Code Coverage and Continuous Integration

Presented to
ATPESC 2017 Participants

Alicia Klinvex
Sandia National Laboratories

Q Center, St. Charles, IL (USA)
Date 08/09/2017
How do we determine what other tests are needed?

• Code coverage tools
 – Expose parts of the code that aren’t being tested
 – gcov
 • standard utility with the GNU compiler collection suite
 • counts the number of times each statement is executed
 – lcov
 • a graphical front-end for gcov
 • available at http://ltp.sourceforge.net/coverage/lcov.php
How to use gcov/lcov

• Compile and link your code with --coverage flag
 – It’s a good idea to disable optimization
• Run your test suite
• Collect coverage data using gcov/lcov
• Optional: generate html output using genhtml
A hands-on gcov tutorial

• https://amklinv.github.io/morpheus/index.html
But I don’t use C++!

- gcov also works for C and Fortran
- Other tools exist for other languages
 - J撮ov for Java
 - Coverage.py for python
 - Devel::Cover for perl
 - profile for MATLAB
 - etc
Continuous integration
Continuous integration (CI): a master branch that always works

• Code changes trigger automated builds/tests on target platforms
• Builds/tests finish in a reasonable amount of time, providing useful feedback when it’s most needed
• Immensely helpful!
• Requires some work, though:
 – A reasonably automated build system
 – An automated test system with significant test coverage
 – A set of systems on which tests will be run, and a controller
Continuous integration (CI): a master branch that always works

• Has existed for some time

• Adoption has been slow
 – Setting up and maintaining CI systems is difficult, labor-intensive (typically requires a dedicated staff member)
 – *You have to be doing a lot of things right to even consider CI*
Cloud-based CI is available as a service on GitHub

- Automated builds/tests can be triggered via pull requests
- Builds/tests can be run on cloud systems – no server in your closet. *Great use of the cloud!*
- Test results are reported on the pull request page (with links to detailed logs)
- Already being used successfully by scientific computing projects, with noticeable benefits to productivity
- Not perfect, but *far* better than not doing CI
Travis CI is a great choice for HPC

- Integrates easily with GitHub
- *Free* for Open Source projects
- Supports environments with C/C++/Fortran compilers (GNU, Clang, Intel[?])
- Linux, Mac platforms available
- *Relatively* simple, *reasonably* flexible configuration file
 - Documentation is sparse, but we now have working examples
Travis CI live demo

- https://github.com/amklinv/morpheus