AAAAAAAAAAAAAAAAAA

The Swift Parallel Scripting Language
for extreme-scale workflow applications

ATPESC 2015 - August 11, 2015

Michael Wilde wilde@anl.gov
Justin Wozniak wozniak@anl.gov

http://swift-lang.org

ience

tational sc

ities in compu

Increasing capabil

e
(7p]
)
| S
O]

o

R

(T
@)

R
©
&
O

QO

..\m_xm_QEoo,_

“Time”

Workflow needs

= Application Drivers

Applications that are many-task in nature: parameters sweeps, UQ, inverse
modeling, and data-driven applications

Analysis of capability application outputs

Analysis of stored or collected data

Increase productivity at major research instrumentation
Urgent computing

These applications are all many-task in nature

= Requirements

Usability and ease of workflow expression

Ability to leverage complex architecture of HPC and HTC systems (fabric,
scheduler, hybrid node and programming models), individually and
collectively

Ability to integrate high-performance data services and volumes

Make use of the system task rate capabilities from clusters to extreme-scale
systems

= Approach

A programming model for programming in the large

When do you need HPC workflow?

Example application: protein-ligand docking for drug screening

O(100K)
O(10) proteins drug
implicated in a disease candidates
HN'BN(::H::; S. CH
SRRy = 1M
0 K
oooooo H docking
T tasks...
...then hundreds of
detailed MD

models to find
10-20 fruitful

. g clo O % N N CandithESfOI"
HO OH §r F wetlab & APS
N Je gy . crystallography

E
D03361 .

Expressing this many task workflow in Swift

For protein docking workflow:

foreach p, 1 1in proteins {
foreach ¢, jJ in ligands {
(structure[1i,3]], log[i,]]) =
dock(p, ¢, minRad, maxRad);

}

scatter plot = analyze(structure)

To run:

swift —site fusion,blues dock.swift

S

Swift enables execution of simulation campaigns across
multiple HPC and cloud resources

Data servers : :

i in geos {

(topSelection, tiles) =
(land, type. nTiles)s

i in geos {
colorimage(i]

”éee;gtg

(

— SW/ﬁw

E/ -~ dataj

Swift host: login node, laptop, ...

\

Google Compute Engine
Cloud resources

Petascale systems

=== XSEDE

Open Science Grid
National infrastructure

RESEARCH R
CDMPUTING -

A NiNp
‘.“‘amazon
webservices™

The Swift runtime system has drivers and algorithms to efficiently supportand aggregate diverse runtime environments

Y

Swift in a nutshell

= Data types = Structured data
string s = “hello world”; image A[]<array mapper..>;
int 1 = 4; N
int A[];
= Loops
m Mapped data types foreach f,1 in A {
type image; B[1] = convert(A[1]);
image filel<“snapshot.jpg”>; }

= Mapped functions
app (file o) myapp (file f, int 1)
{ mysim "-s" 1 @f Qo; } analyze (B[0], BI[1]);

analyze (B[2], BI[3]):

= Data flow

= Conventional expressions
if (x == 3) {

y = xXt2;

s = @strcat (“y: 7, vy);

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

Swift provides 4 important benefits:

Makes parallelism more transparent
Implicitly parallel functional dataflow programming

Makes computing location more transparent
Runs your script on multiple distributed sites and
diverse computing resources (desktop to petascale)
Makes basic failure recovery transparent
Retries/relocates failing tasks
Can restart failing runs from point of failure

Enables provenance capture
Tasks have recordable inputs and outputs

Pervasively parallel

= Swift is a parallel scripting system for grids, clouds and clusters

(int r) myproc (int 1)
{

int £ = F(1);

int g = G(1);

r = f + g;
}

= F() and G() are computed in parallel

— Can be Swift functions, or leaf tasks (executables or scripts in shell, python, R,
Octave, MATLASB, ...)

= rcomputed when they are done
= This parallelism is automatic
= Works recursively throughout the program’s call graph

All data atoms in Swift are “futures”

d = f(b) \(

Name:a | Type:float | Value: unset | Waiting evals
/
v—
X =a + f(v)
y = f(a)

z = a+b

Pervasive parallel data flow

parent task a
spawns §
child task b ™.

a writes data

d waits for
data

Q Task

Shared
] data item

-.~ Tlask spawn
dependency
Data
dependency

Data-intensive example:
Processing MODIS land-use data

>
SECEEEE00E00ENE00NNEEEE I

Swift loops process hundreds of images in parallel

Processing MODIS land-use data

foreach raw,i in rawFiles {
land[i] = (raw,1);
colorFiles[i] = (raw) ;
}
(topTiles, topFiles, topColors) =
(land, landType, nSelect);

gridMap = mark(topTiles);
montage =
assemble (topFiles,colorFiles,webDir);

Example of Swift’s implicit parallelism:
Processing MODIS land-use data

_ Swift loops process hundreds of images in parallel

colorize
x 317

analyze

Dataset mapping example: deep fMRI directory tree

On-Disk
Data -
Layout

—

2 DBIC
=45 Study
- =88 Group
’ =8 Subject
=8y Run
B volume
B volume
Bl volume
B} volume
- =8y Run
=8 Subject
3 =8 Subject
#-45 Study
45 Shudy

type Study {
Group g[|;

!

type Group {
Subject s[|;

!

type Subject {
Volume anat;
Run run| |;

!

type Run {
Volume v[|;

}
type Volume {

age img;
eader hdr;

}

—

»

Swift's
IN-
memory
data
model

15

-

Spatial normalization of functional MRI runs

Dataset-level workflow

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

http://swift-lang.org

-

Expanded (10 volume) workflow

Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun (Run ir, string direction)
(Run snr) functional (Runr, NormAnat a, {
Air shrink foreach Volume iv, iinir.v {
ir shrink) or.v[i] = reorient(iv, direction);

{ Run yroRun = reorientRun(r, "y");< }
Run roRun = reorientRun(yroRun, "x"); }

Volume std = roRun]0];

Run rndr = random_select(roRun, 0.1);

AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");

Volume meanRand = softmean(reslicedRndr, "y", "null");

Air mnQAAIr = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);

Run nr = reslice_warp_run(boldNormWarp, roRun);

Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6");

}..) http://swift-lang.org

Swift flavors

= Swift/K
— “Classic” Swift based on Java and Karajan
— Currently used to drive BG/Q subjob workflows

= Swift/T
— The “HPC” Swift, based on ADLB, MPI, and Turbine

— Used for high task counts and rates within a single MPI job
— Developed under ASCR X-Stack program, for extreme-scale

"= These will converge into a unified system

Swift’s distributed architecture is based on a
client/worker mechanism (internally named “coasters”)

Data servers

——

“Seri pt§

(

SW/ﬁw

E/ -~ dataj

Swift host: login node, laptop, ...

\

Google Compute Engine
Cloud resources

Petascale systems

=== XSEDE

Open Science Grid
National infrastructure

RESEARCH-
CDMPUTING

by \._\r
/%

A NiNp
‘.“‘amazon
webservices™

The Swift runtime system has drivers and algorithms to efficiently supportand aggregate diverse runtime environments

19

Worker architecture handles diverse environments

Swift file a = compute (b, c);
= compilation
Ee
a? Karajan <execute task="compute”> ...

API
Coaster Client
JVL socket
[
g 2 Coaster Service
) n
0T

sockets

sites

Worker Worker Worker Worker

Compute

20

Implementation: The job packing problem (ll)
(also not to scale)

Commit jobs to blocks and adjust as necessary based on actual walltime

N

walltime

now

The actual packing problem is NP-complete

Solved using a greedy algorithm: always pick the largest job that will fit in
a block first

12/6/2011

21

Two modes of workflow on ALCF systems

Swift/K workflows driving
: : wift/T Workflow:
Cobalt Script-mode jobs: Swift'T Workflo
A |
’ Full Fractional N .
U il Multi-rack Many function-call tasks
midplane ~ midplane jobs — single or multi-rank —

subjobs subjobs

| in a single Cobalt job

|
] RO2 || RO3 RO5 | RO6 | RO7 | RO8 | ROS9 | ROA | ROB | ROC | ROD | ROE | ROF
! !Io R13 Ri5 Y R16 | Ri7 | Ri8 | R19 | Ri1A | RiB | RiC | RiD | R1E | RiF
B/E
Il
R22 | R23 | R24 | R25 | R26 | R27 | R28 | R29 | R2A | R2B | R2C | R2D | R2E | R2F

:

Mira

Multi-scale Materials Science Workflow

Workflow is:
— Read an input file (type of atoms, number of runs, etc)
— Generate appropriate LAMMPS input files
— Launch parallel LAMMPS runs

— Gather output, do post-processing, generate SIESTA inputs
— Launch parallel SIESTA/Smeagol runs

— Gather output, do postprocessing

Large-scale applications using Swift

. . . AA s AB s BB
Simulation of super- NS I R b AR
. S E R 1
cooled glass materials T RV 11
Protein and biomolecule o',.;,na.p;fl,;.;lifs o] @

structure and interaction

Climate model analysis and
decision making for global
food production & supply

Materials science at the
Advanced Photon Source

Multiscale subsurface
flow modeling

° Latitude N

@O & 0 6 e

Modeling of power grid
for OE applications
All have published science

results obtained using
Swift

A

o Re-analyze

Red indicates higher statistical
confidence in data

Swift-Material Prototype Workflow

materialsproject.org

-
S— r.~> l
-
v

s
swift-vasp
vasp vasp -

(material id) inputs input variants

e

get_mat.py

= A python API fetches materials data using id

= A transform script perturbs the data to generate variants
= Swift-Vasp runs VASP under Swift over ALCF resources

= Turnkey solution for material scientists

2/18/16 25

High Pressure Behavior of Fe3S using VASP
(with Mainak Mookherjee, Cornell Geoscience)

Crust of variable thickness

3,380 km (~100 km in south; 30 km in north)

1,300-1,500 km

Convecting silicate mantle

(may be layered) The interior of Mars

CRUST
{10-50km thick)

Fe-S(-Si?) .
liquid outer core \

Possible solid
Fe inner core

wetallic irg,
(w/nickel
and
sulfur)

Possible transition
to ps_:rovsklte (o by Brocks s \
(equivalent to 660 km FSKD grahics it
discontinuity in Earth)

Stevenson, D. J. (2001), Mars’ core and magnetism, Nature, 412, 214-219. http://www.psrd.hawaii.edu/Weblmg/Mars Guts.gif

26
S 2/18/16

Cornell Geosciences: First Results from BG/Q

VASP app running on Mira
— One-rack initial results completed

— Further runs after analysis

Pressure [GPa]

= Abstract in the upcoming American
Geophysical Union Conference

= Planning a proposal for Director’s
Discretionary Allocation

= Scientist successfully enabled to perform

\\

VASP runs with Swift
(&
¢ \\ / /
/

Fe;S- crystal structure i‘\

Fe- brown spheres \\ >
S- yellow spheres EN/\\ \{
¢
o © ‘/ \}?\\ ¢

Magnetic Moment, ug

400 |-\ |
300\ .
200 |- .

100 | _

0 50 100 150 200

Pressure [GPa]

2/18/16

27

Numerical Simulations of the Rayleigh-Taylor
instability (in progress)
= Nek5000 code to conduct spectrally converged direct numerical
simulations of the Rayleigh-Taylor instability.
— Max Hutchinson (student of Bob Rosner at UChicago)
— Applications to Reactors, Fusion, Ocean Modeling
= Application spans Mira and Tukey:
— Three stages: Preprocess -> Simulate -> Postprocess
— Preprocess: dynamically build source with input parameters (on Cooley)
— Simulate: Run NEK5000 framework (on Mira/Cetus)
— Postprocess: Python analysis scripts (On Cooley)
= Swift solutions:

— Provide seamless access from one point of workflow executlon

Velocity (2)

— dynamically sized jobs to optimize BG/Q queue walts 6*
— capture provenance (repeatable, reproducible runs) .

ALCC Submission on Uncertainty Analysis tor
engine design modeling with HPC

No. of Total core
Case
cores S|mulat|ons hours

~512 ~ 38 million

~ 4000 10 ~ 17 million

60 million core hours for 1 year

-

L 4

Port and Optimize on MIRA Quantify uncertainties in Pl: Sibendu Som
simulations Co-Pls:
l ‘ Marta Garcia (ALCF)

establish best practices on range and set-up

Improve scalability and Identify the uncertainty Al Wagner (CSE)
MIRA I simulations P. K. Senecal (Convergent

‘ Science Inc.)
Janardhan Kodavasal (ES)

Advancing engine simulations with sensitivity analysis and HPC resources Yuanjiang Pei (ES)

4

Identify important variables influencing particular engine targets

Plan to run ~10K simulations per day 29

Centralized evaluation can be a bottleneck
at extreme scales

Had this (Swift/K): For extreme scale, we need (Swift/T):

Dataflow program I ‘ Dataflow program I

Dataflow engine Engln e Engln e

500 taSkS/S Control tasks
Scheduler Queue M

Task i...i Task

Centralized evaluation Distributed evaluation

~

Queue

Work stealing

L-15 Btasks/is —

30

Swift/T: productive extreme-scale scripting

" Script sl Swift worker process
S MPI
e — 2 ;
T < < C C++ Fortran
\/-

python

powered

= Script-like programming with “leaf” tasks
— In-memory function calls in C++, Fortran, Python, R, ... passing in-memory objects
— More expressive than master-worker for “programming in the large”
— Leaf tasks can be MPI libraries, etc. Can be separate processes if OS permits.

= Distributed, scalable runtime manages tasks, load balancing, data movement

m _ User function calls to external code run on thousands of worker nodes

Flexible placement of server ranks in a Swift/T job

One Swift server core per

e T T MOGR). o= —

) .
8 g | | N [|-
c o
21

[[[N | [[

B -our Swift nodes for the job:

o |
IS - ‘
C"_'%
dl ! :
= l

Swift/T Compiler and Runtime

Swift
Script

Data
Definitions

Dataflow
Expressions

External
Functions

___./—

STC
Compiler

Semantic
Analysis

Flattening &
Optimization

Code
Generation

/

STC translates high-level Swift
expressions into low-level

Turbine operations:

Wozniak et al. Large-scale application composition via distributed-memory

Turbine
Code

4 Turbine o

Execution

Task / Data
Dependencies

mpiexec

Memory
Management

Library
Access

— Create/Store/Retrieve typed data

L Interpreter

Turbine
Features

ADLB

User
Libraries

— Manage arrays

— Manage data-dependent tasks

data flow processing. Proc. CCGrid 2013.

Armstrong et al. Compiler techniques for massively scalable implicit

task parallelism. Proc. SC 2014.

J

33

Swift code in dataflow

= Dataflow definitions create nodes in the dataflow graph
= Dataflow assignments create edges
= |n typical (DAG) workflow languages, this forms a static graph

= |n Swift, the graph can grow dynamically — code fragments are evaluated
(conditionally) as a result of dataflow

= |nits early implementation, these fragments were just tasks

x = g();
x =9g(); 'L X
e x> 0) Ao if (x> 0) {
n = f£(x); :i> n = f(x);
foreach 1 in [0:n-1] { '
output (p(i)); v n
b}
foreach 1 .. {
output (p(i));

34

(Server 0] [Server 1]

: Work stealing, —
Tasks: ready notifications Tasks waiting
defn: £(1, 'foo',<9>) e
priority: O - = Tasks ready

Dependencies

Tasks: waiting

defn: g(<2>,<9>) Data
priority: O

Dependencies Data
New tasks operations

[Worker 2] *

.y <3>,<5>,<2>, ..

Data

int reagexs: 1 state: runnin

t121> writers: 1 Data . . : g
value: (unset) operations £(2, 'bar', <9
readers: 2

fig:t writers: 0 '
value: 3.14 Worker 3
readers: 1

array writers: 2 Tasks to _» state: idle

<9> value: execute

{<2>,<3>,<5>}

Fig. 4: Runtime architecture showing distributed worker pro-
a cesses coordinating through task and data operations.

Swift/T optimization challenge: distributed vars

| a = f1(); b = f2(a);
2 c, d = f3(a, b); e = f4(f5(c);
3 f = £4(£5(4); g = f6(e, f);

(a) Swift/T code fragment

(b) Unoptimized version, passing data as shared data and
perform synchronization

A http://swift-lang.org 3

Swift/T optimizations improve data locality

value ofe

value of C,
value of a value of b
passed

(c) After wait pushdown and elimination of shared data in favor
of parent-to-child data passing

value oge
. | passed ___..--=""
@ A0: 120: 130N .
| 50: f40;) . _
arer 130 (50); f40; >

(d) After pipeline fusion merges tasks

A http://swift-lang.org 37

Parallel tasks in Swift/T

Swift Comp”er Turbine
program > code
\/—-
[Load balancing / Data services (ADLB)]

Leaf tasks l T Notifications

| Worker [Worker] [Worker] | Worker] [Worker]

' Worker | | Worker | | Worker | | Worker | | worker |

comm comm
Dynamically-created Tasks may be placed
communicator with process or node

location constraints
= Swift expression: z = @par=32 f(x,V);
= ADLB server finds 8 available workers
— Workers receive ranks from ADLB server
— Performs comm = MPI Comm create group ()
= Workers perform £ (x, y) communicating on comm

LAMMPS parallel tasks

foreach i1 in [0:20] {
t = 300+1;
sed command = sprintf("s/ TEMPERATURE /%i/g", t);
lammps file name = sprintf("input-%i.inp", t);
lammps args = "-1 " + lammps file name;
file lammps input<lammps file name> =
sed(filter, sed command) =>

@par=8 lammps (lammps args) ;

= LAMMPS providesa
convenient C++ API

= Easily used by Swift/T = —

paraIIeI tasks Tasks with varying sizes packed into big MPI run
Black: Compute Blue: Message White: Idle

Swift/T-specific features

Task locality: Ability to send a task to a process
— Allows for big data —type applications
— Allows for stateful objects to remain resident in the workflow

— location L = find data(D);
int y = @location=L f (D, x);

Data broadcast

= Task priorities: Ability to set task priority
— Useful for tweaking load balancing

= Updateable variables

— Allow data to be modified after its initial write

— Consumer tasks may receive original or updated values when they emerge
from the work queue

Wozniak et al. Language features for scalable distributed-memory
dataflow computing. Proc. Dataflow Execution Models at PACT, 2014.

40

Swift/T: scaling of trivial foreach { } loop

100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

10000M \
...................... 10ms
oMy ey ideal
8 1OOM “““““““““““ - 10mS
Q 10M | e e T | 1ms
% M| ideal
E0.1M * ;TS
---------------- . mS
0.01M | ideal
0.001M = 0.1ms
B A N O \g’?« MU
9 %Q 2. ,brL’\ \’b'\ 6’7/ B

CPU Cores

41

Swift/T application benchmarks
on Blue Waters

1e10 1e10 1e9 150K
1e9 —5s 1e9 1e8
»1e8 37 »1e8) 8 1e7 100K @
() o
21e7 21e7 % 1e6 Q
%) n X w
Eé1e6 %196 }@ 1e5 50K éé
—1e5 - —1e5 1e4 =
1e4 1e4 1e3 0K
© o o o> P © © & o o> P © © & & g P gF o0 b
o ;g P> o o N g o o o N P & K N
Vv \Q th \Q;b 6(063 q?q, Vv \Q D‘Q ,\('on-’ 666 (i_oq:\ N LN 66 qg-)q/
(a) Sweep weak scaling: 0.2 ms tasks (b) Sweep weak scaling: 0.5 ms tasks (c) ReduceTree scaling: O s tasks
1e6 1e3
1e12 200M 40K 10 5
o o o
9 1e11 = =
g 150M § g o) 9 2
% 1e10 @ € = n 2
k) 100M 8 o 2 3 s
S 1e9 5] T o x @
> 50M o et g 8 %
g 1tes w 8 k) 5 - x
© ter m - ° % =
S K SR P LS o SR =
VS ® &P & 0 1024 2048 3072 4096

) (f) Annealing strong scaling: 256 anneal-
(d) UTS scaling (e) Wavefront: Sms tasks ing processes x 2000 tasks per objective
function x 5 parameter updates

—&— ADLB —¢— 00 01 —&—02 ——03 —— Parallelism

Fig. 10: Application speedup and scalability at different optimization levels. X axes show scale in cores. Primary Y axes show
application throughput in application-dependent terms. Secondary Y axes show problem size or degree of parallelism where
applicable.

Boosting Light Source Productivity with Swift ALCF Data Analysi PP
H Sharma, J Almer (APS); J Wozniak, M Wilde, | Foster (MCS)

Impact and Approach

Accomplishments

2014

ALCF Contributions

HEDM imaging and analysis
shows granular T
material structure, B %

non-destructively

APS Sector 1 scientists use
Mira to process data from live
HEDM experiments, providing
real-time feedback to correct
or improve in-progress
experiments

Scientists working with
Discovery Engines LDRD
developed new Swift analysis
workflows to process APS data
from Sectors 1, 6, and 11

Mira analyzes experimentin
10 mins vs. 5.2 hours on APS
cluster: > 30X improvement

Scaling up to ~ 128K cores
(driven by data features)

Cable flaw was found and
fixed at start of experiment,
saving an entire multi-day
experiment and valuable user
time and APS beam time.

In press: High-Energy Synchrotron X-
ray Techniques for Studying Irradiated
Materials, J-S Park et al, J. Mat. Res.
Big data staging with MPI-10 for
interactive X-ray science,) Wozniak et
al, Big Data Conference, Dec 2014

Design, develop, support, and trial
user engagement to make Swift
workflow solution on ALCF
systems a reliable, secure and
supported production service

Creation and support of the Petrel
data server

Reserved resources on Mira for
APS HEDM experiment at Sector
1-1D beamline (8/10/2014 and
future sessions in APS 2015 Run 1)

Red indicates higher
statistical confidence in data

Near Field-HEDM Using Mira via Swift

Single integrated cross-system script — 4GB

processe

J

3: Generate

Parameters
FOP.c
50 tasks
25s/task
% CPU hours
\Uses Swift/K /

Manual

Detector

Y

ery-4-10mjj

-10mins

Dataset
360 files
4 GB total

Workflow
Control
Script

=

This is a
single
workflow

L

1: Median calc
75s (90% 1/0)

Medianlmage.c
Uses Swift/K

N2

2: Peak Search
15s per file
ImageProcessing.c
Uses Swift/K

Bash

o

3: Convert bin L

2 min for all files,

toN Reduced
Dataset
360 files

5 MB total

.

convert files to
Network Endian
format

J

Orthros
(All data in NFS)

Globus Catalog
Scientific Metadata
Workflow Progress

Up to
2.2 M CPU hours
per week!

1

1

1

1

1

1

1

1

1

1

1

1

1

1

\ !
1

4: Analysis Pass ;
FitOrientation.c 1
60s/task (PC) ;
1667 CPU hours I
60s/task (BG/Q) !
1667 CPU hours |
Uses Swift/T !

:

1

1

1

1

1

Blue Gene/Q

feedback to experiment

Diffuse scattering and crystal analysis

= DISCUS is a general program to generate disordered atomic structures and
compute the corresponding experimental data such as single crystal
diffuse scattering (http://discus.sourceforge.net)

= Given experimental data, can we fit a modeled crystal to the
measurement?

= Experimental image:
(Billinge, 2006)

[0 0 L]

DIFFEV: Scaling crystal diffraction simulation

Refinement of a disordered structure

Swift-controlled evolutionary algorithm loop

<\

atoms \\\
shared

sio)oweled mau

—J]

Experimental data Calculated data no. 1
+ LANNE DOV PR I R AT 7 'bg L SR A T) p
3 = " 3 - -
T H [IREETa 5
o | - 5
i oc
ol P ™ . - . @ ® - £ g OpenMP thread
Al 0 6 tes£ fragment
P s LIS 8 ey eeooe
:
w Al L 224
i . . . - _ 1;: - - . - a N
AR .z L 3 ¥
. # sum e-e—e-e
I3 5
s ’ * . - - - - <
Pt IR [P NSO N TR i [I PR 00 [(O [e 443 \
0 65 1 15 2 25 3 35 4 ¢ 65 1 15 2 25
[H 0 0] [H 0 0] results ~

compare

Creates new generation from

results of parents/children

= Determines crystal configuration that produced given scattering image

through simulation and evolutionary algorithm
= Swift/T calls DISCUS via Python interfaces

DIFFEV: Genetic algorithm via dataflow

©
[main (cycles)] = Swift Swift Swift Python l
§’ [function for @ foreach function Dataflow

for (generation)

<£ do_cycle() J Task Structure

A

Swift Function
[discus_run()] foreach (kid,repetition) Python Interface

% discus () '|-| DISCUS Macro
[kuplot_run()] foreach (kid)

@ kuplot ()

Y

[diffev_run()] foreach (kid)

g diffev ()

Y

kuplot_ sel ()

A

diffev_cmp ()

|

Swift integration into NAMD and VMD

www.ks.uiuc.edu/Research/swift

& - C M [) www.ks.uiuc.edu/Research/swift/ =
i Apps 4D git-svn Y RTM [l BigBoard [Maps W Wikipedia & Swift, Inc || Proxylt! (L] Other Bookmarks

NIH CENTER FOR MACROMOLECULAR MODELING & BIOINFORMATICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Type Keywords m

THEORETICAL and COMPUTATIONAL
BiorHysics GrRoOUP

Home Research Publications Software Instruction News Galleries Facllities About Us
Home Integrating NAMD and VMD with Swift/T
Overview NAMD and VMD have recently been successfully coupled to the Swift/T high performance parallel scripting language developed as part of the ExM project, a collaboration led by Argonne National Laboratory with
University of Chicago and University of British Columbia, as a part of the Department of Energy ASCR X-Stack program. Swift/T is now supported as part of the Swift project under the NSF SI2 program. Standard NAMD
Publications 2.10 and VMD 1.9.2 binaries can be launched across the nodes of a parallel computer and efficiently execute Swift/T dataflow programs with functions implemented in the embedded Tcl scripting language. The NAMD and
VMD user communities are already familiar with Tcl, and Tcl allows access to the two programs' complete functionality. The NAMD integration with Swift/T has been used to demonstrate n:m multiplexing of n replicas across a
smaller arbitrary number m of NAMD processes, a very complex capability to implement with normal NAMD scripting that can be expressed naturally in under 100 lines of Swift/T code.
» Membrane Biology All example files: directory, tar archive
» Mechanobiology
» Nanoengineering VMD Swift/T Hello World
» Bioenergetics
» SMD/IMD VMD and Turbine must be built with compatible Tcl libraries so that VMD can dynamically load libtclturbine.so.
» Quantum Biology . .
) Ne + Example command: mpiexec -n 8 vmdwrapper -e vmdswift.tcl
urobiology N
b Yoray/CryoEM « Wrapper script to run standard VMD under MPI: vmdwrapper
Modaling with MDFF « Tcl package and Swift startup for VMD: vmdswift.tcl
» Driving Blomedical « Swift program source code: hello.swift
Projects « Swift compiler Tcl output: hello.tcl
» Collaborations
» Other Topics NAMD Swift/T Replica Exchange
Software NAMD and Turbine must be built with compatible Tcl libraries so that NAMD can dynamically load libtclturbine.so.
Outreach + Example command: mpiexec -n 8 namdwrapper namdswift.tcl apoal.namd --run 0 --source $cwd/replica.tcl < /dev/null &
« Wrapper script to run multicore NAMD under MPI: namdwrapper
« Tcl package and Swift startup for NAMD: namdswift.tcl
« Swift program source code: replica.swift
« Swift compiler Tcl output: replica.tcl
NAMD Swift/T MPI Tight Binding
Charm++ and NAMD must be built from source code. An MPI-based Charm++ must be used. Apply the patches below to Charm++ and NAMD, respectively, to allow Turbine to access the Charm++ inter-partition
communicator. Charm++, NAMD, and Turbine must be built with compatible Tcl and MPI libraries so that NAMD can dynamically load libtclturbine.so.
+ Example command: mpiexec -n 32 Linux-x86_64-g++.mpi/namd2 namdswift.tcl apoal.namd --run 0 --source $cwd/replica.tcl +replicas 8
+stdout /var/tmp/stdout.%d.log < /dev/null &
« Patch for Charm++ source code: charmswift.patch
« Patch for NAMD source code: namdswift.patch
Funded by a grant from . Institute for Sclence and /I National of Health // National Science Foundation // Physics, Computer Science, and Biophysics at University of Illinois at Urbana-Champaign
gmm:::msgl‘.:"' S the Pliysics Contact Us // Matenal on this page is copyrighted; contact Webmaster for more information. /f Document last modified on 10 Jul 2014 // 109 accesses since 25 Jun 2014 . I I L L I N O I S
:;‘r:.::;tloml Institutes of Living Cells UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN

48
A www.ci.uchicago.edu/swift

Conclusion: parallel workflow scripting is practical,
productive, and necessary, at a broad range of scales

= Swift programming model demonstrated feasible and
scalable on XSEDE, Blue Waters, OSG, DOE systems

= Applied to numerous MTC and HPC application domains
— attractive for data-intensive applications
— and several hybrid programming models

" Proven productivity enhancementin materials,
genomics, biochem, earth systems science, ...

= Deep integration of workflow in progress at XSEDE, ALCF

Workflow through implicitly parallel dataflow is
productive for applications and systems at many scales,
including on highest-end system

What’s next?

= Programmability

— New patterns ala Van Der Aalst et al (workflowpatterns.org)
" Fine grained dataflow — programmingin the smaller?

— Run leaf tasks on accelerators (CUDA GPUs, Intel Phi)

— How low/fast can we drive this model?
= PowerFlow

— Applies dataflow semantics to manage and reduce energy usage
= Extreme-scale reliability
= Embed Swift semanticsin Python, R, Java, shell, make

— Can we make Swift “invisible”? Should we?
= Swift-Reduce

— Learning from map-reduce
— Integration with map-reduce

GeMTC: GPU-enabled Many-Task Computing

Motivation: Support for MTC on all accelerators!

Goals: Approach:

1) MTC support 2) Programmability Design & implement GeMTC middleware:
3) Efficiency 4) MPMD on SIMD 1) Manages GPU 2) Spread host/device
5) Increase concurrency to warp level 3) Workflow system integration (Swift/T)

CPU Worker]

I
1

T \
Work Stealing L(server |

U Worker } j j

CPU Worker J

=) U

CPU Worker] CPU Worker] j j j CPU Worker J
GeMTC Worker] GeMTC Worker] @ @ a GeMTC Worker}
GPU Gru ||| [] GPU
Node O Node 1 Node N

Further research directions

= Deeply in-situ processing for extreme-scale analytics
= Shell-like Read-Evaluate-Print Loop a la iPython
= Debugging of extreme-scale workflows

w——F——7f—!-1——v—w—-/

\‘)

Deeply in-situ analytics of a
climate simulation

Swift gratefully acknowledges support from:

0 U.S. DEPARTMENT OF

D
Q?
5 :
& B
Z, S,
>\
A\ 5
S SO% »

Argonne

NATIONAL LABORATORY
8| THE UNIVERSITY OF

CHICAGO ALCF

http://swift-lang.org

