void tiledSerialSimpleKernel(int N, float *d_a){
 for(blockIdx.x=0;blockIdx.x<gridDim.x;++blockIdx.x){ // loop over blocks
 for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block

 // Convert thread and thread-block indices into array index
 const int n = threadIdx.x + blockDim.x*blockIdx.x;

 // If index is in [0,N-1] add entries
 if(n<N)
 d_a[n] = n;
 }
 }
}

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: \(N \leq gridDim.x \times blockDim.x \)
We rename variables to conform with CUDA naming convention. dim3 type intrinsic variables: threadIdx, blockDim, blockIdx, gridDim

```c
void tiledSerialSimpleKernel(int N, float *d_a){
    for(blockIdx.x=0;blockIdx.x<gridDim.x;++blockIdx.x){ // loop over blocks
        for(threadIdx.x=0;threadIdx.x<blockDim.x;++threadIdx.x){ // loop inside block
            // Convert thread and thread-block indices into array index
            const int n  = threadIdx.x + blockDim.x*blockIdx.x;

            // If index is in [0,N-1] add entries
            if(n<N)
                d_a[n] = n;
        }
    }
}
```

Key observation: the body of the tiled loop can now be mapped to a thread.

We also assume that: $N \leq gridDim.x*blockDim.x$
CUDA: simple kernel code

```c
__global__ void simpleKernel(int N, float *d_a){
    // Convert thread and thread-block indices into array index
    const int n = threadIdx.x + blockDim.x*blockIdx.x;

    // If index is in [0,N-1] add entries
    if(n<N)
        d_a[n] = n;
}
```

Key observation: the loops are implicitly executed by thread parallelism and *do not* appear in the CUDA kernel code.
CUDA: simple kernel code

__global__
void simpleKernel(int N, float *d_a) {

 // Convert thread and thread-block indices into array index
 const int n = threadIdx.x + blockDim.x*blockIdx.x;

 // If index is in [0,N-1] add entries
 if(n<N)
 d_a[n] = n;
}

// HOST code to queue kernel
simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);

Key observation: the loops are implicitly executed by thread parallelism and do not appear in the CUDA kernel code.
CUDA: simple kernel code

```c
__global__ void simpleKernel(int N, float *d_a) {
    // Convert thread and thread-block indices into array index
    const int n = threadIdx.x + blockDim.x * blockIdx.x;

    // If index is in [0, N-1] add entries
    if (n < N)
        d_a[n] = n;
}
```

This body of the kernel function is the inner code from the chunked version of the function.

The kernel is executed by every thread in the specified array of threads.
CUDA: simple kernel code

```c
__global__ void simpleKernel(int N, float *d_a) {
    // Convert thread and thread-block indices into array index
    const int n = threadIdx.x + blockDim.x*blockIdx.x;
    // If index is in [0,N-1] add entries
    if(n<N)
        d_a[n] = n;
}
```

Key observation: the loops are implicitly executed by thread parallelism and do not appear in the CUDA kernel code.

This body of the kernel function is the inner code from the chunked version of the function. The kernel is executed by every thread in the specified array of threads.
CUDA: code samples @ github

Make sure you can complete this exercise now!

github repo: https://github.com/tcew/ATPESC15
See: examples/cuda/simple
find the source
cd ATPESC15/examples/cuda/simple

compile on node with the NVIDIA CUDA compiler (nvcc) installed
nvcc -o simple simple.cu

run on node with the NVIDIA CUDA runtime libraries installed
./simple

Make sure you can complete this exercise now if possible!

Source code: https://github.com/tcew/ATPESC15/examples/cuda/simple
We consider a more substantial example: solving the Poisson problem.

Elliptic Poisson problem:

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y) \text{ in } \Omega = [-1,1] \times [-1,1] \]

\[u = 0 \text{ on } \partial \Omega \]
Elliptic Poisson problem:

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y) \text{ in } \Omega = [-1,1] \times [-1,1] \]

\[u = 0 \text{ on } \partial \Omega \]

We represent the numerical solution at a regular grid of finite-difference nodes.
Elliptic Poisson problem:
\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) \text{ in } \Omega = [-1,1] \times [-1,1]
\]
\[
u = 0 \text{ on } \partial \Omega
\]

Discrete Poisson problem (assuming Cartesian grid):
\[
\left(\frac{u_{j(i+1)} - 2u_{ji} + u_{j(i-1)}}{\delta^2}\right) + \left(\frac{u_{(j+1)i} - 2u_{ji} + u_{(j-1)i}}{\delta^2}\right) = f_{ji} \text{ for } i, j = 1, ..., N
\]
\[
u_{ji} = 0 \text{ for } i = 0, N + 1 \text{ or } j = 0, N + 1
\]
Elliptic Poisson problem:

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)
\]

\[
u = 0 \text{ on } \partial \Omega
\]

Discrete Poisson problem (assuming Cartesian grid):

\[
\left(\frac{u_{j(i+1)} - 2u_{ji} + u_{j(i-1)}}{\delta^2}\right) + \left(\frac{u_{(j+1)i} - 2u_{ji} + u_{(j-1)i}}{\delta^2}\right) = f_{ji}
\]

The derivative operators are approximated by second order differences. The discrete Poisson problem is approximated at the finite difference nodes.
CUDA: discrete elliptic example

We solve the linear system for the unknowns using the stationary iterative Jacobi method

Discrete Poisson problem (assuming Cartesian grid):

\[
\left(\frac{u_{j(i+1)} - 2u_{ji} + u_{j(i-1)}}{\delta^2} \right) + \left(\frac{u_{(j+1)i} - 2u_{ji} + u_{(j-1)i}}{\delta^2} \right) = f_{ji} \text{ for } i, j = 1, \ldots, N
\]

\[u_{ji} = 0 \text{ for } i = 0, N + 1 \text{ or } j = 0, N + 1\]

Jacobi iteration for discrete Poisson problem:

\[
\left(\frac{u_{j(i+1)}^k - 2u_{ji}^{k+1} + u_{j(i-1)}^k}{\delta^2} \right) + \left(\frac{u_{(j+1)i}^k - 2u_{ji}^{k+1} + u_{(j-1)i}^k}{\delta^2} \right) = f_{ji} \text{ for } i, j = 1, \ldots, N
\]

\[u_{ji} = 0 \text{ for } i = 0, N + 1 \text{ or } j = 0, N + 1\]
CUDA: elliptic solver example

Rearranging we are left with a simple five point recurrence:

Jacobi iteration for discrete Poisson problem:

\[
\left(\frac{u_{j(i+1)}^k - 2u_{ji}^{k+1} + u_{j(i-1)}^k}{\delta^2} \right) + \left(\frac{u_{(j+1)i}^k - 2u_{ji}^{k+1} + u_{(j-1)i}^k}{\delta^2} \right) = f_{ji} \quad \text{for } i, j = 1, \ldots, N
\]

\[u_{ji} = 0 \quad \text{for } i = 0, N + 1 \text{ or } j = 0, N + 1\]

Iterate:

\[
u_{ji}^{k+1} = \frac{1}{4} \left(-\delta^2 f_{ji} + u_{(j+1)i}^k + u_{(j-1)i}^k + u_{j(i+1)}^k + u_{j(i-1)}^k \right) \quad \text{for } i, j = 1, \ldots, N
\]

while:

\[
\varepsilon := \sqrt{\sum_{i=1}^{i=N} \sum_{j=1}^{j=N} (u_{ji}^{k+1} - u_{ji}^k)^2} > \text{tol}
\]

Source code: https://github.com/tcew/ATPESC15/examples/cuda/simple
CUDA: parallelism for solver example

For the iterate step we note:
each node can update independently for maximum parallelism.

Iterate:

\[u_{ji}^{k+1} = \frac{1}{4} \left(-\delta^2 f_{ji} + u_{(j+1)i}^k + u_{(j-1)i}^k + u_{j(i+1)}^k + u_{j(i-1)}^k \right) \text{ for } i, j = 1, \ldots, N \]
CUDA: parallelism for solver example

For the iterate step we note:
each node can update independently for maximum parallelism.

Iterate:

\[u^{k+1}_{ji} = \frac{1}{4} \left(-\delta^2 f_{ji} + u^k_{(j+1)i} + u^k_{(j-1)i} + u^k_{j(i+1)} + u^k_{j(i-1)} \right) \text{ for } i, j = 1,\ldots,N \]
The explicit serial loop structure for the Jacobi iteration shows no loop carry dependence:

Iterate:

\[
 u_{ji}^{k+1} = \frac{1}{4} \left(-\Delta^2 f_{ji} + u_{(j+1)i}^k + u_{(j-1)i}^k + u_{j(i+1)}^k + u_{j(i-1)}^k \right) \quad \text{for } i, j = 1, \ldots, N
\]

Serial kernel:

```c
void jacobi(const int N,  
            const datafloat *rhs,  
            const datafloat *u,  
            datafloat *newu){
    for(int i=0;i<N;++i){
        for(int j=0;j<N;++j){
            // Get linear index into NxN  
            // inner nodes of (N+2)x(N+2) grid  
            const int id = (j + 1)*(N + 2) + (i + 1);  
            newu[id] = 0.25f*(rhs[id]  
                               + u[id - (N+2)]  
                               + u[id + (N+2)]  
                               + u[id - 1]  
                               + u[id + 1]);
        }
    }
}
```

Note: we use an NxN array of threads and change leave the edge nodes unchanged.

At the start we set: rhs=-delta*delta*f
Iterate:

\[u_{ji}^{k+1} = \frac{1}{4} \left(-\delta^2 f_{ji} + u_{(j+1)i}^k + u_{(j-1)i}^k + u_{j(i+1)}^k + u_{j(i-1)}^k \right) \text{ for } i, j = 1, \ldots, N \]

At the start we set: \(\text{rhs} = -\delta \ast \delta \ast f \)

For CUDA: each thread can update a node independently for maximum parallelism.

CUDA kernel:

```c
__global__ void jacobi(const int N, 
const datafloat *rhs, 
const datafloat *u, 
datafloat *newu){

// Get thread indices
const int i = blockIdx.x*blockDim.x + threadIdx.x;
const int j = blockIdx.y*blockDim.y + threadIdx.y;

// Check that this is a legal node
if((i < N) && (j < N)){
  // Get linear index onto (N+2)x(N+2) grid
  const int id = (j + 1)*(N + 2) + (i + 1);

  newu[id] = 0.25f*(rhs[id]
                  + u[id - (N+2)]
                  + u[id + (N+2)]
                  + u[id - 1]
                  + u[id + 1]);
}
```

Note: we use an NxN array of threads and leave the edge nodes unchanged.
CUDA: parallel reduction

Second step: reduce solution array to a single scalar.

Check if:

$$\varepsilon := \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} (u_{ji}^{k+1} - u_{ji}^{k})^2} > tol$$

Simplify to reduction of a linear vector:

$$\varepsilon := \sum_{i=0}^{M-1} v_i$$
To make this more parallel we need to split it into CUDA thread-blocks:

Reduction:

\[\varepsilon := \sum_{i=0}^{i=M-1} v_i \]

Block reduction (B blocks)

\[\varepsilon := \sum_{b=0}^{b=B-1} \left(\sum_{i=0}^{i=T-1} v_{i+bT} \right) \]

\[B := \frac{M}{T} \]

Next we need to distribute the inner sum work over the threads in each of the B thread-blocks.
Thread-block tree reduction in pseudo-code:

\[t = \text{thread index in thread box}; \]
\[\text{alive} = \text{number of threads in thread block}; \]
\[s_\text{sumu}[t] = u[\text{global thread index}]; \]

\[
\text{while}(\text{alive}>1)\{
 \text{synchronize threads in thread-block;}
 \text{alive} /= 2;
 \text{if}(t < \text{alive})
 s_\text{sumu}[t] += s_\text{sumu}[t+\text{alive}];
\}
\]

\[\text{if}(t==0) \text{blocksumu}[\text{block index}] = s_u[0]; \]

Here the __shared__ array is read/writeable only by threads in the thread-block. All threads in the thread-block have to enter the __syncthreads() before any of them can return.

Target: \[\sum_{i=0}^{T-1} v_i \]
CUDA: parallel reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

```c
__global__ void partialReduceResidual(const int entries,
    datafloat *u,
    datafloat *newu,
    datafloat *blocksum){

    __shared__ datafloat s_blocksum[BDIM];

    const int id = blockIdx.x*blockDim.x + threadIdx.x;
    s_blocksum[threadIdx.x] = 0;
    if(id < entries){
        const datafloat diff = u[id] - newu[id];
        s_blocksum[threadIdx.x] = diff*diff;
    }

    int alive = blockDim.x;
    int t = threadIdx.x;
    while(alive>1){
        __syncthreads(); // barrier (make sure s_blocksum is ready)
        alive /= 2;
        if(t < alive) s_blocksum[t] += s_blocksum[t+alive];
    }
    if(t==0)
        blocksum[blockIdx.x] = s_blocksum[0];
}
```

Here the __shared__ array is read/writeable only by threads in the thread-block. All threads in the thread-block have to enter the __syncthreads() before any of them can return.

CUDA partial reduction kernel:
CUDA: parallel reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

```c
__global__ void partialReduceResidual(const int entries,
  datafloat *u,
  datafloat *newu,
  datafloat *blocksum) {

  __shared__ datafloat s_blocksum[BDIM];

  const int id = blockIdx.x*blockDim.x + threadIdx.x;
  s_blocksum[threadIdx.x] = 0;
  if (id < entries) {
    const datafloat diff = u[id] - newu[id];
    s_blocksum[threadIdx.x] = diff*diff;
  }

  int alive = blockDim.x;
  int t = threadIdx.x;
  while (alive > 1) {
    __syncthreads(); // barrier (make sure s_blocksum is ready)
    alive /= 2;
    if (t < alive) s_blocksum[t] += s_blocksum[t + alive];
  }
  if (t==0)
    blocksum[blockIdx.x] = s_blocksum[0];
}
```

Here the __shared__ array is read/writeable only by threads in the thread-block. All threads in the thread-block have to enter the __syncthreads() before any of them can return.
CUDA: parallel reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

```c
__global__ void partialReduceResidual(const int entries,
    datafloat *u,
    datafloat *newu,
    datafloat *blocksum) {

    __shared__ datafloat s_blocksum[BDIM];

    const int id = blockIdx.x*blockDim.x + threadIdx.x;
    s_blocksum[threadIdx.x] = 0;

    if(id < entries) {
        const datafloat diff = u[id] - newu[id];
        s_blocksum[threadIdx.x] = diff*diff;
    }

    int alive = blockDim.x;
    int t = threadIdx.x;

    while(alive>1) {
        __syncthreads(); // barrier (make sure s_blocksum is ready)
        alive /= 2;
        if(t < alive) s_blocksum[t] += s_blocksum[t+alive];
    }

    if(t==0) blocksum[blockIdx.x] = s_blocksum[0];
}
```

Here the __shared__ array is read/writeable only by threads in the thread-block. All threads in the thread-block have to enter the __syncthreads() before any of them can return.
CUDA: parallel reduction

Standard tree reduction at the thread-block level!!

CUDA partial reduction kernel:

```c
__global__ void partialReduceResidual(const int entries,
datafloat *u,
datafloat *newu,
datafloat *blocksum) {

__shared__ datafloat s_blocksum[BDIM];
const int id = blockIdx.x * blockDim.x + threadIdx.x;
s_blocksum[threadIdx.x] = 0;
if(id < entries) {
    const datafloat diff = u[id] - newu[id];
    s_blocksum[threadIdx.x] = diff * diff;
}

int alive = blockDim.x;
int t = threadIdx.x;
while(alive>1) {
    __syncthreads();  // barrier (make sure s_blocksum is ready)
    alive /= 2;
    if(t < alive) s_blocksum[t] += s_blocksum[t+alive];
}
if(t==0) blocksum[blockIdx.x] = s_blocksum[0];
}
```

Here the __shared__ array is read/writeable only by threads in the thread-block. All threads in the thread-block have to enter the __syncthreads() before any of them can return.
CUDA: elliptic solver sample code

See the ATPESC15 github for a full implementation [with some optional goodies]

Compile each example with: make
Run with a 102x102 grid and tolerance 1e-4: ./main 100 1e-4

Let me know if you have any problems with this.
None of these tasks are particularly difficult, but they are ordered by difficulty.
Part 3: Interlude on CUDA performance

Dark Arts Indeed
This is a well known definition of a “supercomputer”

“A supercomputer is a device for turning compute-bound problems into I/O-bound problems.”

Ken Batcher*

Attribution is a little cloudy: *possibly Seymour Cray
Many-core Processor Definition

In much the same vain...

“A many-core processor is a device for turning a compute-bound problem into a memory-bound problem.”

Kathy Yelick

The latest GPUs have $O(2800)$ floating point units but only $O(300)$ GB/s memory bandwidth off chip...

In much the same vain...

“Arithmetic is cheap, bandwidth is money, latency is physics.”

Mark Hoemmen*

NVIDIA can be viewed as a company that sells expensive GDDR memory.

*Student of Jim Demmel: thesis web link
The different memory spaces on the GPU have different characteristics.

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Latency</th>
<th>Cached</th>
<th>Access</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On-chip</td>
<td>1</td>
<td>N/A</td>
<td>Read/write</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>1000</td>
<td>No</td>
<td>Read/write</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>2</td>
<td>N/A</td>
<td>Read/write</td>
<td>All threads in a block</td>
<td>Block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>1000</td>
<td>Yes*</td>
<td>Read/write</td>
<td>All threads & host</td>
<td>Application</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>1-1000</td>
<td>Yes</td>
<td>Read</td>
<td>All threads & host</td>
<td>Application</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>1000</td>
<td>Yes</td>
<td>Read</td>
<td>All threads in a block</td>
<td>Application</td>
</tr>
<tr>
<td>Read-only Cache</td>
<td>On-chip</td>
<td>Low</td>
<td>Yes</td>
<td>Read/write</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
CUDA: limitations

Recall the table showing that CUDA compute capabilities have evolved over time.

<table>
<thead>
<tr>
<th>Technical specifications</th>
<th>Compute capability (version)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Maximum dimensionality of grid of thread blocks</td>
<td></td>
</tr>
<tr>
<td>Maximum x-, y-, or z-dimension of a grid of thread blocks</td>
<td></td>
</tr>
<tr>
<td>Maximum dimensionality of thread block</td>
<td></td>
</tr>
<tr>
<td>Maximum x- or y-dimension of a block</td>
<td></td>
</tr>
<tr>
<td>Maximum z-dimension of a block</td>
<td></td>
</tr>
<tr>
<td>Maximum number of threads per block</td>
<td></td>
</tr>
<tr>
<td>Warp size</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident blocks per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident warps per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident threads per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Number of 32-bit registers per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Maximum number of 32-bit registers per thread</td>
<td></td>
</tr>
<tr>
<td>Maximum amount of shared memory per multiprocessor</td>
<td></td>
</tr>
<tr>
<td>Number of shared memory banks</td>
<td></td>
</tr>
</tbody>
</table>

There are several interesting tidbits here.
Table credit: CUDA wikipedia page (http://en.wikipedia.org/wiki/CUDA)
The amount of register space is highly constrained: kernels with high register count will have low occupancy.

CUDA Occupancy Calculator: (download) spreadsheet tallies up register count, shared memory count, and thread count per thread-block to estimate how many thread-blocks can be resident.
Shared memory is organized as interwoven “memory banks” with separate managers. A shared memory array spans up to 32 independent memory banks.

<table>
<thead>
<tr>
<th>Shared Memory: memory space organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 31</td>
</tr>
<tr>
<td>Bank 30</td>
</tr>
<tr>
<td>Bank 29</td>
</tr>
<tr>
<td>Bank 5</td>
</tr>
<tr>
<td>Bank 4</td>
</tr>
<tr>
<td>Bank 3</td>
</tr>
<tr>
<td>Bank 2</td>
</tr>
<tr>
<td>Bank 1</td>
</tr>
<tr>
<td>Bank 0</td>
</tr>
</tbody>
</table>
CUDA: shared memory banks

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a different bank unless they all access the same entry.

OK: all threads in the SIMD group access different shared memory banks
CUDA: shared memory banks

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a different bank unless they all access the same entry.

<table>
<thead>
<tr>
<th>Shared memory managers</th>
<th>Shared Memory: memory space organization</th>
<th>Thread 0</th>
<th>Thread 1</th>
<th>Thread 2</th>
<th>Thread 3</th>
<th>Thread 4</th>
<th>Thread 5</th>
<th>Thread 30</th>
<th>Thread 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUDA: shared memory broadcast

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a different bank unless they all access the same entry.

Shared Memory: memory space organization

OK: all threads in the SIMD group access the same entry results in an efficient broadcast.
CUDA: shared memory broadcast

To maintain parallelism each of the 32 threads in a “Warp” (SIMD group) should access a different bank unless they all access the same entry.

BAD: all threads in the SIMD group access the same bank resulting in serialization.
CUDA: accessing device memory

High end NVIDIA GPUs either have 256 or 384 bit wide memory bus to device memory

1. GPU has a “coalescer” that collects SIMD lane DRAM memory requests.
2. The coalescer efficiently streams contiguous, aligned blocks of memory by avoiding repeated address setup.
3. The GPU bus to DRAM consists of 6x 64 bit busses.
4. Each bus has an independent memory controller.

Rule of thumb: avoid non unitary stride DEVICE (DRAM) array access.
Useful slides, these, and image credit: link
CPU Optimization Techniques

Cache
• Data loaded into cache from aligned contiguous blocks (cache lines)

Vectorization
• Use large registers instructions to perform operations in parallel.
• Also uses continuous load instructions to vectorize efficiently.

Continuous memory accesses are used for both, cache storage and vectorization
Multithreading

- Threads capable of fully parallelizing generic instructions (ignoring bandwidth).

- Perfect scaling … without barriers, joins, or other types of thread-dependencies.

- SIMD Lanes
Independent work-groups are launched.
Work-groups contain groups of work-items, “parallel” threads.

Kernel code describes the work-item operations
Work-groups
- Groups of work-items.
- No communication between work-groups.
- Designed for independent group parallelism.
- Avoid inter-block synchronization (deadlocks).
- Avoid data race dependencies between blocks.

Work-items
- Work-items are executed in parallel, able to barrier and share data using shared memory (& CUDA's shuffle).
- Avoid data race dependencies between work-items.
Parallel Work-item Execution

- Work-items are launched in subsets of 32 or 64.
- Each set of work-items execute same instructions.
- No parallel branching (in the subset).

Data Transfer

- Low individual bandwidth and high latency.
- Coalesced memory access on contiguous and aligned work-items.
Exposing vectorization / SIMD parallelism are vital in both architectures.

CPU Optimizations

Cache

<table>
<thead>
<tr>
<th>0</th>
<th>32</th>
<th>64</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
<th>320</th>
</tr>
</thead>
</table>
| ![L1 Cache Diagram](image1.png)

Vectorization

<table>
<thead>
<tr>
<th>0</th>
<th>32</th>
<th>64</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
</tr>
</thead>
</table>
| ![SSE/AVX Diagram](image2.png)

Thread Independence

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>
| ![Thread Independence Diagram](image3.png)

GPU Optimizations

Coalescing

<table>
<thead>
<tr>
<th>0</th>
<th>32</th>
<th>64</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
<th>320</th>
</tr>
</thead>
</table>
| ![Coalescing Diagram](image4.png)

No Branching

| ![No Branching Diagram](image5.png)

Work-group Independence

| ![Work-group Independence Diagram](image6.png)

David S Medina
Part 4: Open Compute Language (OpenCL)

Apple drove the creation of the OpenCL standard for portable cross-vendor many-core programming.
OpenCL: standards body

Quick-reference-card for OpenCL 2.0: (link)

The Khronos Group administers the OpenCL standard.
OpenCL: standard for multicore

OpenCL allows us to write cross platform code
(customization need for best performance)
OpenCL Working Group

- **Diverse industry participation**
 - Processor vendors, system OEMs, middleware vendors, application developers

- **Many industry-leading experts involved in OpenCL’s design**
 - A healthy diversity of industry perspectives

- **Apple made initial proposal and is very active in the working group**
 - Serving as specification editor
OpenCL: why?

Emphasis on heterogeneous computing.
Credit: Khronos Group
OpenCL: why?

It’s a Heterogeneous World

- A modern platform Includes:
 - One or more CPUs
 - One or more GPUs
 - DSP processors
 - ... other?

OpenCL lets Programmers write a single portable program that uses ALL resources in the heterogeneous platform

GMCH = graphics memory control hub
ICH = Input/output control hub

Credit: Khronos Group
Only a few hardy souls tried GPU computing before CUDA was released.

CUDA and OpenCL are competing standards for GPGPU programming.

GPGPU “quiet time”
OpenCL: terminology?

OpenCL is **very** closely related to CUDA

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>Kernel</td>
</tr>
<tr>
<td>Host program</td>
<td>Host program</td>
</tr>
<tr>
<td>Thread</td>
<td>Work item</td>
</tr>
<tr>
<td>Thread block</td>
<td>Work group</td>
</tr>
<tr>
<td>Grid</td>
<td>NDRange (index space)</td>
</tr>
</tbody>
</table>

The rapid development of OpenCL helps explain the similarities
OpenCL: thread indexing

OpenCL is **very** closely related to CUDA

<table>
<thead>
<tr>
<th></th>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local indices:</td>
<td>threadIdx.x</td>
<td>threadIdx.y</td>
</tr>
<tr>
<td>Global indices:</td>
<td>blockIdx.x*blockDim.x + threadIdx.x</td>
<td>blockIdx.y*blockDim.y + threadIdx.y</td>
</tr>
</tbody>
</table>

The rapid development of OpenCL helps explain the similarities
OpenCL: thread array dimensions

OpenCL is **very** closely related to CUDA.

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gridDim.x</code></td>
<td><code>get_num_groups(0)</code></td>
</tr>
<tr>
<td><code>blockIdx.x</code></td>
<td><code>get_group_id(0)</code></td>
</tr>
<tr>
<td><code>blockDim.x</code></td>
<td><code>get_local_size(0)</code></td>
</tr>
<tr>
<td><code>gridDim.x*blockDim</code></td>
<td><code>get_global_size(0)</code></td>
</tr>
</tbody>
</table>

The rapid development of OpenCL helps explain the similarities.
The rapid development of OpenCL helps explain the similarities

OpenCL is **very** closely related to CUDA

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>global function</td>
<td>__kernel function</td>
</tr>
<tr>
<td>device function</td>
<td>function</td>
</tr>
<tr>
<td>constant variable</td>
<td>__constant variable</td>
</tr>
<tr>
<td>device variable</td>
<td>__global variable</td>
</tr>
<tr>
<td>shared variable</td>
<td>__local variable</td>
</tr>
</tbody>
</table>
The rapid development of OpenCL helps explain the similarities between CUDA and OpenCL. Again, the memory model for CUDA and OpenCL are very similar.
OpenCL: setting up a DEVICE

OpenCL is very flexible, allowing simultaneous heterogeneous computing with possibly multiple implementations, command queues, & devices in one system [CPU+GPUs]

To set up a device:

1. Choose platform (implementation of OpenCL) from list of platforms:
 - `clGetPlatformIDs`

2. Choose device on that platform (for instance a specific CPU or GPU):
 - `clGetDeviceIDs`

3. Create a context on the device (manager for tasks):
 - `clCreateContext`

4. Create command queue on a context on the chosen device:
 - `clCreateCommandQueue`
The include files ...

CUDA

```
#include <cuda.h>
```

OpenCL

```
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif
```
OpenCL: setting up a platform

For flexibility we first have to choose the OpenCL “platform”

```c
#include <cuda.h>

int main()
{
    // nothing special to do (really only one CUDA platform)

    //...
    cl_platform_id platforms[100];
    cl_uint platforms_n;

    /* get list of platforms(platform == OpenCL implementation) */
    clGetPlatformIDs(100, platforms, &platforms_n);
    ...
```
Each OpenCL platform can interact with one or more compute devices.

Next we choose a device supported by the platform.

```c
int dev = 0;
cudaSetDevice(dev);
...
```

```c
cl_device_id devices[100];
cl_uint ndevices;
clGetDeviceIDs(platforms[plat], CL_DEVICE_TYPE_ALL, 100, devices, &ndevices);
if(dev>=ndevices){ printf(“invalid device\n”); exit(0); }
// choose user specified device
cl_device_id device = devices[dev];
...```
OpenCL: setting up a context

Next we choose a context (manager) for the chosen device.

```c
cl_context context;

// make compute context on device (pfn_notify is an error callback function)
context = clCreateContext((cl_context_properties *)NULL, 1, &device,
 &pfn_notify, (void*)NULL, &err);
```
Next we choose a context (manager) for the chosen device.

```c
// not necessary although you may wish to use cudaStreamCreate
...
```

```c
// make compute context on device (pfn_notify is an error callback function)
cl_command_queue queue =
 clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err);
```
Since the platform+device+context is chosen at runtime it is customary to build compute kernels at runtime.

To set up a kernel on a DEVICE:

1. Represent kernel source code as a C character array:

2. Create a “program” from the source code:
   - clCreateProgramWithSource

3. Compile and build the “program”:
   - clBuildProgram

4. Check for compilation errors:
   - clGetProgramBuildInfo

5. Build executable kernel:
   - clCreateKernel

```c
const char *source =
"__kernel void foo(int N, __global float *x){
 int id = get_global_id(0);
 if(id<N) x[id] = id;
}"
```

I wasn’t kidding about flexibility.
We now need to build the kernel [ some steps skipped for brevity ]

```c
/* create program from source */
cl_program program = clCreateProgramWithSource(context, 1,
 (const char **) &source, (size_t*) NULL, &err);

/* compile and build program */
const char *allFlags = " ";
err = clBuildProgram(program, 1, &device, allFlags,
 (void (*)(cl_program, void*)) NULL, NULL);

/* omitted error checking */
...

And we have to do that for each kernel.
```
OpenCL: are we there yet?

Unbelievably no.

To execute the kernel:

1. Just like CUDA we need to allocate storage on the DEVICE:
   - `clCreateBuffer`

2. We need to add the input arguments one at a time to the kernel:
   - `clSetKernelArg`

3. Specify the local work-group size and global thread array sizes.

4. Queue the kernel
   - `clEnqueueNDRangeKernel`

5. Wait for the kernel to finish:
   - `clFinish`
In this case we have provided CL with a host pointer and clCreateBuffer copies from h_x to c_x.

We next allocate array space on the DEVICE:

```c
int N = 100; /* vector size */

/* size of array */
size_t sz = N*sizeof(float);

float *d_a; // CUDA uses pointer for array handles

cudaMalloc(&d_a, N*sizeof(float));
```

```c
int N = 100; /* vector size */

/* size of array */
size_t sz = N*sizeof(float);

/* create device buffer and copy from host buffer */
cl_mem c_x = clCreateBuffer(context,
 CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sz, h_x, &err);
```
OpenCL: kernel good to go?

Not quite: we now need to specify each kernel argument one by one.

```c
...
dim3 dimBlock(256,1,1); // 512 threads per thread-block
dim3 dimGrid((N+255)/256, 1, 1); // Enough thread-blocks to cover N

// Queue kernel on DEVICE
simpleKernel <<< dimGrid, dimBlock >>> (N, d_a);
...
/* now set kernel arguments one by one */
clSetKernelArg(kernel, 0, sizeof(int), &N);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &c_x);

/* set thread array */
int dim = 1;
size_t local[3] = {256,1,1};
size_t global[3] = {256*((N+255-1)/256)),1,1};

/* queue up kernel */
clEnqueueNDRangeKernel(queue, kernel, dim, 0, global, local, 0,
 (cl_event*)NULL, NULL);
```

Note: CUDA uses block sizes + number of blocks.  
OpenCL uses block sizes and global number of threads.
The kernel programming languages are similar:

**CUDA**

```c
__global__ void simpleKernel(int N, float *a)
{
 /* get thread coordinates */
 int i = threadIdx.x + blockIdx.x*blockDim.x;

 /* do simple task */
 if(i<N)
 a[i] = i;
}
```

**OpenCL**

```c
__kernel void simpleKernel(int N, __global float *a)
{
 /* get thread coordinates */
 int i = get_global_id(0);

 /* do simple task */
 if(i<N)
 a[i] = i;
}
```

*Some minor differences in syntax & identifiers*
OpenCL: simple kernel example

You can look at the example OpenCL code in its full glory in the ATPESC15 github

Queue the live demo.
There may be variations depending on how your system is set up.

Source code: https://github.com/tcew/HPC15/examples/cuda/simple
Note explicit loops in serial kernel and hidden loops in CUDA and OpenCL kernels.

OpenCL: comparing Jacobi kernels

Recalling the Poisson example: side by side comparison of serial v. CUDA v. OpenCL kernel

Iterate:

\[ u_{ji}^{k+1} = \frac{1}{4} \left( -\delta^2 f_{ji} + u_{(j+1)i}^k + u_{(j-1)i}^k + u_{j(i+1)}^k + u_{j(i-1)}^k \right) \text{ for } i, j = 1, \ldots, N \]

Serial kernel:

```c
void jacobi(const int N,
 const datafloat *rhs,
 const datafloat *u,
 datafloat *newu){
 for(int i=0;i<N;++i){
 for(int j=0;j<N;++j){
 // Get linear index into NxN
 // inner nodes of (N+2)x(N+2) grid
 const int id = (j + 1)*(N + 2) + (i + 1);
 newu[id] = 0.25f*(rhs[id]
 + u[id - (N+2)]
 + u[id + (N+2)]
 + u[id - 1]
 + u[id + 1]);
 }
 }
}
```

CUDA kernel:

```c
__global__ void jacobi(const int N,
 const datafloat *rhs,
 const datafloat *u,
 datafloat *newu){
 // Get thread indices
 const int i = blockIdx.x*blockDim.x + threadIdx.x;
 const int j = blockIdx.y*blockDim.y + threadIdx.y;

 // Check that this is a legal node
 if((i < N) && (j < N)){
 // Get linear index onto (N+2)x(N+2) grid
 const int id = (j + 1)*(N + 2) + (i + 1);
 newu[id] = 0.25f*(rhs[id]
 + u[id - (N+2)]
 + u[id + (N+2)]
 + u[id - 1]
 + u[id + 1]);
 }
}
```

OpenCL kernel:

```c
__kernel void jacobi(const int N,
 __global const datafloat *rhs,
 __global const datafloat *u,
 __global datafloat *newu){
 // Get thread indices
 const int i = get_global_id(0);
 const int j = get_global_id(1);

 if((i < N) && (j < N)){
 // Get linear index into (N+2)x(N+2) grid
 const int id = (j + 1)*(N + 2) + (i + 1);
 newu[id] = 0.25f*(rhs[id]
 + u[id - (N+2)]
 + u[id + (N+2)]
 + u[id - 1]
 + u[id + 1]);
 }
}
```
OpenCL: partial reduction

Standard tree reduction at the thread-block level!!

The example code in ATPESC15/examples/opencl/jacobi/partialReduce.cl is verbose
CUDA partial reduction kernel:

```c
__global__ void partialReduceResidual(const int entries,
datafloat *u,
datafloat *newu,
datafloat *blocksum) {

__shared__ datafloat s_blocksum[BDIM];
const int id = blockIdx.x*blockDim.x + threadIdx.x;
int alive = blockDim.x;
int t = threadIdx.x;
s_blocksum[threadIdx.x] = 0;
if(id < entries) {
 const datafloat diff = u[id] - newu[id];
 s_blocksum[threadIdx.x] = diff*diff;
}
while(alive>1) {
 __syncthreads(); // barrier (make sure s_blocksum is ready)
alive /= 2;
 if(t < alive) s_blocksum[t] += s_blocksum[t+alive];
}
if(t==0) blocksum[blockIdx.x] = s_blocksum[0];
}
```

The example code in ATPESC15/examples/opencl/jacobi/partialReduce.cl is verbose
CUDA partial reduction kernel:

```c
__global__ void partialReduceResidual(const int entries,
datafloat *u,
datafloat *newu,
datafloat *blocksum){

__shared__ datafloat s_blocksum[BDIM];
const int id = blockIdx.x*blockDim.x + threadIdx.x;
int alive = blockDim.x;
int t = threadIdx.x;
s_blocksum[threadIdx.x] = 0;
if(id < entries){
 const datafloat diff = u[id] - newu[id];
s_blocksum[threadIdx.x] = diff*diff;
}
while(alive>1){
 __syncthreads(); // barrier (make sure s_blocksum is ready)
alive /= 2;
 if(t < alive) s_blocksum[t] += s_blocksum[t+alive];
}n
 if(t==0)
 blocksum[blockIdx.x] = s_blocksum[0];
}
```

OpenCL partial reduction kernel:

```c
__kernel void partialReduce(const int entries,
__global const datafloat *u,
__global const datafloat *newu,
__global datafloat *blocksum){

__local datafloat s_blocksum[BDIM];
const int id = get_global_id(0);
int alive = get_local_size(0);
int t = get_local_id(0);
s_blocksum[t] = 0;
// load global data into local memory if in range
if(id < entries){
 const datafloat diff = u[id] - newu[id];
s_blocksum[t] = diff*diff;
}
while(alive>1){
 __barrier(CLK_LOCAL_MEM_FENCE); // barrier (make sure s_blocksum is ready)
alive /= 2;
 if(t < alive) s_blocksum[t] += s_blocksum[t+alive];
}n
 if(t==0)
 blocksum[get_group_id(0)] = s_blocksum[0];
}
```

The example code in ATPESC15/examples/opencl/jacobi/partialReduce.cl is verbose
Part 5: OCCA

Extensible API for portable many-core computing
https://github.com/tcew/OCCA2
Overview of OCCA

Introduction
  • Background on many-core architectures

Device Abstractions
  • OCCA Intermediate Representation (IR)
  • Unified kernel languages (OKL/OFL) extend C and Fortran

Automation
  • Automating data transfer
  • Automatic kernel generation

Results
  • Numerical methods (FD, MC, SEM, DG) and benchmarks

Conclusion
Review: common multi-threading APIs

OpenMP:
- Shared memory model.
- Directive based code parallelization.
- Standard maintained by the OpenMP Architecture Review Board.
- Targets: currently CPUs + Intel Xeon Phi, with plans for GPU support.

OpenACC:
- Directive based accelerator coding:
  - Compilers: [http://www.openacc-standard.org/content/tools](http://www.openacc-standard.org/content/tools)
  - Work in progress, may merge with OpenMP?

CUDA:
- Manages host-device (accelerator) communications and on-device calculations.
- Kernel based calculations.
- Proprietary language developed by NVIDIA that targets NVIDIA accelerators [and x86].

OpenCL:
- Similar in structure to CUDA.
- Standard maintained by the Khronos Group.
- Targets: almost all CPUs, GPUs, FPGAs, and Accelerators.

*OpenACC will be discussed this afternoon.*
MPI + X?

Which “X” is going to dominate on-node threaded computing?

- MPI + MPI
- MPI + OpenMP
- MPI + pThreads
- MPI + CUDA
- MPI + OpenCL
- MPI + OpenACC
- MPI + TBB
- MPI + Cilk Plus
- MPI + ?

Does it even matter what “X” is?
May’s Law

Have you noticed that computers get better specs but do not seem to get substantially faster:

“First, a disappointment. It is widely accepted that hardware efficiency doubles ever 18 months, following Moore’s law. Let me now introduce you to May’s law:

\[
\text{software efficiency halves every 18 months, compensating Moore’s law!}
\]

It’s not clear what has caused this, but the tendency to add features, programming using copy-paste techniques, and programming by ‘debugging the null-program’ - starting with a debugger and an empty screen and debugging interactively until the desired program emerges - have probably all contributed.”

David May
Motivation: Causes

Uncertainty

- Code life cycle measured in decades
- Architecture & API life cycles measured in Moore doubling periods
- Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

- CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
- Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

• Code life cycle measured in decades
• Architecture & API life cycles measured in Moore doubling periods
• Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

• CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
• Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

- Code life cycle measured in decades
- Architecture & API life cycles measured in Moore doubling periods
- Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

- CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
- Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

• Code life cycle measured in decades
• Architecture & API life cycles measured in Moore doubling periods
• Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

• CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
• Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

- Code life cycle measured in decades
- Architecture & API life cycles measured in Moore doubling periods
- Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

- CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
- Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

- Code life cycle measured in decades
- Architecture & API life cycles measured in Moore doubling periods
- Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

- CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
- Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012), (Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

- Code life cycle measured in decades
- Architecture & API life cycles measured in Moore doubling periods
- Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

- CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
- Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012), (Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

- Code life cycle measured in decades
- Architecture & API life cycles measured in Moore doubling periods
- Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

- CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
- Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

• Code life cycle measured in decades
• Architecture & API life cycles measured in Moore doubling periods
• Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

• CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
• Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012), (Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

• Code life cycle measured in decades
• Architecture & API life cycles measured in Moore doubling periods
• Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

• CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
• Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Motivation: Causes

Uncertainty

• Code life cycle measured in decades
• Architecture & API life cycles measured in Moore doubling periods
• Example: IBM Cell processor, IBM Blue Gene Q, PVM (Software)

Portability

• CUDA, OpenCL, OpenMP, OpenACC, Intel TBB… are not code compatible
• Not all APIs are installed on any given system

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
## Subset of Approaches to Portability

Numerous approaches to portability

<table>
<thead>
<tr>
<th>API</th>
<th>Type</th>
<th>Front-ends</th>
<th>Kernel</th>
<th>Back-ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokkos</td>
<td>ND arrays</td>
<td>C++</td>
<td>Custom</td>
<td>CUDA &amp; OpenMP</td>
</tr>
<tr>
<td>VexCL</td>
<td>Vector class</td>
<td>C++</td>
<td>-</td>
<td>CUDA &amp; OpenCL</td>
</tr>
<tr>
<td>RAJA</td>
<td>Library</td>
<td>C++</td>
<td>C++ Lambdas</td>
<td>CUDA, OpenMP, OpenACC</td>
</tr>
<tr>
<td>OCCA2</td>
<td>API, Source-to-source, Kernel Languages</td>
<td>C, C++, C#, F90, Python, MATLAB, Julia</td>
<td>OpenCL, CUDA, &amp; custom unified kernel language</td>
<td>CUDA, OpenCL, pThreads, OpenMP, Intel COI</td>
</tr>
<tr>
<td>CU2CL *</td>
<td>Source-to-source</td>
<td>App</td>
<td>CUDA</td>
<td>OpenCL</td>
</tr>
<tr>
<td>Insieme</td>
<td>Source-to-source compiler</td>
<td>C</td>
<td>OpenMP, Cilk, MPI, OpenCL</td>
<td>OpenCL, MPI, Insieme IR runtime</td>
</tr>
<tr>
<td>Trellis</td>
<td>Directives</td>
<td>C/C++</td>
<td>#pragma trellis</td>
<td>OpenMP, OpenACC, CUDA</td>
</tr>
<tr>
<td>OmpSs</td>
<td>Directives + kernels</td>
<td>C, C++</td>
<td>Hybrid OpenMP, OpenCL, CUDA</td>
<td>OpenMP, OpenCL, CUDA</td>
</tr>
<tr>
<td>Ocelot</td>
<td>PTX Translator</td>
<td>CUDA</td>
<td>CUDA</td>
<td>OpenCL</td>
</tr>
</tbody>
</table>

**OCCA emphasis: lightweight and extensible.**
OCCA2: supported backends

- Interfaces: Pthreads, OpenMP, OpenCL, NVIDIA CUDA, Intel COI
- Hardware: x86, Xeon Phi, AMD GPU, NVIDIA GPU
OCCA2: supported backends
OCCA2: supported backends

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pthreads</td>
<td>x86</td>
</tr>
<tr>
<td>OpenMP</td>
<td>Xeon Phi</td>
</tr>
<tr>
<td>OpenCL</td>
<td>AMD GPU</td>
</tr>
<tr>
<td>NVIDIA CUDA</td>
<td>NVIDIA GPU</td>
</tr>
<tr>
<td>Intel COI</td>
<td></td>
</tr>
</tbody>
</table>
OCCA2: supported backends

- Interfaces
  - Pthreads
  - OpenMP
  - OpenCL
  - NVIDIA CUDA
  - Intel COI

- Hardware
  - x86
  - Xeon Phi
  - AMD GPU
  - NVIDIA GPU

Interfaces

- Pthreads
- OpenMP
- OpenCL

Hardware

- x86
- Xeon Phi
- AMD GPU
- NVIDIA GPU
- NVIDIA CUDA
- Intel COI

OCCA2: supported backends
OCCA2: supported backends
OCCA2: intermediate representation

![Diagram showing interfaces and hardware connections]

**Interfaces**
- Pthreads
- OpenMP
- OpenCL
- NVIDIA CUDA
- Intel COI

**Hardware**
- x86
- Xeon Phi
- AMD GPU
- NVIDIA GPU
OCCA2: intermediate representation

- **Interfaces**
  - Pthreads
  - OpenMP
  - OpenCL
  - NVIDIA CUDA
  - Intel COI

- **Hardware**
  - x86
  - Xeon Phi
  - AMD GPU
  - NVIDIA GPU

**Intermediate Representation**
OCCA2: kernel languages

Intermediate Representation

Interfaces

- Pthreads
- OpenMP
- OpenCL
- NVIDIA CUDA
- Intel COI

Hardware

- x86
- Xeon Phi
- AMD GPU
- NVIDIA GPU
OCCA2: kernel languages
OCCA2: Kernel Languages
OCCA2: Kernel Languages

Unified Languages

OCCA Kernel Language

OKL

OFL

Parser

Interfaces

OCCA Fortran Language

IR

Hardware

x86

Xeon Phi

AMD GPU

NVIDIA GPU

OpenMP

OpenCL

NVIDIA CUDA

Inte COI

Intel COI

NVIDIA CUDA

CUDA

Parser

F90
OCCA2: automatic code generation

- Application: C, C++, Java, F90, Julia
- Unified Languages: OAK, OKL, OAF, OFL
- Interface: Pthreads, OpenMP, OpenCL, NVIDIA CUDA
- Hardware: x86, Xeon Phi, AMD GPU, NVIDIA GPU, Intel COI
libocca.org

OCCA is an open-source (MIT license) library used to program current multi-core/many-core architectures. Devices (such as CPUs, GPUs, Intel's Xeon Phi, FPGAs, etc.) are abstracted using an offload-model for application development and programming for the devices is done through a C-based (OKL) or Fortran-based kernel language (OFL). OCCA gives developers the ability to target devices at run-time by using run-time compilation for device kernels.
Motivation: speed and usability

Performance

• Logically similar kernels differ in performance:
  • GCC v. ICPC
  • OpenCL v. CUDA

• Naively porting OpenMP to CUDA or OpenCL will likely yield low performance

Programmability

• Multiple approaches have been taken
• Expose parallel paradigm … without introducing an exotic programming model
Portability Approaches

Directive Approach

• Use of optional [#pragma]'s to give compiler transformation hints
• Aims for portability, performance and programmability

Source-to-Source Approach

• Compiler tools can be used to translate across specifications/languages
• Performance is not always portable
• Maintenance of original and translated codes

Wrapper Approach

• Create a tailored library with optimized functions
• Restricted to a pre-canned set of operations
• Flexibility comes from functors/lambdas at compile-time
Portability Approaches: compiler directives

Directive Approach

- Use of optional [#pragma]'s to give compiler transformation hints
- Aims for portability, performance and programmability

- Introduced for accelerator support through directives (2012)
- There are compilers which support the 1.0 specifications
- OpenACC 2.0 introduces support for inlined functions

- OpenMP has been around for a while (1997)
- OpenMP 4.0 specifications (2013) includes accelerator support
- Few compilers (ROSE) support parts of the 4.0 specifications

```c
#pragma omp target teams distribute parallel for
for (int i = 0; i < N; ++i){
 y[i] = a*x[i] + y[i];
}
```

(Reyes, R., Lopez, I., Fumero, J. and de Sande, F. 2012),
(Grewe, D., Wang, Z. and O’Boyle, M. F. 2013)
Portability Approaches: directives

Directive Approach

- OpenACC and OpenMP begin to resemble an API rather than code decorations
- Not centralized anymore (intrusive `#pragma`’s) for optimizations

```c
double a[100];
#pragma acc enter data copyin(a)
// OpenACC code
#pragma acc exit data copyout(a)
```

```java
class Matrix {
 double *v;
 int len
 Matrix(int n) {
 len = n;
 v = new double[len];
 #pragma acc enter data create(v[0:len])
 }
 ~Matrix() {
 #pragma acc exit data delete(v[0:len])
 delete[] v;
 }
};
```

*Code taken from [WHAT'S NEW IN OPENACC 2.0 AND OPENMP 4.0], GTC '14*
Source-to-Source Approach

- CU2CL and SWAN have limited CUDA support (3.2 and 2.0 respectively)
- GPU Ocelot supports PTX from CUDA 4.2 (5.0 partially)
- PGI: CUDA-x86 appears to have been put in hiatus since 2011

(Martinez, G., Gardner, M. and Feng, W.-c. 2011)
(Harvey, M. J. and De Fabritiis, G. 2011)
Wrapper Approach

- Create a tailored library with **optimized** functions
- Restricted to a set of tools with flexibility from functors/lambdas

- C++ library masking OpenMP, Intel’s TBB and CUDA for x86 processors and NVIDIA GPUs
- **Vector library**, such as the standard template library (STL)

- Kokkos is from Sandia National Laboratories
- C++ **vector library** with linear algebra routines
- Uses OpenMP and CUDA for x86 and NVIDIA GPU support

- C++ **template library**
- Uses **code skeletons** for map, reduce, scan, mapreduce, …
- Uses OpenMP, OpenCL and CUDA as backends

Parallelism in cores (multi-threading) and processing elements (vectorization)
CPU: Architecture

Cache

- Data loaded into cache from contiguous blocks (cache lines)

Vectorization

- Use large registers instructions to perform operations in parallel
- Also uses continuous load instructions to vectorize efficiently

Continuous memory accesses are used for both, cache storage and vectorization
Multiprocessing

- Threads capable of fully parallelizing generic instructions (ignoring bandwidth)

- Perfect scaling ... without barriers, joins, or other thread/memory-dependencies

- Vectorization can be done at the thread-level

Executing parallel instructions using multithreading

CPU: Architecture (Multi-core)
Hierarchy of groups (blocks/work-groups) of processing units (threads/work-items)
GPU: Architecture

Hierarchy of groups (blocks/work-groups) of processing units (threads/work-items)
GPU: Architecture

GPU Architecture

- Independent work-groups are launched
- Work-groups contain groups of work-items, “parallel” threads.
Work-groups

- Groups of work-items
- No communication between work-groups
- Designed for independent group parallelism

Work-items

- Work-items are executed in parallel, able to barrier and share data using shared memory (& CUDA’s shuffle).
GPU: Architecture

Parallel Work-item Execution
- Work-items are launched in subsets of 32 or 64
- Each set of work-items execute same instructions
- No parallel branching (in hardware-group (warp/wavefront))

Data Transfer
- Low individual bandwidth and high latency
- Coalesced memory access on contiguous work-items
Parallelization Paradigm

Computational hierarchies are similar
Parallelization Paradigm

**CPU Architecture**

- Core 0
- Core 1
- Core 2
- Processing Element
- Global Memory
- L1 Cache
- L3 Cache

**GPU Architecture**

- Group 0
- Group 1
- Group 2
- Item (0,0)
- Registers
- Shared
- Global Memory

```c
void cpuFunction(){
 #pragma omp parallel for
 for(int i = 0; i < work; ++i){
 Do [hopefully thread-independent] work
 }
}
```

```c
__kernel void gpuFunction(){
 // for each work-group {
 // for each work-item in group {

 Do [group-independent] work

 // }
 // }
}
```
OCCA Device Abstractions
OCCA Intermediate Representation (IR)

Device Kernel Language

- Composed of macros which mask supported languages
- Uses the GPU programming model (work-groups / work-items)

Exposes implicit work-groups / work-items

```occa
occaOuterFor2{ // Work-group implicit loop
 occaOuterFor1{
 occaOuterFor0{
 occaInnerFor2{ // Work-item implicit loop
 occaInnerFor1{
 occaInnerFor0{
 // GPU kernel scope
 }
 }
 }
 }
 }
}
```

The concept of iterating over groups and items is simple

```c
Pragma("omp parallel for
 firstprivate(occaInnerId0, occaInnerId1, occaInnerId2,
 occaDims0, occaDims1, occaDims2)"
for(occaOuterId2 = 0; occaOuterId2 < occaOuterDim2; ++occaOuterId2){
 for(occaOuterId1 = 0; occaOuterId1 < occaOuterDim1; ++occaOuterId1){
 for(occaOuterId0 = 0; occaOuterId0 < occaOuterDim0; ++occaOuterId0){
 for(occaInnerId2 = 0; occaInnerId2 < occaInnerDim2; ++occaInnerId2){
 for(occaInnerId1 = 0; occaInnerId1 < occaInnerDim1; ++occaInnerId1){
 for(occaInnerId0 = 0; occaInnerId0 < occaInnerDim0; ++occaInnerId0){
 // GPU kernel scope
 }
 }
 }
 }
 }
}
```

---

The concept of iterating over groups and items is simple.
OCCA Intermediate Representation (IR)

Device Kernel Language

• Composed of macros which mask supported languages
• Uses the GPU programming model (work-groups / work-items)

Exposes implicit work-groups / work-items

```
// Work-group implicit loop
occaOuterFor2{
 occaOuterFor1{
 occaOuterFor0{
 occaInnerFor2{ // Work-item implicit loop
 occaInnerFor1{
 occaInnerFor0{
 // GPU kernel scope
 }}
 }}
 }}
```

The concept of iterating over groups and items is simple

```
#pragma omp parallel for firstprivate(occaInnerId0, occaInnerId1, occaInnerId2, occaDims0, occaDims1, occaDims2)
for(occaOuterId2 = 0; occaOuterId2 < occaOuterDim2; ++occaOuterId2){
 for(occaOuterId1 = 0; occaOuterId1 < occaOuterDim1; ++occaOuterId1){
 for(occaOuterId0 = 0; occaOuterId0 < occaOuterDim0; ++occaOuterId0){
 for(occaInnerId2 = 0; occaInnerId2 < occaInnerDim2; ++occaInnerId2){
 for(occaInnerId1 = 0; occaInnerId1 < occaInnerDim1; ++occaInnerId1){
 for(occaInnerId0 = 0; occaInnerId0 < occaInnerDim0; ++occaInnerId0){
 // GPU kernel scope
 }}
 }}
 }}
```
OCCA Intermediate Representation (IR)

Device Kernel Language

- Composed of macros which mask supported languages
- Uses the GPU programming model (work-groups / work-items)

Exposes implicit work-groups / work-items

The concept of iterating over groups and items is simple
OCCA Intermediate Representation (IR)

OCCA-for loop iterator expansions

\begin{verbatim}
occaOuterFor0{
  occaInnerFor0{
    const int i = (occaOuterId0 * occaInnerDim0) + occaInnerId0;
    AB[i] = A[i] + B[i];
  }
}
\end{verbatim}

<table>
<thead>
<tr>
<th>OCCA</th>
<th>OpenMP</th>
<th>OpenCL</th>
<th>CUDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>occaInnerId0</td>
<td></td>
<td>get.local_id(0)</td>
<td>threadIdx.x</td>
</tr>
<tr>
<td>occaInnerId1</td>
<td></td>
<td>get.local_id(1)</td>
<td>threadIdx.y</td>
</tr>
<tr>
<td>occaInnerId2</td>
<td></td>
<td>get.local_id(2)</td>
<td>threadIdx.z</td>
</tr>
<tr>
<td>occaOuterId0</td>
<td></td>
<td>get.group_id(0)</td>
<td>blockIdx.x</td>
</tr>
<tr>
<td>occaOuterId1</td>
<td></td>
<td>get.group_id(1)</td>
<td>blockIdx.y</td>
</tr>
<tr>
<td>occaGlobalId0</td>
<td>occaInnerId0 + occaInnerDim0*occaOuterId0</td>
<td>get.global_id(0)</td>
<td>threadIdx.x + blockIdx.x*blockDim.x</td>
</tr>
<tr>
<td>occaGlobalId1</td>
<td>occaInnerId1 + occaInnerDim1*occaOuterId1</td>
<td>get.global_id(1)</td>
<td>threadIdx.y + blockIdx.y*blockDim.y</td>
</tr>
<tr>
<td>occaGlobalId2</td>
<td>occaInnerId2</td>
<td>get.global_id(2)</td>
<td>threadIdx.z</td>
</tr>
</tbody>
</table>
Shared Memory

- Shared memory is crucial for GPU-modes (requires barrier)
- Manual pre-fetching on CPU-mode
- Barriers are used to synchronize between work-items

IR

```c
occaOuterFor0{ // Work-group implicit loops
 occaShared int sharedVar[16];

 occaInnerFor0{ // Work-item implicit loops
 sharedVar[itemX] = itemX;
 }

 occaBarrier(occaLocalMemFence);

 occaInnerFor0{ // Work-item implicit loops
 int i = (sharedVar[itemX] + sharedVar[(itemX + 1) % 16]);
 }
}
```

Finished inner-loops = all work-items finished their work and can synchronize
OCCA Intermediate Representation (IR)

Shared Memory

- Shared memory is crucial for GPU-modes (requires barrier)
- Manual pre-fetching on CPU-mode
- Barriers are used to synchronize between work-items

```c
occaOuterFor0{ // Work-group implicit loops
 occaShared int sharedVar[16];

 occaInnerFor0{ // Work-item implicit loops
 sharedVar[itemX] = itemX;
 }

 occaBarrier(occaLocalMemFence);

 occaInnerFor0{ // Work-item implicit loops
 int i = (sharedVar[itemX] + sharedVar[(itemX + 1) % 16]);
 }
}
```

Finished inner-loops = all work-items finished their work and can synchronize
Register Memory

- Fastest memory on GPUs
- Another issue with for-loop scopes ... requires \texttt{thread-local-storage} memory
- Good for prefetching data

```
occaOuterFor0{ // Work-group implicit loops
 occaPrivate(int, exclusiveVar); // int exclusiveVar;
 occaPrivateArray(int, exclusiveArray, 10); // int exclusiveArray[10];

 occaInnerFor0{ // Work-item implicit loops
 exclusiveVar = itemX; // Pre-fetch
 }

 boccaBarrier(occaLocalMemFence);

 occaInnerFor0{ // Work-item implicit loops
 int i = exclusiveVar; // Use pre-fetched data
 }
}
```

Prefetches or variable reuse can be declared \texttt{occaPrivate} to "jump scopes"
OCCA Intermediate Representation (IR)

Register Memory

- Fastest memory on GPUs
- Another issue with for-loop scopes ... requires thread-local-storage memory
- Good for prefetching data

Prefetches or variable reuse can be declared occaPrivate to “jump scopes”
OCCA Intermediate Representation (IR)

Register Memory

- Fastest memory on GPUs
- Another issue with for-loop scopes … requires \textit{thread-local-storage} memory
- Good for prefetching data

IR

```c
occaOuterFor0 { // Work-group implicit loops
 occaPrivate(int, exclusiveVar); // int exclusiveVar;
 occaPrivateArray(int, exclusiveArray, 10); // int exclusiveArray[10];

 occaInnerFor0 { // Work-item implicit loops
 exclusiveVar = itemX; // Pre-fetch
 occaBarrier(occaLocalMemFence);
 }

 occaInnerFor0 { // Work-item implicit loops
 int i = exclusiveVar; // Use pre-fetched data
 }
}
```

Prefetches or variable reuse can be declared \textit{occaPrivate} to “jump scopes”
Register Memory

- Fastest memory on GPUs
- Another issue with for-loop scopes ... requires thread-local-storage memory
- Good for prefetching data

OCCA Intermediate Representation (IR)

Prefetches or variable reuse can be declared occaPrivate to "jump scopes"
Description

- Minimal extensions to C, familiar for regular programmers
- Translates to OCCA IR with code transformations
- Parallel loops are explicit through the fourth for-loop `inner` and `outer` labels

```
kernel void kernelName(...)
{
 ...
 for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2){
 for(int groupY = 0; groupY < yGroups; ++groupY; outer1){
 for(int groupX = 0; groupX < xGroups; ++groupX; outer0){
 // Work-group implicit loops
 for(int itemZ = 0; itemZ < zItems; ++itemZ; inner2){
 for(int itemY = 0; itemY < yItems; ++itemY; inner1){
 for(int itemX = 0; itemX < xItems; ++itemX; inner0){
 // Work-item implicit loops
 // GPU Kernel Scope
 }
 }
 }
 }
 }
 }
}
```
kernel void kernelName(...)
{
    ...
    for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2){
        for(int groupY = 0; groupY < yGroups; ++groupY; outer1){
            for(int groupX = 0; groupX < xGroups; ++groupX; outer0){
                // Work-group implicit loops
                for(int itemZ = 0; itemZ < zItems; ++itemZ; inner2){
                    for(int itemY = 0; itemY < yItems; ++itemY; inner1){
                        for(int itemX = 0; itemX < xItems; ++itemX; inner0){
                            // Work-item implicit loops
                            // GPU Kernel Scope
                        }
                    }
                }
            }
        }
    }
    ...
}
OKL: OCCA Kernel Language

Description

- Minimal extensions to C, familiar for regular programmers
- Translates to OCCA IR with code transformations
- Parallel loops are explicit through the fourth for-loop inner and outer labels

```c
kernel void kernelName(...){
 ...
 for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2){
 for(int groupY = 0; groupY < yGroups; ++groupY; outer1){
 for(int groupX = 0; groupX < xGroups; ++groupX; outer0){
 // Work-group implicit loops
 for(int itemZ = 0; itemZ < zItems; ++itemZ; inner2){
 for(int itemY = 0; itemY < yItems; ++itemY; inner1){
 for(int itemX = 0; itemX < xItems; ++itemX; inner0){
 // Work-item implicit loops
 // GPU Kernel Scope
 }
 }
 }
 }
 }
 }
}
```

The concept of iterating over groups and items is simple
OKL: OCCA Kernel Language

Source-to-Source Compilation

- Extended C and Fortran to expose parallelism, making use of the OCCA IR

```
source.okl
```

Custom compilation tools tailored for code manipulation and analysis
OKL: OCCA Kernel Language

Source-to-Source Compilation

- Extended C and Fortran to expose parallelism & make use of OCCA IR

Preprocessor ➔ Tokenize ➔ Initial AST ➔ OpenCL/CUDA Setup ➔ Transform OCCA Loops ➔ Prototypes, Barriers, Arguments ➔ Split Kernels, Setup Work Dimensions ➔ Kernel Analysis

#define N 10

int i = N;

int i = 10;

Custom compilation tools tailored for code manipulation and analysis
OKL: OCCA Kernel Language

Source-to-Source Compilation

- Extended C and Fortran to expose parallelism & make use of OCCA IR

Preprocessor → Tokenize → Initial AST → OpenCL/CUDA Setup → Transform OCCA Loops → Prototypes, Barriers, Arguments → Split Kernels, Setup Work Dimensions → Kernel Analysis

```
#define N 10
int i = N;
```

```
int i = 10;
```

Custom compilation tools tailored for code manipulation and analysis
Source-to-Source Compilation

- Extended C and Fortran to expose parallelism & make use of OCCA IR

Custom compilation tools tailored for code manipulation and analysis
OKL: OCCA Kernel Language

Source-to-Source Compilation

- Extended C and Fortran to expose parallelism & make use of OCCA IR

Custom compilation tools tailored for code manipulation and analysis
OKL: OCCA Kernel Language

Source-to-Source Compilation

- Extended C and Fortran to expose parallelism & make use of OCCA IR

Custom compilation tools tailored for code manipulation and analysis
OKL: OCCA Kernel Language

Source-to-Source Compilation

- Extended C and Fortran to expose parallelism & make use of OCCA IR

Custom compilation tools tailored for code manipulation and analysis
Multiple outer-loops

• Sets of outer-loops are synonymous with CUDA and OpenCL kernels
• Extension: allow for multiple outer-loops per kernel

```
kernel void kernelName(...)
{
 ...

 for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2)
 {
 for(int groupY = 0; groupY < yGroups; ++groupY; outer1)
 {
 for(int groupX = 0; groupX < xGroups; ++groupX; outer0) // Work-group implicit loops
 {
 for(int itemZ = 0; itemZ < zItems; ++itemZ; inner2)
 {
 for(int itemY = 0; itemY < yItems; ++itemY; inner1)
 {
 for(int itemX = 0; itemX < xItems; ++itemX; inner0) // Work-item implicit loops
 {
 // GPU Kernel Scope
 }
 }
 }
 }
 }
 }
 }
 }
}
```
Multiple outer-loops

- Sets of outer-loops are synonymous with CUDA and OpenCL kernels
- Extension: allow for multiple outer-loops per kernel

```c
kernel void kernelName(...){
 ...
 for(int groupZ = 0; groupZ < zGroups; ++groupZ; outer2){
 for(int groupY = 0; groupY < yGroups; ++groupY; outer1){
 for(int groupX = 0; groupX < xGroups; ++groupX; outer0){ // Work-group implicit loops
 for(int itemZ = 0; itemZ < zItems; ++itemZ; inner2){
 for(int itemY = 0; itemY < yItems; ++itemY; inner1){
 for(int itemX = 0; itemX < xItems; ++itemX; inner0){ // Work-item implicit loops
 // GPU Kernel Scope
 }
 }
 }
 }
 }
 }
 ...
}
```

```c
dim3 blockDim(xGroups,yGroups,zGroups);
dim3 threadDim(xItems,yItems,zItems);
kernelName<<<blockDim, threadDim>>>(...);
```
Multiple outer-loops

- Sets of outer-loops are synonymous with CUDA and OpenCL kernels
- Extension: allow for multiple outer-loops per kernel

Execute a set of outer-loops is equivalent to launching a CUDA/OpenCL kernel

```c
kernel void kernelName(...)
{
...

for(outer)
{
 for(inner)
 {

 }
}

...

}

dim3 blockDim(xGroups,yGroups,zGroups);
dim3 threadDim(xItems,yItems,zItems);
kernelName<<<blockDim, threadDim>>>(...);
```
Multiple outer-loops

- Sets of outer-loops are synonymous with CUDA and OpenCL kernels
- Extension: allow for multiple outer-loops per kernel

```c
kernel void kernelName(...){
 ...

 for(outer){
 for(inner){
 ...
 }
 }

 ...
}
```
Multiple outer-loops

• Sets of **outer-loops** are synonymous with CUDA and OpenCL **kernels**
• Extension: allow for multiple outer-loops per kernel

```okl
kernel void kernelName(...)
 for(outer){
 for(inner){
 }
 }
 for(outer){
 for(inner){
 }
 }
 for(outer){
 for(inner){
 }
 }
```

*Execute a set of outer-loops is equivalent to launching a CUDA/OpenCL kernel*
Multiple outer-loops

- Sets of outer-loops are synonymous with CUDA and OpenCL kernels
- Extension: allow for multiple outer-loops per kernel

```c
kernel void kernelName(...)
{
 for (outer){
 for (inner){

 }
 }
}
for (outer){
 for (inner){

 }
}
for (outer){
 for (inner){

 }
}
```
OKL: OCCA Kernel Language

Multiple outer-loops

- Sets of outer-loops are synonymous with CUDA and OpenCL kernels
- Extension: allow for multiple outer-loops per kernel

```c
kernel void kernelName(...){
 if(expr){
 for(outer){
 for(inner){
 }
 }
 } else{
 for(outer){
 for(inner){
 }
 }
 }
 while(expr){
 for(outer){
 for(inner){
 }
 }
 }
}
```
for(int groupX = 0; groupX < xGroups; ++groupX; outer0){  // Work-group implicit loops
    shared int sharedVar[16];

    for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
        sharedVar[itemX] = itemX;
    }

    // Auto-insert [barrier(localMemFence);]

    for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
        int i = (sharedVar[itemX] + sharedVar[(itemX + 1) % 16]);
    }
}

for(int groupX = 0; groupX < xGroups; ++groupX; outer0){  // Work-group implicit loops
    exclusive int exclusiveVar, exclusiveArray[10];

    for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
        exclusiveVar = itemX;  // Pre-fetch
    }

    // Auto-insert [barrier(localMemFence);]

    for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
        int i = exclusiveVar;  // Use pre-fetched data
    }

Local barriers are auto-inserted (gives a warning)
for(int groupX = 0; groupX < xGroups; ++groupX; outer0){  // Work-group implicit loops
  shared int sharedVar[16];

  for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
    sharedVar[itemX] = itemX;
  }

  // Auto-insert [barrier(localMemFence);]

  for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
    int i = (sharedVar[itemX] + sharedVar[(itemX + 1) % 16]);
  }
}

Shared Memory

for(int groupX = 0; groupX < xGroups; ++groupX; outer0){  // Work-group implicit loops
  exclusive int exclusiveVar, exclusiveArray[10];

  for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
    exclusiveVar = itemX;  // Pre-fetch
  }

  // Auto-insert [barrier(localMemFence);]

  for(int itemX = 0; itemX < 16; ++itemX; inner0){  // Work-item implicit loops
    int i = exclusiveVar;  // Use pre-fetched data
  }
}

Register Memory (SIMD Variables)

Local barriers are auto-inserted (gives a warning)
OFL: OCCA Fortran Language

Description

- Translates to OKL and then to OCCA IR with code transformations
- Parallel loops are explicit through the `inner` and `outer DO-labels`

```fortran
kernel subroutine kernelName(

... DO groupY = 1, yGroups, outer1
 DO groupX = 1, xGroups, outer0 // Work-group implicit loops
 DO itemY = 1, yItems, inner1
 DO itemX = 1, xItems, inner0 // Work-item implicit loops
 // GPU Kernel Scope
 END DO
 END DO
 END DO
 END DO
... end subroutine kernelName
```

Shared and Exclusive Memory

```fortran
integer(4), shared :: sharedVar(16,30)
integer(4), exclusive :: exclusiveVar, exclusiveArray(10)
```

Because [OFL -> OKL], all features added to OKL are inherently added to OFL
OpenCL/CUDA to OCCA IR

Description

• Parser can translate OpenCL/CUDA kernels to OCCA IR*
• Although OCCA IR was derived from the GPU model, there are complexities

Since we derived OCCA IR from the GPU model, the inverse should be easy … right?
OpenCL/CUDA to OCCA IR

Description

• Parser can translate OpenCL/CUDA kernels to OCCA IR*
• Although OCCA IR was derived from the GPU model, there are complexities

Since we derived OCCA IR from the GPU model, the inverse should be easy ... right?
Kernel Work Dimensions

Working thread dimensions are deduced through the use of these built-ins:

- `get_global_id(N)`
- `get_local_id(N)`
- `get_group_id(N)`
- `threadIdx.{x,y,z}`
- `blockIdx.{x,y,z}`

C/C++

```c
int i = get_global_id(0);
int j = get_local_id(0);
int k = get_group_id(0);
```

```c
threads茜x茜y茜z
```

CUDA

```c
int i = threadIdx.x;
int j = threadIdx.y;
int k = threadIdx.z;
```

```c
int i = blockIdx.x;
int j = blockIdx.y;
int k = blockIdx.z;
```

OCCA

```c
occaInnerFor0{
 // ...
}
```

```c
occaOuterFor0{
 // ...
}
```

```c
occaInnerForN{
 // ...
 occaInnerFor0{
 }
}
```

```c
occaOuterForN{
 // ...
 occaOuterFor0{
 }
}
```
OCCA Application Programming Interface (API)

1. occa::device (C++ Class)
2. occa::memory (C++ Class)
3. occa::kernel (C++ Class)
occ.connect::device (C++ Class)

- Choose between using the CPU or available accelerators
- In charge of allocating memory and compiling kernels
**OCCA API**

**occa::memory (C++ Class)**
- Abstracts the memory handles found in each language
- Asynchronous memory transfers are supported

**occa::kernel (C++ Class)**
- Uses run-time compilation
- Kernel binaries are cached to prevent re-compiling
#include "occa.hpp"

int main(int argc, char **argv){
    float *a = new float[5];
    float *b = new float[5];
    float *ab = new float[5];

    for(int i = 0; i < 5; ++i){
        a[i] = i;
        b[i] = 1 - i;
        ab[i] = 0;
    }

    occa::device device;
    occa::kernel addVectors;
    occa::memory o_a, o_b, o_ab;

    device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

    o_a = device.malloc(5*sizeof(float));
    o_b = device.malloc(5*sizeof(float));
    o_ab = device.malloc(5*sizeof(float));

    o_a.copyFrom(a);
    o_b.copyFrom(b);

    addVectors = device.buildKernelFromSource("addVectors.okl",
                                             "addVectors");

    addVectors(5, o_a, o_b, o_ab);

    o_ab.copyTo(ab);

    for(int i = 0; i < 5; ++i)
        std::cout << i << ": " << ab[i] << '
';

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
```cpp
#include "occa.hpp"

int main(int argc, char **argv){
 float *a = new float[5];
 float *b = new float[5];
 float *ab = new float[5];

 for(int i = 0; i < 5; ++i){
 a[i] = i;
 b[i] = 1 - i;
 ab[i] = 0;
 }

 occa::device device;
 occa::kernel addVectors;
 occa::memory o_a, o_b, o_ab;

 device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

 o_a = device.malloc(5*sizeof(float));
 o_b = device.malloc(5*sizeof(float));
 o_ab = device.malloc(5*sizeof(float));

 o_a.copyFrom(a);
 o_b.copyFrom(b);

 addVectors = device.buildKernelFromSource("addVectors.okl",
 "addVectors");

 addVectors(5, o_a, o_b, o_ab);

 o_ab.copyTo(ab);

 for(int i = 0; i < 5; ++i)
 std::cout << i << ": " << ab[i] << '
';
}
```
```cpp
#include "occa.hpp"

int main(int argc, char **argv){
 float *a = new float[5];
 float *b = new float[5];
 float *ab = new float[5];

 for(int i = 0; i < 5; ++i){
 a[i] = i;
 b[i] = 1 - i;
 ab[i] = 0;
 }

 occa::device device;
 occa::kernel addVectors;
 occa::memory o_a, o_b, o_ab;

 device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

 o_a = device.malloc(5*sizeof(float));
 o_b = device.malloc(5*sizeof(float));
 o_ab = device.malloc(5*sizeof(float));

 o_a.copyFrom(a);
 o_b.copyFrom(b);

 addVectors = device.buildKernelFromSource("addVectors.okl",
 "addVectors");

 addVectors(5, o_a, o_b, o_ab);

 o_ab.copyTo(ab);

 for(int i = 0; i < 5; ++i)
 std::cout << i << " : " << ab[i] << \\
```

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
#include "occa.hpp"

int main(int argc, char **argv){
    float *a  = new float[5];
    float *b  = new float[5];
    float *ab = new float[5];

    for(int i = 0; i < 5; ++i){
        a[i]  = i;
        b[i]  = 1 - i;
        ab[i] = 0;
    }

    occa::device device;
    occa::kernel addVectors;
    occa::memory o_a, o_b, o_ab;

    device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

    o_a  = device.malloc(5*sizeof(float));
    o_b  = device.malloc(5*sizeof(float));
    o_ab = device.malloc(5*sizeof(float));

    o_a.copyFrom(a);
    o_b.copyFrom(b);

    addVectors = device.buildKernelFromSource("addVectors.okl",
                                           "addVectors");

    addVectors(5, o_a, o_b, o_ab);

    o_ab.copyTo(ab);

    for(int i = 0; i < 5; ++i)
        std::cout << i << " : " << ab[i] << '
';
}

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
#include "occa.hpp"

int main(int argc, char **argv){
    float *a  = new float[5];
    float *b  = new float[5];
    float *ab = new float[5];

    for(int i = 0; i < 5; ++i){
        a[i]  = i;
        b[i]  = 1 - i;
        ab[i] = 0;
    }

    occa::device device;
    occa::kernel addVectors;
    occa::memory o_a, o_b, o_ab;

    device.setup(“mode = OpenCL, platformID = 0, deviceID = 0”);

    o_a  = device.malloc(5*sizeof(float));
    o_b  = device.malloc(5*sizeof(float));
    o_ab = device.malloc(5*sizeof(float));

    o_a.copyFrom(a);
    o_b.copyFrom(b);

    addVectors = device.buildKernelFromSource(“addVectors.okl",
                                              "addVectors");

    addVectors(5, o_a, o_b, o_ab);

    o_ab.copyTo(ab);

    for(int i = 0; i < 5; ++i)
    std::cout << i << ": " << ab[i] << " \n";
OCCA API: Adding Two Vectors

```cpp
#include "occa.hpp"

int main(int argc, char* argv[])
{
 float *a = new float[5];
 float *b = new float[5];
 float *ab = new float[5];

 for(int i = 0; i < 5; ++i)
 {
 a[i] = i;
 b[i] = 1 - i;
 ab[i] = 0;
 }

 occa::device device;
 occa::kernel addVectors;
 occa::memory o_a, o_b, o_ab;

 device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

 o_a = device.malloc(5*sizeof(float));
 o_b = device.malloc(5*sizeof(float));
 o_ab = device.malloc(5*sizeof(float));

 o_a.copyFrom(a);
 o_b.copyFrom(b);

 addVectors = device.buildKernelFromSource("addVectors.okl", addVectors);

 addVectors(5, o_a, o_b, o_ab);

 o_ab.copyTo(ab);

 for(int i = 0; i < 5; ++i)
 {
 std::cout << i << ": " << ab[i] << 'n';
 }
}
```

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
#include "occa.hpp"

int main(int argc, char **argv) {
    float *a = new float[5];
    float *b = new float[5];
    float *ab = new float[5];

    for (int i = 0; i < 5; ++i) {
        a[i] = i;
        b[i] = 1 - i;
        ab[i] = 0;
    }

    occa::device device;
    occa::kernel addVectors;
    occa::memory o_a, o_b, o_ab;

    device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

    o_a = device.malloc(5*sizeof(float));
    o_b = device.malloc(5*sizeof(float));
    o_ab = device.malloc(5*sizeof(float));

    o_a.copyFrom(a);
    o_b.copyFrom(b);

    addVectors = device.buildKernelFromFile("addVectors.okl", addVectors);

    addVectors(5, o_a, o_b, o_ab);

    o_ab.copyTo(ab);

    for (int i = 0; i < 5; ++i) {
        std::cout << i << " : " << ab[i] << "\n";
    }
}

kernel void addVectors(const int entries, const float *a, const float *b, float *ab) {
    for (int group = 0; group < ((entries + 15)/16); ++group; outer0) {
        for (int item = 0; item < 16; ++item; inner0) {
            const int N = (item + (16 * group));

            if (N < entries) {
                ab[N] = a[N] + b[N];
            }
        }
    }
}
#include "occa.hpp"

int main(int argc, char **argv){
    float *a = new float[5];
    float *b = new float[5];
    float *ab = new float[5];

    for(int i = 0; i < 5; ++i){
        a[i] = i;
        b[i] = 1 - i;
        ab[i] = 0;
    }

    occa::device device;
    occa::kernel addVectors;
    occa::memory o_a, o_b, o_ab;

    device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

    o_a = device.malloc(5*sizeof(float));
    o_b = device.malloc(5*sizeof(float));
    o_ab = device.malloc(5*sizeof(float));

    o_a.copyFrom(a);
    o_b.copyFrom(b);

    addVectors = device.buildKernelFromSource("addVectors.okl", addVectors);

    addVectors(5, o_a, o_b, o_ab);

    o_ab.copyTo(ab);
    for(int i = 0; i < 5; ++i)
        std::cout << i << " ": " << ab[i] << 'n';
}

kernel void addVectors(const int entries, const float *a, const float *b, float *ab){
    for(int group = 0; group < ((entries + 15)/16); ++group, outer0){
        for(int item = 0; item < 16; ++item, inner0){
            const int N = (item + (16 * group));
            if(N < entries)
                ab[N] = a[N] + b[N];
        }
    }
}
#include "occa.hpp"

```cpp
int main(int argc, char **argv) {
 float *a = new float[5];
 float *b = new float[5];
 float *ab = new float[5];

 for(int i = 0; i < 5; ++i)
 a[i] = i;
 for(int i = 0; i < 5; ++i)
 b[i] = 1 - i;
 for(int i = 0; i < 5; ++i)
 ab[i] = 0;

 occa::device device;
 occa::kernel addVectors;
 occa::memory o_a, o_b, o_ab;

 device.setup("mode = OpenCL, platformID = 0, deviceID = 0");
 o_a = device.malloc(5*sizeof(float));
 o_b = device.malloc(5*sizeof(float));
 o_ab = device.malloc(5*sizeof(float));

 o_a.copyFrom(a);
 o_b.copyFrom(b);

 addVectors = device.buildKernelFromSource("addVectors.okl", "addVectors");

 addVectors(5, o_a, o_b, o_ab);

 o_ab.copyTo(ab);

 for(int i = 0; i < 5; ++i)
 std::cout << i << " : " << ab[i] << " \n";
}
```

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
program main
use occa
implicit none

character(len=1024) :: deviceInfo = "mode = OpenMP"

real(4), allocatable :: a(:), b(:), ab(:)

type(occaDevice) :: device
type(occaKernel) :: addVectors
type(occaMemory) :: o_a, o_b, o_ab

allocate(a(1:5), b(1:5), ab(1:5))

do i = 1, 5
  a(i) = i
  b(i) = 1-i
  ab(i) = 0
end do

device = occaGetDevice(deviceInfo)

o_a = occaDeviceMalloc(device, int(5,8)*4_8, a(1))
o_b = occaDeviceMalloc(device, int(5,8)*4_8, b(1))
o_ab = occaDeviceMalloc(device, int(5,8)*4_8)

addVectors = occaBuildKernelFromSource(device, &
                                          "addVectors.ofl", "addVectors")

call occaKernelRun(addVectors, occaTypeMem_t(5), o_a, o_b, o_ab)

call occaCopyMemToPtr(ab(1), o_ab);

print *, "a = ", a(:)
print *, "b = ", b(:)
print *, "ab = ", ab(:)
end program main

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
program main
use occa
implicit none

character(len=1024) :: deviceInfo = "mode = OpenMP"
real(4), allocatable :: a(:), b(:), ab(:)
type(occaDevice) :: device
type(occaKernel) :: addVectors

type(occaMemory) :: o_a, o_b, o_ab
allocate(a(1:5), b(1:5), ab(1:5))
do i = 1, 5
  a(i)  = i
  b(i)  = 1-i
  ab(i) = 0
end do

device = occaGetDevice(deviceInfo)
o_a  = occaDeviceMalloc(device, int(5,8)*4_8, a(1))
o_b  = occaDeviceMalloc(device, int(5,8)*4_8, b(1))
o_ab = occaDeviceMalloc(device, int(5,8)*4_8)
addVectors = occaBuildKernelFromSource(device, "addVectors.ofl"
  "addVectors")
call occaKernelRun(addVectors, occaTypeMem_t(5), o_a, o_b, o_ab)
call occaCopyMemToPtr(ab(1), o_ab);
print *, "a  = ", a(:)
print *, "b  = ", b(:)
print *, "ab = ", ab(:)
end program main

kernel subroutine addVectors(entries, a, b, ab)
implicit none

integer(4), intent(in) :: entries
real(4) :: x(:), y(:), z(1)

do i = 1, 5
  x(i) = i
  y(i) = 1-i
  z(i) = 0
end do

end subroutine addVectors
OCCA Automation
Programmer Expertise Hierarchy

**Beginner**
Little to no experience programming

**Casual Programmer**
Traditional CPU
Data structures and algorithms

**many-core**
Programming models
Programmer Expertise Hierarchy

- **Ninja**
  - Knowledgable about low-level hardware optimizations

- **Expert**
  - Understands many-core programming models

- **Casual Programmer**

We chose to target developers in each proficiency layer.
Programmer Expertise Hierarchy

Ninja
Knowledgable about low-level hardware optimizations

Expert
Understands many-core programming models

Casual Programmer

I chose to target developers in each proficiency layer
I chose to target developers in each proficiency layer.
Programmer Expertise Hierarchy

Ninja

Knowledgable about low-level hardware optimizations

Expert

Understands many-core programming models

Casual Programmer

I chose to target developers in each proficiency layer
Programmer Expertise Hierarchy

I chose to target developers in each proficiency layer.
I chose to target developers in each proficiency layer.

Programmer Expertise Hierarchy

- **Casual Programmer**
- **Expert**
  - Understands many-core programming models
- **Ninja**
  - Knowledgable about low-level hardware optimizations

*Image of a pyramid with levels labeled as described.*
I chose to target developers in each proficiency layer.
Programmer Expertise Hierarchy

Ninja
- Knowledgable about low-level hardware optimizations

Expert
- Understands many-core programming models

Casual Programmer
- Traditional CPU
- Data structures and algorithms

I chose to target developers in each proficiency layer.
Programmer Expertise Hierarchy

- **Ninja**
  - Knowledgable about low-level hardware optimizations

- **Expert**
  - Understands many-core programming models

- **Casual Programmer**
  - Traditional CPU
  - Data structures and algorithms

I chose to target developers in each proficiency layer
I chose to target developers in each proficiency layer.
Programmer Expertise Hierarchy

- Casual Programmer
  - Traditional CPU
  - Data structures and algorithms
- Beginner
  - Little to no experience programming

Goal: Ease transition into many-core programming

I chose to target developers in each proficiency layer
Purpose of Automation Layers

Emulating UVA (Unified Virtual Address)

- Emulates one large memory addressing space across devices
- Hides device memory and data transfers
Purpose of Automation Layers

Emulating UVA (Unified Virtual Address)

- Emulates one large memory addressing space across devices
- Hides device memory and data transfers
Emulating UVA (Unified Virtual Address)

- Emulates one large memory addressing space across devices
- Hides device memory and data transfers
Automating Memory Transfers

- Eases introduction to heterogeneous computing
- Simplifies data movement
- Proper use of [const] and optional array descriptors for optimality

```c
float *a = new float[5];
float *b = new float[5];
float *ab = new float[5];

occa::memory o_a, o_b, o_ab;

// o_a + 1 = ?
```

```c
float *a = (float*) device.managedUvaAlloc(5 * sizeof(float));
float *b = (float*) device.managedUvaAlloc(5 * sizeof(float));
float *ab = (float*) device.managedUvaAlloc(5 * sizeof(float));
```

Additional API calls can be used to manually synchronize with device
```cpp
#include "occa.hpp"

int main(int argc, char **argv) {
 occa::device device;
 occa::kernel addVectors;
 occa::memory o_a, o_b, o_ab;

 device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

 float *a = new float[5];
 float *b = new float[5];
 float *ab = new float[5];

 for(int i = 0; i < 5; ++i) {
 a[i] = i;
 b[i] = 1 - i;
 ab[i] = 0;
 }

 o_a = device.malloc(5*sizeof(float));
 o_b = device.malloc(5*sizeof(float));
 o_ab = device.malloc(5*sizeof(float));

 o_a.copyFrom(a);
 o_b.copyFrom(b);

 addVectors = device.buildKernelFromSource("addVectors.okl",
 "addVectors");

 addVectors(5, o_a, o_b, o_ab);
 o_ab.copyTo(ab);

 for(int i = 0; i < 5; ++i)
 std::cout << i << " : " << ab[i] << '\n';
}
```

https://github.com/tcew/OCCA2/tree/master/examples/addVectors
```cpp
#include "occa.hpp"

int main(int argc, char **argv){
 occa::device device;
 occa::kernel addVectors;
 float *o_a, *o_b, *o_ab;

 device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

 float *a = (float*) device.managedUvaAlloc(5 * sizeof(float));
 float *b = (float*) device.managedUvaAlloc(5 * sizeof(float));
 float *ab = (float*) device.managedUvaAlloc(5 * sizeof(float));

 for(int i = 0; i < 5; ++i){
 a[i] = i;
 b[i] = 1 - i;
 ab[i] = 0;
 }

 o_a = (float*) device.uvaAlloc(5*sizeof(float));
 o_b = (float*) device.uvaAlloc(5*sizeof(float));
 o_ab = (float*) device.uvaAlloc(5*sizeof(float));

 occa::memcpy(o_a, a, 5*sizeof(float));
 occa::memcpy(o_b, b, 5*sizeof(float));

 addVectors = device.buildKernelFromSource("addVectors.okl",
 "addVectors");

 addVectors(5, a, b, ab);

 occa::finish(); // occa::memcpy(ab, o_ab, 5*sizeof(float));

 for(int i = 0; i < 5; ++i)
 std::cout << i << "": " << ab[i] << '\n';
}
```

https://github.com/tcew/OCCA2/tree/master/examples/uvaAddVectors
#include "occa.hpp"

int main(int argc, char **argv){
    occa::device device;
    occa::kernel addVectors;

    device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

    float *a  = (float*) device.managedUvaAlloc(5 * sizeof(float));
    float *b  = (float*) device.managedUvaAlloc(5 * sizeof(float));
    float *ab = (float*) device.managedUvaAlloc(5 * sizeof(float));

    for(int i = 0; i < 5; ++i){
        a[i]  = i;
        b[i]  = 1 - i;
        ab[i] = 0;
    }

    addVectors = device.buildKernelFromSource("addVectors.okl",
                                            "addVectors");

    addVectors(5, a, b, ab);

    occa::finish()

    for(int i = 0; i < 5; ++i)
        std::cout << i << " : " << ab[i] << 'n';
#include "occa.hpp"

int main(int argc, char** argv){
    occa::device device;
    occa::kernel addVectors;
    device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

    float* a = (float*) device.managedUvaAlloc(5 * sizeof(float));
    float* b = (float*) device.managedUvaAlloc(5 * sizeof(float));
    float* ab = (float*) device.managedUvaAlloc(5 * sizeof(float));

    for(int i = 0; i < 5; ++i){
        a[i] = i;
        b[i] = 1 - i;
        ab[i] = 0;
    }

    addVectors = device.buildKernelFromSource("addVectors.oak", addVectors);

    addVectors(5, a, b, ab);

    occa::finish()

    for(int i = 0; i < 5; ++i)
        std::cout << i << ": " << ab[i] << '
';

    https://github.com/tcew/OCCA2/tree/master/examples/uvaAddVectors
#include "occa.hpp"

int main(int argc, char **argv) {
  occa::device device;
  occa::kernel addVectors;
  device.setup("mode = OpenCL, platformID = 0, deviceID = 0");

  float *a = (float*) device.managedUvaAlloc(5 * sizeof(float));
  float *b = (float*) device.managedUvaAlloc(5 * sizeof(float));
  float *ab = (float*) device.managedUvaAlloc(5 * sizeof(float));

  for(int i = 0; i < 5; ++i) {
    a[i] = i;
    b[i] = 1 - i;
    ab[i] = 0;
  }

  addVectors = device.buildKernelFromSource("addVectors.okl", "addVectors");

  addVectors(5, a, b, ab);

  occa::finish()

  for(int i = 0; i < 5; ++i)
    std::cout << i << ": " << ab[i] << '\n';
}

OCCA API: Original + Managed Memory + OAK

https://github.com/tcew/OCCA2/tree/master/examples/uvaAddVectors
```cpp
#include "occa.hpp"

int main(int argc, char **argv) {
 // ...

 for(int z = r; z < (pointsZ - r); ++z) {
 for(int y = r; y < (pointsY - r); ++y) {
 for(int x = r; x < (pointsX - r); ++x) {
 float lap = 0;

 for(int i = -r; i <= r; ++i) {
 lap += w[i] * (u0[(z)*pointsXY + (y)*pointsX + (x+i)] +
 u0[(z)*pointsXY + (y+i)*pointsX + (x)] +
 u0[(z+i)*pointsXY + (y)*pointsX + (x)]);
 }

 const int id = (z*pointsXY + y*pointsX + x);

 u2[id] = -dt2*c2[id]*lap + u0[id] + u1[id];
 }
 }
 }
 // ...
}
```
```cpp
#include "occa.hpp"

int main(int argc, char **argv){
 // ...
 fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");
 fdKernel(u0, u1, u2, w, c, dt2);
 // ...
}

kernel void fdKernel(float *u0,
 float *u1,
 float *u2,
 float *w,
 float *c2,
 float dt2)
{
 for(int z = r; z < (pointsZ - r); ++z){
 for(int y = r; y < (pointsY - r); ++y){
 for(int x = r; x < (pointsX - r); ++x){
 float lap = 0;
 for(int i = -r; i <= r; ++i)
 lap += w[i]*(u0[(z)*pointsXY + (y)*pointsX + (x+i)] +
 u0[(z)*pointsXY + (y+i)*pointsX + (x)] +
 u0[(z+i)*pointsXY + (y)*pointsX + (x)]);
 const int id = (z*pointsXY + y*pointsX + x);
 u2[id] = -dt2*c2[id]*lap + u0[id] + u1[id];
 }
 }
 }
}
```
#include "occa.hpp"

int main(int argc, char **argv){
    // ...
    occa::kernelInfo fdKInfo;
    fdKInfo.addDefine("pointsX", pointsX);
    fdKInfo.addDefine("pointsY", pointsY);
    fdKInfo.addDefine("pointsXY", (pointsX*pointsY));
    fdKInfo.addDefine("pointsZ", pointsZ);
    fdKInfo.addDefine("r", r);

    fdKernel = device.buildKernelFromSource("fdKernel.oak",
    "fdKernel");
    fdKInfo;

    fdKernel(u0, u1, u2, w, c, dt2);

    // ...
}

for(int z = r; z < (pointsZ - r); ++z){
    for(int y = r; y < (pointsY - r); ++y){
        for(int x = r; x < (pointsX - r); ++x){
            float lap = 0;
            for(int i = -r; i <= r; ++i)
                lap += w[i]*(u0[(z  )*pointsXY + (y+i)*pointsX + (x  )] +
                                u0[(z  )*pointsXY + (y+i)*pointsX + (x+i)] +
                                u0[(z+i)*pointsXY + (y  )*pointsX + (x  )]);

            const int id = (z*pointsXY + y*pointsX + x);

            u2[id] = -dt2*c2[id]*lap + u0[id] + u1[id];
        }
    }
}
```cpp
#include "occa.hpp"

int main(int argc, char **argv) {
 // ...
 occa::kernelInfo fdKInfo;
 fdKInfo.addDefine("pointsX", pointsX);
 fdKInfo.addDefine("pointsY", pointsY);
 fdKInfo.addDefine("pointsXY", (pointsX*pointsY);
 fdKInfo.addDefine("pointsZ", pointsZ);
 fdKInfo.addDefine("r", r);

 fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");

 fdKernel(u0, u1, u2, w, c, dt2);
 // ...
}

kernel void fdKernel(float *u0,
 float *u1,
 float *u2,
 float *w,
 float *c2,
 float dt2) {

 for(int z = 4; z < (100 - 4); ++z) {
 for(int y = 4; y < (100 - 4); ++y) {
 for(int x = 4; x < (100 - 4); ++x) {

 float lap = 0;
 for(int i = -4; i <= 4; ++i) {
 lap += w[i] * (u0[(z*10000 + (y*100 + (x+i))] +
 u0[(z*10000 + (y+i)*100 + (x))] +
 u0[(z+i)*10000 + (y*100 + (x))]);
 }

 const int id = (z*10000 + y*100 + x);

 u2[id] = -dt2*c2[id]*lap + u0[id] + u1[id];
 }
 }
 }
}
```
#include "occa.hpp"

int main(int argc, char **argv) {
    // ...

    occa::kernelInfo fdKInfo;
    fdKInfo.addDefine("pointsX", pointsX);
    fdKInfo.addDefine("pointsY", pointsY);
    fdKInfo.addDefine("pointsXY", (pointsX * pointsY));
    fdKInfo.addDefine("pointsZ", pointsZ);
    fdKInfo.addDefine("r", r);

    fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");
    fdKInfo);

    fdKernel(u0, u1, u2, w, c, dt2);
    // ...
}
#include "occa.hpp"

int main(int argc, char **argv) {
    // ...

    occa::kernelInfo fdKInfo;
    fdKInfo.addDefine("pointsX", pointsX);
    fdKInfo.addDefine("pointsY", pointsY);
    fdKInfo.addDefine("pointsXY", (pointsX*pointsY));
    fdKInfo.addDefine("pointsZ", pointsZ);
    fdKInfo.addDefine("r", r);

    fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");

    fdKernel(u0, u1, u2, w, c, dt2);

    // ...
}
```cpp
#include "occa.hpp"

int main(int argc, char **argv) {
 // ...

 occa::kernelInfo fdKInfo;
 fdKInfo.addDefine("pointsX", pointsX);
 fdKInfo.addDefine("pointsY", pointsY);
 fdKInfo.addDefine("pointsXY", (pointsX*pointsY));
 fdKInfo.addDefine("pointsZ", pointsZ);
 fdKInfo.addDefine("r", r);

 fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");
 fdKInfo;

 fdKernel(u0, u1, u2, w, c, dt2);
 // ...
}

kernel void fdKernel(float * restrict u0,
 float * restrict u1,
 float * restrict u2,
 float * restrict w,
 float * restrict c2,
 float * restrict dt2){

 for(int z = 4; z < (100 - 4); ++z){
 for(int y = 4; y < (100 - 4); ++y){
 for(int x = 4; x < (100 - 4); ++x){

 float lap = 0;
 for(int i = -4; i <= 4; ++i)
 lap += w[i] * (u0[(z*10000 + (y*100 + (x+i)) +
 (z+i)*10000 + (y)*100 + (x))]) +
 (z+i)*10000 + (y)*100 + (x));

 const int id = (z*10000 + y*100 + x);
 u2[id] = -dt2 * c2[id]*lap + u0[id] + u1[id];
 }
 }
 }
}
```

Automatic Kernel Generation
```cpp
#include "occa.hpp"

int main(int argc, char **argv){
 // ...
 occa::kernelInfo fdKInfo;
 fdKInfo.addDefine("pointsX", pointsX);
 fdKInfo.addDefine("pointsY", pointsY);
 fdKInfo.addDefine("pointsXY", (pointsX*pointsY));
 fdKInfo.addDefine("pointsZ", pointsZ);
 fdKInfo.addDefine("r", r);
 fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");
 fdKInfo);
 fdKernel(u0, u1, u2, w, c, dt2);
 // ...
}
```

```
kernel void fdKernel(float * restrict u0,
 float * restrict u1,
 float * restrict u2,
 float * restrict w,
 float * restrict c2,
 float dt2){
 for(int z = 4; z < (100 - 4); ++z){
 for(int y = 4; y < (100 - 4); ++y){
 for(int x = 4; x < (100 - 4); ++x){
 float lap = 0;
 for(int i = -4; i <= 4; ++i)
 lap += w[i]*(u0[(z)*10000 + (y)*100 + (x+i)] +
 u0[(z)*10000 + (y+i)*100 + (x)] +
 u0[(z+i)*10000 + (y)*100 + (x)]);
 const int id = (z*10000 + y*100 + x);
 u2[id] = -dt2*c2[id]*lap + u0[id] + u1[id];
 }
 }
 }
}
```
```cpp
#include "occa.hpp"

int main(int argc, char **argv){
 // ...

 occa::kernelInfo fdKInfo;
 fdKInfo.addDefine("pointsX", pointsX);
 fdKInfo.addDefine("pointsY", pointsY);
 fdKInfo.addDefine("pointsXY", (pointsX*pointsY));
 fdKInfo.addDefine("pointsZ", pointsZ);
 fdKInfo.addDefine("r", r);

 fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");
 fdKInfo);
 fdKernel(u0, u1, u2, w, c, dt2);

 // ...
}
```

```
#define occa__KERNEL_NAME fdKernel

kernel void fdKernel(float * restrict u0,
 * restrict u1,
 * restrict u2,
 * restrict w,
 * restrict c2,
 float dt2)
{
 for(int z = 4; z < (100 - 4); ++z){
 for(int y = 4; y < (100 - 4); ++y){
 for(int x = 4; x < (100 - 4); ++x){
 float lap = 0;
 for(int i = -4; i <= 4; ++i)
 lap += w[i]*(u0[(z)*10000 + (y)*100 + (x+i)] +
 u0[(z)*10000 + (y+i)*100 + (x)] +
 u0[(z+i)*10000 + (y)*100 + (x)]);
 const int id = (z*10000 + y*100 + x);
 u2[id] = -dt2*c2[id]*lap + u0[id];
 }
 }
 }
}
```
#include "occa.hpp"

int main(int argc, char **argv){
    // ...

    occa::kernelInfo fdKInfo;
    fdKInfo.addDefine("pointsX", pointsX);
    fdKInfo.addDefine("pointsY", pointsY);
    fdKInfo.addDefine("pointsXY", (pointsX*pointsY));
    fdKInfo.addDefine("pointsZ", pointsZ);
    fdKInfo.addDefine("r", r);

    fdKernel = device.buildKernelFromSource("fdKernel.oak", "fdKernel");

    fdKernel(u0, u1, u2, w, c, dt2);

    // ...
}
Results
OCCA Applications

A broad range of applications have been implemented using OCCA
OCCA2 Applications: Discontinuous Galerkin

(Gandham, R., Medina, D. and Warburton, T. 2015)
OCCA2 Applications: Spectral Element Method

Spectral Element Method

IR

GPU

CPU

Polynomial Degree

GFLOPS

OpenCL (Tahiti)  OpenCL (K40c)  CUDA (K40c)

OpenCL-AMD  OpenCL-Intel  OpenMP-icpc  OpenMP-gcc

(J.-F. Remacle, R. Gandham, and T. Warburton: In Progress)
OCCA2 Rodinia Benchmarks

Back Propagation

Relative Speedup

Faster (Better)

Slower (Worse)

OpenMP : 2x Intel Xeon CPU E5-2650
OpenCL/CUDA : NVIDIA 980 GPU

(Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H. and Skadron, K. 2009)
OCCA2 Rodinia Benchmarks

Breadth-First Search

OpenMP: 2x Intel Xeon CPU E5-2650
OpenCL/CUDA: NVIDIA 980 GPU

(Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H. and Skadron, K. 2009)
OCCA2 Rodinia Benchmarks

Gaussian Elimination

- OpenMP: 2x Intel Xeon CPU E5-2650
- OpenCL/CUDA: NVIDIA 980 GPU

(Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H. and Skadron, K. 2009)
OCCA2 Applications: Monte Carlo

- **XSBench**
  - Version 13
  - Contact Information
  - Organization: Center for Exascale Simulation of Advanced Reactors (CESAR) Argonne National Laboratory
  - Development Lead: John Tramm <jtramm@anl.gov>
  - What is XSBench?
  - XSBench is a mini-app representing a key computational kernel of the Monte Carlo neutronics application OpenMC.
  - A full explanation of the theory and purpose of XSBench is provided in doc/xsbench_Theory.pdf.
  - Quick Start Guide

- **OKL**
  - Monte Carlo

- **Graphs**
  - OCCA applications: Monte Carlo
  - Bar charts comparing performance:
    - **CPU**
      - Original OpenMP
      - OCCA:OpenMP (CPU-kernel)
      - OCCA:OpenMP (GPU-kernel)
    - **GPU**
      - Original CUDA
      - OCCA:CUDA
      - OCCA:OpenCL

- **Performance Details**
  - **OpenMP**: 2x Intel Xeon CPU E5-2650
  - **OpenCL/CUDA**: NVIDIA 980 GPU

---

3rd party use of OCCA at Argonne National Laboratory
OCCA2 Applications: Finite Difference

IR

High-order Finite Difference

OCCA

CPU

Original OpenMP
OCCA:OpenMP (CPU-kernel)
OCCA:OpenMP (GPU-kernel)

GPU

Original CUDA
OCCA:CUDA (GPU-kernel)
OCCA:OpenCL (GPU-kernel)
OCCA:CUDA (CPU-kernel)
OCCA:OpenCL (CPU-kernel)

OpenMP : Intel Xeon CPU E5-2640
OpenCL/CUDA : NVIDIA Tesla K10

(Medina, D. S., St-Cyr, A. and Warburton, T. 2015)
OCCA2 Summary

Many-core Device Abstraction

• Abstract unified framework addressing portability and performance
• Implementation displays high performance across platforms

Unified Kernel Language

• Presented an approach for unifying programming language features (OCCA IR)
• Introduced language extensions for C and Fortran (OKL/OFL)

Automation

• Targeted difficulties in programming many-core devices
• Automate data transfers and kernel generation

Results

• Examined a wide range of numerical methods
• Compared performance with native counterparts through benchmarks
An experimental version of OCCA is available from github

https://github.com/libocca/occa
1: git clone and build the OCCA library. 2: set up the environment variables for OCCA
3: Let me know ** when ** you have any problems with this.

See the ATPESC14 github for a full implementation [ with some optional goodies ]
OCCA: elliptic solver sample code

See the ATPESC14 github for a full implementation [with some optional goodies]

1: git clone and build the OCCA library.
2: set up the environment variables for OCCA
3: Let me know ** when ** you have any problems with this.
1: git clone and build the OCCA library. 2: set up the environment variables for OCCA
3: Let me know ** when ** you have any problems with this.

See the ATPESC14 github for a full implementation [with some optional goodies]
OCCA: elliptic solver sample code

See the ATPESC14 github for a full implementation [ with some optional goodies ]

1: git clone and build the OCCA library.
2: set up the environment variables for OCCA
3: Let me know ** when ** you have any problems with this.
OCCA: elliptic solver sample code

See the ATPESC14 github for a full implementation [ with some optional goodies ]

1: git clone and build the OCCA library. 2: set up the environment variables for OCCA
3: Let me know ** when ** you have any problems with this.
In OCCA we split the i and j loops both into outer and inner loops. From the OCCA kernel we can reproduce the serial, CUDA, and OpenCL kernels (also pthreads, openmp...).
In OCCA we split the i and j loops both into outer and inner loops.

From the OCCA kernel we can reproduce the serial, CUDA, and OpenCL kernels (also pthreads, openmp...).
In OCCA we split the i and j loops both into outer and inner loops.

From the OCCA kernel we can reproduce the serial, CUDA, and OpenCL kernels (also pthreads, openmp...).
OCCA: summary

OCCA:
✅ Lightweight API that hedges against shifts in programming models.
✅ Front ends: C++, C, Julia, Python, MATLAB, F90,…
✅ Currently works with OpenCL, CUDA, OpenMP, & pThreads back ends.

In progress:
✅ Version for Windows.
~ C# and Java front-ends.
~ Testing on the Xeon Phi.
~ New multi-threading languages will be added as they emerge and stabilize.

OCCA applications:
✅ Portability and performance for finite-difference, finite volume, & finite elements.
~ Scalability of fully accelerated algebraic multi-grid preconditioner setup/cycling.
~ ALMOND performance is a work in progress.

Comments:
✅ OCCA does reduce exposure to vendor-lock and churn in programming models.
✅ OCCA does provide an extra optimization direction for auto-tuning.
❌ OCCA does not provide high-level support for tuning and optimization, yet.

If time permits a quick demo of running a simple host code and OCCA kernel.
OCCA: A unified approach to multi-threading languages

David S Medina, Amik St-Cyr, T. Warburton

(Submitted on 4 Mar 2014)

The inability to predict lasting languages and architectures led us to develop OCCA, a C++ library focused on host-device interaction. Using run-time compilation and macro expansions, the result is a novel single kernel language that expands to multiple threading languages. Currently, OCCA supports device kernel expansions for the OpenMP, OpenCL, and CUDA platforms. Computational results using finite difference, spectral element and discontinuous Galerkin methods show OCCA delivers portable high performance in different architectures and platforms.

Comments: 25 pages, 6 figures, 9 code listings, 8 tables, Submitted to the SIAM Journal on Scientific Computing (SISC), presented at the Oil & Gas Workshop 2014 at Rice University
Subjects: Distributed, Parallel, and Cluster Computing (cs.DC)
Cite as: arXiv:1403.0968 [cs.DC]
(or arXiv:1403.0968v1 [cs.DC] for this version)

Submission history
From: David Medina [view email]
[v1] Tue, 4 Mar 2014 22:30:49 GMT (86kb,D)
OCCA 2.0: github

Check out OCCA 2.0 on GitHub at https://github.com/libocca/occa
New contact info as of 08/10:

Mathematics @ Virginia Tech
tim.warburton@vt.edu