Time Integration

Presented to
ATPESC 2017 Participants

Carol S. Woodward
SUNDIALS Project Lead
Lawrence Livermore National Laboratory

Q Center, St. Charles, IL (USA)
Date 08/07/2017
Outline

• Software
• Definition of ODEs and DAEs
• Stability and stability restrictions
• Implicit vs. explicit methods
• Stiffness
• Linear multistep methods
• Multistage methods and additive multistage methods

• Need for solvers
• Adaptive methods
• Rootfinding
• Data use
• SUNDIALS
• Summary
High performance time integration software is available in the DOE in different forms that meet different needs

- **PETSc**: TS package, includes DAE and ODE integrators based on variable step multistage methods and additive multistage methods, C
- **Trilinos**: Rythmos and Chronos, include ODE and DAE integrators, C++
- **SUNDIALS**: Variable step and variable order linear multistep methods, variable step multistage and additive multistage methods, C

While there are numerous integration packages, this talk will emphasize the way SUNDIALS handles each of presented topics
ODEs and DAEs arise in numerous application areas

• Ordinary Differential Equations (ODEs) \(\dot{y} = f(t, y) \)
 – Method of lines discretization of PDEs: \(f \) embeds all of the discrete spatial operations
 – Chemical reactions: \(f \) includes terms for each reaction

• Differential Algebraic Equations (DAEs) \(F(t, y, \dot{y}) = 0, \ y(0) = y_0 \)
 – Method of lines discretization of PDEs with algebraic constraints
 – Transmission power system models: \(F \) includes differential equations for power generators and a large network-based algebraic system constraining power flow
 – Circuit models
 – If \(\frac{\partial F}{\partial \dot{y}} \) is invertible, we solve for \(\dot{y} \) to obtain an ordinary differential equation (ODE), but this is not always the best approach
 – Else, the system is a differential algebraic equation (DAE)
Stability is a key concept when discussing time integration

Dalquist test equation: $\dot{y} = \lambda y$, \quad $y_0 = 1$

Exact solution: $y(t_n) = y_0 e^{\lambda t_n}$

If $\text{Re}(\lambda)<0$, then $|y(t_n)|$ decays exponentially, and we cannot tolerate growth in y_n

Absolute stability requirement

$$|y_n| \leq |y_{n-1}|, \quad n = 1, 2, \ldots$$

Region of absolute stability of an integrator: $S = \{z \in \mathbb{C}; |R(z)| \leq 1\}$

where an integrator can be written as $y_n = R(z)y_{n-1}$, with time advance $z = h\lambda$
Forward and backward Euler show different stability restrictions

- Forward Euler: \(y_n = y_{n-1} + h(\lambda y_{n-1}) \Rightarrow R(z) = 1 + h\lambda \)

So, if \(\lambda < 0 \), FE has the step size restriction: \(h \leq \frac{2}{-\lambda} \)

- Backward Euler: \(y_n = y_{n-1} + h(\lambda y_n) \Rightarrow R(z) = \frac{1}{1-h\lambda} \)

So, if \(\lambda < 0 \), BE has the step size restriction: \(h > 0 \)
Curtiss and Hirchfelder example demonstrates what can happen with failure to meet the stability step restriction.

\[\dot{y} = -50(y - \cos(t)) \quad \lambda = -50 \]

\[h = 2.01/50 \]
Meeting the restriction with an explicit method or using an implicit method makes a difference!

\[\dot{y} = -50(y - \cos(t)) \quad \lambda = -50 \]

Forward Euler

Implicit schemes

h=0.5 for BE
Explicit and implicit approaches should be selected based on needs of the problem

<table>
<thead>
<tr>
<th>Explicit Methods</th>
<th>Implicit Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Easy to conceptualize</td>
<td>✓ Less or nonexistent stability limits</td>
</tr>
<tr>
<td>✓ Easy to code</td>
<td>✓ Steps over fastest dynamics</td>
</tr>
<tr>
<td>✓ Do not require solvers</td>
<td>⚩ Require linear and/or nonlinear solvers</td>
</tr>
<tr>
<td>⚩ Stability limits on step sizes</td>
<td>⚩ Solvers generally require coupling over all unknowns</td>
</tr>
<tr>
<td>⚩ Tracks fastest dynamics</td>
<td>⚩ Code complexity higher</td>
</tr>
</tbody>
</table>

Implicit methods are most useful when fast dynamics of little interest are present, and accuracy requirements would dictate a much larger time step for resolution
For any time-dependent system, need to know if it is stiff before choosing a numerical solution approach

- (Ascher and Petzold, 1998): If the system has widely varying time scales, and the phenomena that change on fast scales are stable, then the problem is **stiff**

- Stiffness depends on
 - Jacobian eigenvalues, λ_j
 - System dimension
 - Accuracy requirements
 - Length of simulation

- In general a problem is stiff on $[t_0, t_1]$ if $(t_1 - t_0) \min_j \Re(\lambda_j) << -1$

- Due to stability requirements, stiff problems generally require implicit approaches

Implicit approaches for stiff problems often require a very robust nonlinear solver for each time step solution
Linear multistep methods construct approximations based on prior states

- Linear Multistep Methods
 \[\sum_{j=0}^{K_1} \alpha_{n,j} y_{n-j} + \Delta t n \sum_{j=0}^{K_2} \beta_{n,j} \dot{y}_{n-j} = 0 \]

- Nonstiff Implicit: Adams-Moulton
 - \(K_1 = 1, K_2 = k, k = 1, \ldots, 12 \)

- Stiff: Backward Differentiation Formulas [BDF]
 - \(K_1 = k, K_2 = 0, k = 1, \ldots, 5 \)

- Stiff integrators often use a predictor-corrector scheme:

 Explicit predictor to give \(y_n(0) \)
 \[y_n(0) = \sum_{j=1}^{q} \alpha_{j}^p y_{n-j} + \Delta t \beta_{1}^p \dot{y}_{n-1} \]

 Implicit corrector with \(y_n(0) \) as initial iterate
 \[y_n = \sum_{j=1}^{q} \alpha_{j} y_{n-j} + \Delta t \beta_{0} f_n(y_n) \]
Multistage methods construct approximations based on estimates of derivatives at multiple points in a time step

- Multistage methods employ multiple stage solutions
 \[z_i = y_{n-1} + h_n \sum_{j=1}^{s} a_{i,j} f(t_{n,j}, z_j), \quad i = 1, \ldots, s \]
 \[y_n = y_{n-1} + h_n \sum_{i=1}^{s} b_i f(t_{n,i}, z_i) \]
- The a’s, b’s, c’s, and s define the method, its order of accuracy, and its stability
- Codes with adaptivity in spatial systems or models cannot easily use multi-step methods due to need to interpolate prior step information
- Runge-Kutta (RK) methods are multistage so do not require prior states
- RK methods require multiple nonlinear solves per time step
- Additive RK methods can apply explicit and implicit methods to a split system allowing consistent approximations while using different methods on each
Additive methods address systems with both stiff and nonstiff components

• Split system into stiff, f_I, and nonstiff, f_E, components $M\dot{y} = f_E(t, y) + f_I(t, y)$

• M may be the identity or any nonsingular mass matrix (e.g. FEM)

• Variable step size additive Runge-Kutta Methods combine explicit (ERK) and diagonally implicit (DIRK) RK methods to enable an ImEx integrator

• Let $t_{n,j} = t_{n-1} + c_j \Delta t_n$:

$$Mz_i = My_{n-1} + h_n \sum_{j=0}^{i-1} A_{i,j}^E f_E(t_{n-1} + c_j h_n, z_j) + h_n \sum_{j=0}^{i} A_{i,j}^I f_I(t_{n-1} + c_j h_n, z_j),$$

$$My_n = My_{n-1} + h_n \sum_{i=0}^{s} b_i (f_E(t_{n-1} + c_i h_n, z_i) + f_I(t_{n-1} + c_i h_n, z_i)),$$

• Solve for stage solutions, $z_i, i = 1, \ldots, s$, sequentially
Implicit solutions result in nonlinear systems at each time step or stage

- Use predicted value as the initial iterate for the nonlinear solver
- Nonstiff systems: Functional iteration or fixed point iteration

$$y_{n(m+1)} = \beta_0 \Delta t_n f(y_{n(m)}) + \sum_{i=1}^{q} \alpha_{n,i} y_{n-i}$$

- Stiff systems: Newton iteration

$$M \left(y_{n(m+1)} - y_{n(m)}\right) = -G \left(y_{n(m)}\right)$$

ODE

$$\dot{y} = f(y)$$

$$M \approx I - \gamma \frac{\partial f}{\partial y} \quad \gamma = \beta_0 \Delta t_n$$

$$G(y_n) \equiv y_n - \beta_0 \Delta t_n f(t, y_n) - \sum_{i=1}^{k} \alpha_{n,i} y_{n-i} = 0$$

DAE

$$F(y, \dot{y}) = 0$$

$$M \approx \frac{\partial F}{\partial y} + \gamma \frac{\partial F}{\partial \dot{y}} \quad \gamma = 1/ (\beta_0 \Delta t_n)$$

$$G(y_n) \equiv F \left(t, (\beta_0 \Delta t_n)^{-1} \sum_{i=1}^{k} \alpha_{n,i} y_{n-i}, y_n\right) = 0$$
Adaptive methods choose time steps to minimize local truncation error and maximize efficiency

- User-defined tolerances:
 - Absolute tolerance on each solution component, ATOLi
 - Relative tolerance for all solution components, RTOL

- Norm calculations are weighted by:
 \[ewt^i = \frac{1}{RTOL|y^i| + ATOL^i} \]

- Errors are measured with a weighted root-mean-square norm:
 \[\|y\|_{W RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (ewt^i \cdot y^i)^2} \]

- Choose time steps to bound an estimate of the local truncation error; can do with both multistep and multistage methods
The choice of tolerances is critical to accuracy and efficiency for these adaptive methods

• The relative tolerance controls error relative to the size of the solution
 – RTOL = 10^{-4} means that errors are controlled to 0.01%
 – We do not recommend an RTOL above 10^{-3} nor one close to unit roundoff, 10^{-15}

• The absolute tolerances control the absolute size of error when any solution component may be so small that pure relative error control is meaningless
 – Ex: solution starting at a nonzero value but decaying to a noise level, ATOL should be set to the noise level
 – If different components have different noise levels then want ATOL to be a vector

• In general, want to be a bit conservative with these tolerances
 – Rule of thumb: use tolerances 0.01 below desired limits to ensure global errors are below limit

• But not too conservative as the integrator will work harder to meet tight tolerances

To use these adaptive methods effectively, choose tolerances carefully!
Rootfinding capabilities are critical in some applications

• Finds roots of solution-dependent user-defined functions, $g_i(t, y) = 0$ or $g_i(t, y, \dot{y}) = 0$

• Important in applications where problem definition may change based on a function of the solution

• Rootfinding is a critical feature for applications like power grid where solution-dependent system adaptations are common, e.g. voltage limit on a generator

• Roots are found by looking at sign changes, so only roots of odd multiplicity are found

• Checks each time interval for sign change

• When sign changes are found, apply a modified secant method with a tight tolerance to identify root
Time integrator algorithms do not need to rely on specific data layouts

- All operations within the integrator can be conducted on vectors
- Packages define a vector API; users can use their structures coded to this API
- Within SUNDIALS, each vector implementation defines a content structure and all implemented vector operations, along with routines to clone vectors
- For an implicit method, data layouts are used in
 - Specific vector implementations (streaming and reduction)
 - Solvers (linear and/or nonlinear)
 - Problem-defining function evaluations, f and F, and Jacobian evaluations

Using a time integrator on a given machine requires an efficient implementation of the problem-defining functions, as these typically are the dominant cost
SUNDIALS: SUite of Nonlinear and DIfferential / ALgebraic equation Solvers

- **ODE integrators:**
 - (CVODE/CVODES) variable order and step stiff BDF and non-stiff Adams
 - (ARKode) variable step implicit, explicit, and additive IMEX Runge-Kutta
- **DAE integrators:** (IDA/IDAS) variable order and step stiff integrators
- CVODES and IDAS are equipped with forward and adjoint sensitivity analysis
- **Nonlinear Solver:** (KINSOL) Newton-Krylov, Picard, and accelerated fixed point
- Serial, MPI, openMP, and pthreads vectors; CUDA will be released this fall
- Written in C with interfaces to Fortran
- Designed to be easily incorporated into existing codes
- Modular design allows users to supply their own data structures
- CMAKE-based portable build system
- Freely available (BSD license); >11,000 downloads/year from around the world
- Active user community supported by sundials-users email list

http://www.llnl.gov/CASC/sundials
SUNDIALS has been used worldwide in applications from research and industry

- Power grid modeling (RTE France, LLNL, ISU)
 - Simulation of clutches and power train parts (LuK GmbH & Co.)
 - Magnetism at the nanoscale (Magpar, Nmag)
- 3D parallel fusion (SMU, U. York, LLNL)
- Spacecraft trajectory simulations (NASA)
- Dislocation dynamics (LLNL)
- Combustion and reacting flows (Cantera)
 - Large-scale subsurface flows (Mines, LLNL)
 - 3D battery simulation (ORNL - AMPERE)
- Computational modeling of neurons (NEURON)
- Micromagnetic simulations (U. Southampton)
- Released in third party packages:
 - Red Hat Extra Packages for Enterprise Linux (EPEL)
 - SciPy – python wrap of SUNDIALS
 - Cray Third Party Software Library (TPSL)
Summary

• When choosing a time integration method, need to understand
 – What the time scales in the system are
 – Whether the application requires resolving all time scales
 – Whether the system is stiff
 – Whether the system has adaptivity in the spatial or model components
 – What the accuracy requirements are

• The choice of tolerances can impact both accuracy and performance

• Multistep and multistage methods have different characteristics that may make each better suited to an application

• Implicit methods will need algebraic solvers (nonlinear and/or linear)

• Time integrators can be implemented in a data agnostic way allowing for use of application-specific data structures