Argon ne'\

NATIONAL LABORATORY

Python for High Performance

William Scullin

wscullin@alcf.anl.gov

Leadership Computing Facility

oy Argonne National Laboratory

mailto:wscullin@alcf.anl.gov

Why this talk?

ATPESC 2015 - Challenges of Python at Scale - 12 August 2015

“People are doing high
performance computing
with Python...

How do we stop them?”

- Senior Performance Engineer

Why Python?

ATPESC 2015 - Challenges of Python at Scale - 12 August 2015

What’s Python?

* Created by Guido van Rossum in 1989
e Originally a scripting language for the Amoeba OS
e Highly influenced by Modula-3, ABC, Algol, and C
e |t refers to both the language and to the reference
implementation CPython
e Two major versions of the language:
= Python 2
= Python 3

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Why Use Python?

e |f you like a programming paradigm, it’s supported
e Most functions map to what you know already
e Easy to combine with other languages
e Easy to keep code readable and maintainable
e Lets you do just about anything without changing languages
e The price is right!
"= No license management
= Code portability
= Fully Open Source
= Very low learning curb
e Comes with a highly enthusiastic and helpful community

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Y

Easy to learn

#include "iostream"
#include "math"
int main(int argc,char** argv)
{
int n = atoi(argv[l]);
for(int i=2;
i<(int) sgrt(n);

i++)

p=0;
while(n % 1)
{
p+=1;
n/=i;
}
if (p)
cout << i << "A"
<< p << endl;

}

return 0;

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

import math, sys

n = int(sys.argv[1])
for i in range(2,math.sqrt(n)):

p=0
while n % 1i:

(pJn) = (p+1,n/i)

if p:
print i,'~',p

sys.exit(0)

Why Use Python for Scientific Computing?

e "Batteries included" + rich scientific computing ecosystem

e Good balance between computational performance and time
Investment
= Similar performance to expensive commercial solutions
" Many ways to optimize critical components
" Only spend time on speed if really needed

e Tools are mostly open source and free

e Strong community and commercial support options.

* No license management for the modules that keep people
productive

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Science Tools for Python

General
NumPy
SciPy

GPGPU Computing
PyCUDA
PyOpenCL

Parallel Computing
PETSc

PyMPI

Pypar

mpidpy

Wrapping C/C++/
Fortran

SWIG

Cython

ctypes

For a more complete list: http://www.scipy.org/]

Plotting & Visualization
matplotlib

Vislt

Chaco

MayaVi

Al & Machine Learning
pyem

ffnet

pymorph

Monte

hcluster

Biology (inc. neuro)
Brian

SloppyCell

NIPY

PySAT

Molecular &
Atomic Modeling
PyMOL

Biskit

GPAW

Geosciences
GIS Python
PyClimate
ClimPy

CDAT

Bayesian Stats
PyMC

Optimization
OpenOpt

Symbolic Math
SymPy

Electromagnetics
PyFemax

Astronomy
AstroLib
PySolar

Dynamic Systems
Simpy
PyDSTool

Finite Elements
SfePy

Other Languages
R
MATLAB

ATPESC 2015 - Challenges of Python at Scale - 12 August 2015

opical_Software

http://www.scipy.org/Topical_Software

Why Not Use Python? - The Language

* Low learning curve
= |t’s easy to write Fortran / C / C++ in Python
"= PEP 8isn’t the law, just a really good idea
nttp://www.python.org/dev/peps/pep-0008/
"= Reimplementation of existing solutions is way too easy
- if it’s important, there’s already a solution out there

e Easy to combine with C/C++/Fortran
" there are communities around most major packages
" really important packages have Python bindings
" not all bindings are “Pythonic”

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Why Not Use Python? - The Language

e There’s constant revision through the PEP process

e Language maintainers strive for philosophical consistency
e Backwards compatibility is seldom guaranteed
e They’re not kidding when the goal is to have only one way to do something
e features have been known to vanish e.g.: lambda
e Future features are often available in older versions to ease transitions

e Tim Peter’s The Zen of Python notes:
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one - obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right®™ now.

e Language maintainers strive for “principle of least surprise”
e Web folks are fighting for decimal numerics by default

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Why Not Use Python? - CPython

e |t’s inefficient
e Python 2.x is a true interpreter
e Pure Python is interpreted line-by-line
e “If you want your code to run faster, you should probably just use PyPy.”
— Guido van Rossum

e The GIL
e David Beazley covers it better than anyone:

http://www.dabeaz.com/python/GIL.pdf
e Distutils
e Conceived of as a way to make it easy to build and install Python modules
e Really a way of thwarting custom linking and cross-compiling

e Lots of small file I/O as part of runs

e Debuggers and performance tools hate mixing languages

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

How About A Quick Demo?

NumPy

N-dimensional homogeneous arrays (ndarray)
Universal functions (ufunc)

e basic math, linear algebra, FFT, PRNGs

Simple data file I/O

e text, raw binary, native binary

Tools for integrating with C/C++/Fortran

Heavy lifting done by optimized C / Fortran libraries
e ATLAS or MKL, UMFPACK, FFTW, etc...

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

14

Creating NumPy Arrays

Initialize with lists: array with 2 rows, 4 cols
>>> import numpy as np
>2> np.array([[1,2,3,4],[8,7,6,5]])
array([[1, 2, 3, 4],
[8, 7, 6, 5]])

Make array of evenly spaced numbers over an interval
>>> np.linspace(1,100,10)

array([1., 12., 23., 34., 45. , 56., 67
89., 100.])

Create and prepopulate with zeros
>>> np.zeros((2,5))

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

*)

78.

J

15

Slicing Arrays

>>> a = np.array([[1,2,3,4],[9,8,7,6],[1,6,5,4]])
>>> arow = a[0,:] # get slice referencing row zero
>>> arow

array([1, 2, 3, 4])

>>> cols = a[:,[0,2]] # get slice referencing columns © and 2
>>> cols

array([[1, 3],
[9, 7],
[1, 51])

NOTE: arow & cols are NOT copies, they point to the original data
>>> arow[:] = ©

>>> arow

array([0, O, 0, 0])

>>> a

array([[e) e) 0) e])
[9, 8.’ 7’ 6])
[1, 6, 5, 4]])

Copy data
>>> copyrow = arow.copy()

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

16

Broadcasting with ufuncs
apply operations to many elements with a single call

>>> a = np.array(([1,2,3,4],[8,7,6,5]))

>>> a
array([[l, 2, 3, 4],
[8, 7, 6, 5]])

Rule 1: Dimensions of one may be prepended to either array to match the array with the
greatest number of dimensions
>>> a + 1 # add 1 to each element in array
array([[z, 3: 4, 5]:
[9, 8, 7, 6]])

Rule 2: Arrays may be repeated along dimensions of length 1 to match the size of a larger
array
>>> a + np.array(([1],[10])) # add 1 to 1st row, 10 to 2nd row
array([[2, 3, 4, 5]:
[18, 17, 16, 15]])

>>> a**([2],[3]) # raise 1st row to power 2, 2nd to 3
array([[1, 4, 9, 16],
[512, 343, 216, 125]])

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

17

SciPy

e Extends NumPy with common scientific computing tools
e optimization
e additional linear algebra
* integration
* interpolation
e FFT
* signal and image processing
e ODE solvers
e Heavy lifting done by C/Fortran code

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

é 18

mpi4py - MPI for Python

* wraps a native mpi

e provides all MPI2 features

* well maintained

* requires NumPy

* insanely portable and scalable

e http://mpidpy.scipy.org/

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

http://mpi4py.scipy.org

How mpidpy works...

e mpidpy jobs must be launched with mpirun/mpiexec

e each rank launches its own independent python interpreter
* no GIL!

e each interpreter only has access to files and libraries available
locally to it, unless distributed to the ranks

e communication is handled by MPI layer

e any function outside of an if block specifying a rank is assumed to
be global

e any limitations of your local MPI are present in mpidpy

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

mpidpy basics - datatype caveats

* mpidpy can ship any serializable objects

e Python objects, with the exception of strings and integers are
pickled
* Pickling and unpickling have significant overhead
e overhead impacts both senders and receivers
e use the lowercase methods, eg: recv(),send()

e MPI datatypes are sent without pickling
 near the speed of C
e NumPy datatypes are converted to MPI datatypes
e custom MPI datatypes are still possible
* use the capitalized methods, eg: Recv(), Send()

e When in doubt, ask if what is being processed is a memory buffer
or a collection of pointers!

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Calculating pi with mpi4py

from mpidpy import MPI
import random

comm = MPI.COMM WORLD

rank = comm.Get rank()
mpisize = comm.Get size()
nsamples = int(12e6/mpisize)

inside = ©
random.seed(rank)
for 1 in range(nsamples):
X = random.random()
y = random.random()
if (x*x)+(y*y)<1:
inside += 1

mypi = (4.0 * inside)/nsamples
pi = comm.reduce(mypi, op=MPI.SUM, root=0)

if rank==0:
print (1.0 / mpisize)*pi

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Calculating pi with mpid4py and NumPy

from mpidpy import MPI
import numpy as np

comm = MPI.COMM_ WORLD

rank = comm.Get rank()
mpisize = comm.Get size()
nsamples = int(12e6/mpisize)

np.random.seed(rank)

xy=np.random.random((nsamples,2))
mypi=4.0*np.sum(np.sum(xy**2,1)<1)/nsamples

pi = comm.reduce(mypi, op=MPI.SUM, root=0)

if rank==0:
print (1.0 / mpisize)*pi

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Anyone do this in production?

GPRAW!

a massively parallel Python-C code
for electronic structure calculations

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

-

* Ab initio atomistic simulation for predicting material properties
o density functional theory (DFT) and time-dependent density

functional theory (TD-DFT)
" Nobel prize in Chemistry to Walter Kohn (1998) for DFT

* Finite difference stencils on uniform real-space grid

* Non-linear sparse eigenvalue problem
o ~106 grid points, ~103 eigenvalues

* Written in Python and C using the NumPy library
* Massively parallel using MPI
* Open source (GPL)

http://wiki.fysik.dtu.dk/gpaw

J. Enkovaara et al. J. Phys.: Condens. Matter 22, 253202 (2010)

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

>

http://wiki.fysik.dtu.dk/gpaw

GPAW Source Code Timeline

Number of lines

Bl Documentation
[Tests

140000 | (I Python-code
B LibXC-code
Bl C-code
Bl fFortran-code

160000

120000

100000

80000

60000

40000

20000

a0 .00.0%.a1 .ol 0V .02 .02 0%.00 a0 .02 .40, Q0 A% AN AV AL AL ATl aD ADAad b
O QPR G QPR 00 (LR o0 (DR O (DER G (PR GO DR G DR G

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

.\5}‘

Science done with GPAW

Number of publications

10°

=== Doubling time: 252 days

0
1OApr 2008 Aug 2008 Dec 2008 Apr 2009 Aug 2009 Dec 2009 Apr2010 Aug 2010

number of citations
w
o
o

100

o9

*—9

o o

gpawl
tddft
lcao
gpaw2
response
total

2007 2008 2009

Nature Chemistry, PRL, JACS, PNAS, PRB, ...

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Y

2010 2011

date

2012 2013 2014 2015

GPAW Strong-scaling Results

18000

16000 -

14000

12000

10000 —
~®ideal

= Au561

8000 -

speed-up

o000 Au102

4000

2000
A .

0 .
0 5000 10000 15000 20000

cores

Ground state DFT on Blue Gene P

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Y

GPAW Strong-scaling Results

LN
a \-.o‘-...-..‘ -‘
L OOO0O0S
gy .- ‘-’-...-. -. -.
GO OO0O0
LI LRI RY
Re B BeBeBeBeBe ol od =0
e 900 00 024 <4 o4
SOOI
GRERRET
_ .4 N -.o.o.-‘-..‘.

SN I
v ihehabede))
» A bty)

Ideal
- Real

20000

25000

20000

5000 |

25000

15000

10000
Processor cores

5000

ATPESC2015 - Challenges of Python at Scale - 12 August 2015 T D- D FT O n C ray XTS

-

Special operating systems

* Some supercomputing systems (BG, Cray XT) have special light-
weight kernels on compute nodes
e Lack of "standard" features
o dynamic libraries
o lots of missing system calls
o did we mention all I/O is forwarded?
* Python relies heavily on dynamic loading
o static build of Python (including all needed C-extensions) is
possible
o modification of CPython is needed for correct namespace
resolution
o See wiki.fysik.dtu.dk/gpaw/install/Cray/jaguar.html| for
some details
* Cross-compilation can be challenging - disttools is evil

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Python's import mechanism and parallel
scalability

e import statement triggers lots of metadata traffic
o directory accesses, opening and closing files

» parallel filesystems deal well only with large files/data

* There is considerably amount of imports already during Python
initialization (and yes, we trim site.py and the module search path)
o Initialization overheads do not show up in the Python timers

e With > 1000 processes problem can be severe even in production
calculations
o with 8 racks (~32 000 cores) on Blue Gene /P Python start-up

time can be 45 minutes!

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Python's import mechanism and parallel
scalability

* Possible solutions (all are sort of ugly)
o Put all the Python modules on a ramdisk

o Hack CPython - only single process reads (module) files and
oroadcasts data to others with MPI
o develop extreme patience

e—® standard Python
=& parallel imports

600 |

500

400

Import time (s)
W
o
o

200

100+

1 1000 2000 3000 4000

el —— e - - . N
500 1000 1500 2000 2500 3000 3500 4000

ATPESC2015 - Challenge: Processor cores

Y

Questions?

ATPESC2015 - Challenges of Python at Scale - 12 August 2015

Acknowledgments

This work is supported in part by the resources of the
Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-
AC02-06CH11357.

Extended thanks to

« CSC

* Northwestern University

* De Paul University

 Sameer Shende, ParaTlools, Inc.

 NumFocus for their continued support and sponsorship of
SciPy and NumPy

 Lisandro Dalcin for his work on mpi4py and petsc4py

* ChiPy

AAAAAAAAAA - Challenges of Python at Scale - 12 August 2015

-

