Big Data Analytics: The Apache Spark Approach

Michael Franklin
ATPESC
August 2017
Nearly every field of endeavor is transitioning from “data poor” to “data rich”

- Astronomy: LSST
- Physics: LHC
- Oceanography
- Sociology: The Web
- Biology: Sequencing
- Economics: mobile, POS terminals
- Neuroscience: EEG, fMRI
- Sports
- Data-Driven Medicine
The Fourth Paradigm of Science

1. Empirical + experimental
2. Theoretical
3. Computational
4. Data-Intensive
Open Source Ecosystem & Context

2006-2010
Autonomic Computing & Cloud
Usenix HotCloud Workshop 2010

Spark: Cluster Computing with Working Sets
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract
MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications on commodity clusters. However, most of these systems are built around an acyclic data flow model that is not suitable for other popular applications. This paper focuses on one such class of applications: those that reuse

2011-2016
Big Data Analytics
AMP Lab Project Vision
“Making Sense of Data at Scale”

- **Algorithms**
 - Machine Learning, Statistical Methods
 - Prediction, Business Intelligence

- **Machines**
 - Clusters and Clouds
 - Warehouse Scale Computing

- **People**
 - Crowdsourcing, Human Computation
 - Data Scientists, Analysts
Berkeley Data Analytics Stack

In House Applications – Genomics, IoT, Energy, Cosmology

Access and Interfaces

Processing Engines

Storage

Resource Virtualization
Some AMPLab numbers

• Funding – roughly 50/50 Govt/Industry Split
 – NSF CISE Expeditions, DARPA, DOE, DHS
 – Google, SAP, Amazon, IBM (Founding Sponsors) + dozens more
• Nearly 2M visits to amplab.cs.berkeley.edu
• 200+ Papers in Sys, ML, DB, … 3 ACM Dissertation Awards (1 + 2 HM); Numerous Best Paper and Best Demo Awards
• 40+ Ph.D.s granted (so far); Alumni on faculty at Berkeley, Harvey Mudd, Michigan, MIT, Stanford, Texas, Wisconsin,…
• 3 Spinout companies directly from AMPLab:
 – Databricks, Mesosphere, Alluxio
 – Nearly $250M raised to date
• Many industrial products & services based on or using Spark
• 3 Marriages (and numerous long-term relationships)
Apache Spark Meetups (August 2017)

618 groups with 391,371 members

spark.meetup.com
We Hit A Data Management Inflection Point

• Massively scalable processing and storage
• Pay-as-you-go processing and storage (a.k.a. the cloud)
• Flexible schema on read vs. schema on write
• Integration of search, query and analysis
• Sophisticated machine learning/prediction
• Human-in-the-loop analytics
• Open source ecosystem driving innovation
BDAS Unification Strategy

• Specializing MapReduce leads to stovepiped systems

• Instead, **generalize** MapReduce:

 1. Richer Programming Model ➔ Fewer Systems to Master
 2. Data Sharing ➔ Less Data Movement leads to Better Performance

Spark showed 10x performance improvement on existing HDFS data with no migration.
Abstraction: *Dataflow Operators*

- `map`
- `filter`
- `groupBy`
- `sort`
- `union`
- `join`
- `leftOuterJoin`
- `rightOuterJoin`
- `reduce`
- `count`
- `fold`
- `reduceByKey`
- `groupByKey`
- `cogroup`
- `cross`
- `zip`
- `sample`
- `take`
- `first`
- `partitionBy`
- `mapWith`
- `pipe`
- `save`
- `...`
Iteration in Map-Reduce

Initial Model

$w^{(0)}$

Training Data

Map

Reduce

Learned Model

$w^{(1)}$

$w^{(2)}$

$w^{(3)}$
Cost of Iteration in Map-Reduce

- Initial Model: $W^{(0)}$
- Reading Data: Read 1, Read 2, Read 3
- Map
- Reduce
- Learned Model: $W^{(1)}$, $W^{(2)}$, $W^{(3)}$

Repeatedly load same data
Cost of Iteration in Map-Reduce

Redundantly save output between stages
Dataflow View

Training Data (HDFS)

Map → Reduce

Map → Reduce

Map → Reduce
Memory Opt. Dataflow

Training Data (HDFS)

Cached Load

Map \rightarrow Reduce

Map \rightarrow Reduce

Map \rightarrow Reduce
Memory Opt. Dataflow View

Efficiently move data between stages

Spark: $10-100\times$ faster than Hadoop MapReduce
Spark Fault Tolerance

- **RDDs**: Immutable collections of objects that can be stored in memory or disk across a cluster
 - Built via parallel transformations (map, filter, ...)
 - Automatically rebuilt on (partial) failure

```
messages = textFile(...).filter(_.contains("error"))
          .map(_.split(\t)(2))
```

DataFrames
(main abstraction in Spark 2.0)

employees
.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Notes:
1) Some people think this is an improvement over SQL 😊
2) Dataframes can be typed
Catalyst Optimizer

• Typical DB optimizations across SQL and DF
 – Extensibility via Optimization Rules written in Scala
 – Open Source optimizer evolution!
• Code generation for inner-loops, iterator removal
• Extensible Data Sources: CSV, Avro, Parquet, JDBC, ...
 via TableScan (all cols), PrunedScan (project),
 FilteredPrunedScan (push advisory selects and projects)
 CatalystScan (push advisory full Catalyst expression trees)
• Extensible (User Defined) Types

An interesting thing about SparkSQL Performance

- DataFrame SQL
- DataFrame R
- DataFrame Python
- DataFrame Scala
- RDD Python
- RDD Scala

Time to Aggregate 10 million int pairs (secs)
Lambda Architecture: one way to combine Real-Time + Batch

- lambda-architecture.net
Spark Streaming

• Microbatch approach provides low latency

Additional operators provide windowed operations

S. Venketaraman et al, Azkar: Fast and Adaptable Stream Processing at Scale, SOSP 2017
Spark Structured Streams (unified)

Batch Analytics

```scala
// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour")).count()
  .write.format("jdbc")
  .save("jdbc:mysql://...")
```

Streaming Analytics

```scala
// Read data continuously from an S3 location
val inputDF = spark.readStream.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour")).count()
  .writeStream.format("jdbc")
  .start("jdbc:mysql://...")
```
Putting it all Together: Multi-modal Analytics

// Load historical data as an RDD using Spark SQL
val trainingData = sql("SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib
val model = new KMeans()
 .setFeaturesCol("location")
 .setPredictionCol("language")
 .fit(trainingData)

// Apply the model to new tweets in a stream
val stream = twitterUtils.createStream(...)
 .map(tweet => model.predict(tweet.location))
SPARK SURVEY 2016

23% DATA SCIENTISTS
21% ARCHITECTS
10% TECHNICAL MANAGEMENT
5% ACADEMICS

1615 RESPONDENTS
900 DISTINCT ORGANIZATIONS

41% DATA ENGINEERS
From: Spark User Survey 2016, 1615 respondents from 900 organizations
http://go.databricks.com/2016-spark-survey
Q: WHICH LANGUAGES DO YOU USE SPARK IN?

% of respondents who use each language (more than one language could be selected)

- **Scala**
 - 2015: 71%
 - 2016: 65%

- **SQL**
 - 2015: 36%
 - 2016: 44%

- **Python**
 - 2015: 58%
 - 2016: 62%

- **R**
 - 2015: 18%
 - 2016: 20%

- **Java**
 - 2015: 31%
 - 2016: 29%
COMPONENTS USED IN PROTOTYPING AND PRODUCTION

More than one component could be selected.

- 31% Datasets
- 14% GraphX
- 43% MLLib
- 43% Spark Streaming
- 67% Spark SQL
- 67% DataFrames
% OF RESPONDENTS WHO CONSIDERED THE FEATURE VERY IMPORTANT

More than one feature could be selected.

- 51% Real-time Streaming
- 91% Performance
- 69% Ease of Deployment
- 76% Ease of Programming
- 82% Advanced Analytics
Spark Ecosystem Attributes

• Spark focus was initially on
 – Performance + Scalability with Fault Tolerance

• Eventually, ease of development was a key feature
 – especially across multiple modalities: DB, Graph, Stream, etc.

• This was true of most Big Data software of that generation

• Low Latency (streaming) and Deep Learning are also garnering significant attention lately
What’s Next?

Innovation in (open source) Big Data Software continues. Performance, Scalability, and Fault Tolerance remain important, but we face new challenges, including:

Data Science Lifecycle
- Data Acquisition, Integration, Cleaning (i.e., wrangling)
- Data Integration remains a “wicked problem”
- Model Building
- Communicating results, Curation, “Translational Data Science”

Ease of Development and Deployment
- Can leverage database ideas (e.g., declarative query optimization)
- New components for “model serving” and “model management”

“Safe” Data Science
- end-to-end Bias Mitigation
- Security, Ethics and Data Privacy
- Explaining and influencing decisions
- Human-in-the-loop
Thanks and for More Info

Mike Franklin
mjfranklin@uchicago.edu