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Data-Driven	Science	Examples
For	many	problems	there	is	a	deep	coupling	of observation	
(measurement)	and	computation	(simulation)

Cosmology:	The	study	of	the	universe	as	a	dynamical	system	
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Materials	science:	Diffuse	scattering	to	understand	disordered	structures	

Images	from	Salman	Habib	et	al.	(HEP,	MCS,	etc.)	and	Ray	Osborne	et	al.	(MSD,	APS,	etc.)



How	Many	Projects?



By 2020, the market for 
machine learning will reach $40 

billion, according to market 
research firm IDC.

Deep Learning market is 
projected to be ~$5B by 2020











Markets	are	Developing	
at	Different	Rates	~2020

• HPC	(Simulation)à ~$30B	@	5.45%	
• Data	Analysis	à ~$200B	@	11.7%
• Deep	Learning	à ~$5B	@	65%

• DL	>	HPC	in	2024
• DL	>	DA	in	2030



Big	Picture

• Mix	of	applications	is	changing
• HPC	“Simulation”,	“Big”	Data	Analytics,	
Machine	Learning	“AI”

• Many	projects	are	combining	all	three	
modalities
– Cancer
– Cosmology
– Materials	Design
– Climate
– Drug	Design



Deep	Learning in	
Climate	Science

• Statistical	Downscaling
• Subgrid Scale	Physics
• Direct	Estimate	of	Climate	

Statistics
• Ensemble	Selection
• Dipole/Antipode	Detection





Deep	Learning	in	Genomics



Predicting	Microbial	Phenotypes



Classification	of	Tumors

Using	deep	learning	to	enhance	cancer	diagnosis	and	classification,	ICML2013



High	Throughput	Drug	Screening

Deep	Learning	as	an	Opportunity	in	Virtual	Screening,	NIPS2014	



Deep	Networks	Screen	Drugs



Deep	Learning	and	Drug	Discovery



Deep	Learning	In	Disease	Prediction



Learning
Climate
Disease

Environment
Associations

Big	Data	Opportunities	for	Global	Infectious	Disease	Surveillance	
Simon	I.	Hay,	Dylan	B.	George,	Catherine	L.	Moyes,	John	S.	Brownstein	



Neural	Networks
in

Materials	science

• Estimate	Materials	
Properties	from	
Composition	
Parameters

• Estimate	Processing	
Parameters	for	
Synthesis

• Materials	Genome



Searching	For	Lensed	Galaxies



15	TB/Night
Use	CNN	to	find	
Gravitational	
Lenses



Deep	Learning	is	becoming	a	major	element	of	
scientific	computing	applications

• Across	the	DOE	lab	system	hundreds	of	
examples	are	emerging
– From	fusion	energy	to	precision	medicine
– Materials	design
– Fluid	dynamics
– Genomics
– Structural	engineering
– Intelligent	sensing
– Etc.



WE	ESTIMATE	BY	2021	ONE	THIRD	OF	THE	
SUPERCOMPUTING	JOBS	ON	OUR	MACHINES

WILL	BE	MACHINE	LEARNING	APPLICATIONS

SHOULD	WE	CONSIDER	ARCHITECTURES	THAT	ARE	
OPTIMIZED	FOR	THIS	TYPE	OF	WORK?

HOW	TO	LEVERAGE	EXASCALE?



The	New	HPC	“Paradigm”
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The	Critical	Connections	I

• Embedding	Simulation	into	Deep	Learning
– Leveraging	simulation	to	provide	“hints”	via	the	
Teacher-Student	paradigm	for	DNN

– DNN	invokes	“Simulation	Training”	to	augment	
training	data	or	to	provide	supervised	“labels”	for	
generally	unlabeled	data

– Simulations	could	be	invoked	millions	of	times	
during	training	runs

– Training	rate	limited	by	simulation	rates
– Ex.	Cancer	Drug	Resistance



Hybrid	Models	in	Cancer



Teacher-Student	Network	Model



Teacher-Student	Network	Model
Simulation	Based	Predictions



Integrating	ML	and	Simulation



The	Critical	Connections	II

• Embedding	Machine	Learning	into	Simulations
– Replacing	explicit	first	principles	models	with	
learned	functions

– Faster,	Lower	Power,	Lower	Accuracy(?)
– Functions	in	simulations	accessing	ML	models	at	
high	throughput

– On	node	invocation	of	dozens	or	hundreds	of	
models	millions	of	times	per	second?

– Ex.	Nowcasting in	Weather



Algorithm	Approximation

Neural	Acceleration	for	General-Purpose	Approximate	
Programs	
Hadi Esmaeilzadeh Adrian	Sampson	Luis	Ceze Doug	Burger∗
University	of	Washington	∗Microsoft	Research	



Replacing	Imperative	Code	with
NN	Computed	Approximations

Neural	Acceleration	for	General-Purpose	Approximate	Programs	
Hadi Esmaeilzadeh Adrian	Sampson	Luis	Ceze Doug	Burger∗
University	of	Washington	∗Microsoft	Research	



2.3x	Speedup,	3x	Power	Reduction,	
~7%	Error

Neural	Acceleration	for	General-Purpose	Approximate	Programs	
Hadi Esmaeilzadeh Adrian	Sampson	Luis	Ceze Doug	Burger∗
University	of	Washington	∗Microsoft	Research	



Joint	Design	of	Advanced	
Computing	Solutions	for	Cancer	
DOE-NCI	partnership	to	advance	
cancer	research	and	high	
performance	computing	in	the	U.S.

NCI
National	
Cancer	
InstituteDOE

Department
of	Energy

Cancer	driving	
computing	
advances

Computing
driving	cancer
advances

DOE	Secretary	of	Energy

Director	of	the	National	Cancer	Institute



Scalable	
Data	Analytics

Deep
Learning

Large-Scale
Numerical	
Simulation

DOE	Objective:	Dirve	Integration	of	Simulation,	
Data	Analytics	and	Machine	Learning

CORAL	Supercomputers
and	Exascale	Systems

Traditional
HPC

Systems



Exascale Node Concept	Space

Abstract	Machine	Models	and	Proxy	Architectures	for	Exascale Computing	Rev	1.1
Sandia	National	Laboratory	and	Lawrence	Berkeley	National	Laboratory	



Leverage	Resources	on	the	Die,	in	
Package	or	on	the	Node

• Local	high-bandwidth	memory	stacks
• Node	based	non-volitile memory
• High-Bandwidth	Low	Latency	Fabric
• General	Purpose	Cores
• Dynamic	Power	Management



What	Kind	of	Accelerator(s)	to	Add?

• Vector	Processors
• Data	Flow	Engines
• Patches	of	FPGA	
• Many	“Nano”	Cores	(<	5	M	Tr each?)



Hardware	and	systems	architectures	are	
emerging	for	supporting	deep	learning

• CPUs
– AVX,	VNNI,	KNL,	KNM,	KNH,	…

• GPUs
– Nvidia P100,	V100,	AMD	Instinct,	Baidu	GPU,	…

• ASICs
– Nervana,	DianNao,	Eyeriss,	GraphCore,	TPU,	DLU,	…

• FPGA
– Arria	10,	Stratix	10,	Falcon	Mesa,	…

• Neuromorphic
– True	North,	Zeroth,	N1,	…



Aurora	21	

• Argonne’s	Exascale System
• Balanced	architecture	to	support	three	pillars

– Large-scale	Simulation	(PDEs,	traditional	HPC)
– Data	Intensive	Applications	(science	pipelines)
– Deep	Learning	and	Emerging	Science	AI

• Enable	integration	and	embedding	of	pillars
• Integrated	computing,	acceleration,	storage
• Towards	a	common	software	stack



Deep	Learning	Applications
• Drug	Response	Prediction
• Scientific	Image	

Classification
• Scientific	Text	

Understanding
• Materials	Property	Design
• Gravitational	Lens	

Detection
• Feature	Detection	in	3D	
• Street	Scene	Analysis
• Organism	Design
• State	Space	Prediction
• Persistent	Learning
• Hyperspectral	Patterns

Argonne	Targets	for	Exascale
Simulation	Applications
• Materials	Science
• Cosmology
• Molecular	Dynamics
• Nuclear	Reactor	Modeling
• Combustion
• Quantum	Computer	

Simulation
• Climate	Modeling
• Power	Grid
• Discrete	Event	Simulation
• Fusion	Reactor	Simulation
• Brain	Simulation
• Transportation	Networks

Big	Data	Applications

• APS	Data	Analysis
• HEP	Data	Analysis
• LSST	Data	Analysis
• SKA	Data	Analysis	
• Metagenome	Analysis
• Battery	Design	Search
• Graph	Analysis
• Virtual	Compound	

Library	
• Neuroscience	Data	

Analysis
• Genome	Pipelines
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Deep	Learning	Applications

• Lower	Precision	(fp32,	fp16)
• FMAC	@	32	and	16	okay
• Inferencing	can	be	8	bit	(TPU)
• Scaled	integer	possible
• Training	dominates	dev
• Inference	dominates	pro
• Reuse	of	training	data
• Data	pipelines	needed
• Dense	FP	typical	SGEMM
• Small	DFT,	CNN
• Ensembles	and	Search
• Single	Models	Small
• I	more	important	than	O
• Output	is	models

Differing	Requirements?
Simulation	Applications

• 64bit	floating	point
• Memory	Bandwith
• Random	Access	to	Memory
• Sparse	Matrices
• Distributed	Memory	jobs
• Synchronous	I/O	multinode
• Scalability	Limited	Comm
• Low	Latency	High	Bandwidth
• Large	Coherency	Domains	

help	sometimes
• O	typically	greater	than	I
• O	rarely	read
• Output	is	data

Big	Data	Applications

• 64	bit	and	Integer	important
• Data	analysis	Pipelines
• DB	including	No	SQL
• MapReduce/SPARK
• Millions	of	jobs
• I/O	bandwidth	limited
• Data	management	limited
• Many	task	parallelism
• Large-data	in	and	Large-data	

out
• I	and	O	both	important
• O	is	read	and	used
• Output	is	data
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Aurora	21	Exascale Software

• Single	Unified	stack	with	resource	allocation	and	
scheduling	across	all	pillars	and	ability	for	
frameworks	and	libraries	to	seamlessly	compose

• Minimize	data	movement:	keep	permanent	data	
in	the	machine	via	distributed	persistent	memory	
while	maintaining	availability	requirements

• Support	standard	file	I/O	and	path	to	memory	
coupled	model	for	Sim,	Data	and	Learning

• Isolation	and	reliability	for	multi-tenancy	and	
combining	workflows



Towards	an	Integrated	Stack
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End!





Our	Vision	
Automate	and	Accelerate





The	CANDLE	Exascale	Project
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Drug	Response CANDLE	General	Workflow
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ECP-CANDLE :	CANcer	Distributed	Learning	Environment
CANDLE	Goals

Develop	an	exascale	deep	
learning	environment	for	cancer

Building	on	open	source	
Deep	learning	frameworks

Optimization	for	CORAL
and	exascale	platforms

Support	all	three	pilot	project
needs	for	deep	

Collaborate	with	DOE	computing	
centers,	HPC	vendors	and	ECP	
co-design	and	software	
technology	projects	

57



CANDLE	Software	Stack

Hyperparameter	Sweeps,	
Data	Management	(e.g.	DIGITS,	Swift,	etc.)

Architecture	Specific	Optimization	Layer	
(e.g.	cuDNN,	MKL-DNN,	etc.)

Tensor/Graph	Execution	Engine	
(e.g.	Theano,	TensorFlow,	LBANN-LL,	etc.)	

Network	description,	Execution	scripting	API
(e.g.	Keras,	Mocha)

Workflow

Scripting

Engine

Optimization
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DL	Frameworks	“Tensor	Engines”
• TensorFlow	(c++,	symbolic	diff+)
• Theano	(c++,	symbolic	diff+)
• Neon (integrated)	(python	+	GPU,	symbolic	diff+)
• Mxnet (integrated)	(c++)
• LBANN (c++,	aimed	at	scalable	hardware)
• pyTorch7	TH	Tensor	(c	layer,	symbolic	diff-,	pgks)
• Caffe (integrated)	(c++,	symbolic	diff-)
• Mocha backend	(julia	+	GPU)
• CNTK	backend	(microsoft)	(c++)
• PaddlePaddle	(Baidu)	(python,	c++,	GPU)



• Variational AutoEncoder
– Learning	(non-linear)	features	of	core	data	types

• AutoEncoder
– Molecular	dynamics	trajectory	state	detection

• MLP+LCNN	Classification
– Cancer	type	from	gene	expression/SNPs

• MLP+CNN	Regression	
– Drug	response	(gene	exp,	descriptors)

• CNN	
– Cancer	pathology	report	term	extraction

• RNN-LSTM
– Cancer	pathology	report	text	analysis

• RNN-LSTM
– Molecular	dynamics	simulation	control

CANDLE	Benchmarks..	Representative	problems





Progress	in	Deep	Learning	for	Cancer
• AutoEncoders – learning	data	representations	for	
classificaiton	and	prediction	of	drug	response,	
molecular	trajectories

• VAEs	and	GANs	– generating	data	to	support	
methods	development,	data	augmentation	and	
feature	space	algebra,	drug	candidate	generation

• CNNs – type	classification,	drug	response,	
outcomes	prediction,	drug	resistance

• RNNs	– sequence,	text	and	molecular	trajectories	
analysis

• Multi-Task	Learning	– terms	(from	text)	and	
feature	extraction	(data),	data	translation	
(RNAseq	<->	uArray)



CANDLE	- FOM	– Rate	of	Training	
• “Number	of	networks	trained	per	day”

– size	and	type	of	network,	amount	of	training	data,	
batch	size,	number	of	epochs,	type	of	hardware

• “Number	of	‘weight’	updates/second”
– Forward	Pass	+	Backward	Pass

• Training	Rate	=	∑ni=1 aiRi where	Ri is	the	rate	for	
our	benchmark	i and	ai	is	a	weight



7 CANDLE	Benchmarks

Benchmark Type Data ID OD Sample
Size

Size	of	
Network

Additional	
(activation,	layer	

types,	etc.)
1.	P1:	B1	Autoencoder MLP RNA-Seq 105 105 15K 5	layers Log2	(x+1)	à [0,1]	

KPRM-UQ	
2.	P1:	B2	Classifier MLP SNP	à

Type
106 40 15K 5	layers Training	Set	Balance	

issues
3.	P1:	B3	Regression MLP+LCN expression;	

drug descs
105 1 3M 8	layers Drug	Response

[-100,	100]

4.	P2:	B1	Autoencoder MLP MD	K-RAS 105 102 106-108 5-8	layers State	Compression

5.	P2:	B2	RNN-LSTM RNN-LSTM MD	K-RAS 105 3 106 4	layers State	to	Action

6.	P3:	B1	RNN-LSTM RNN-LSTM Path	
reports

103 5 5K 1-2	layers Dictionary	12K	+30K

7.	P3:	B2	Classification CNN Path	
reports

104 102 105 5	layers Biomarkers	

Benchmark	Owners:
• P1:	Fangfang	Xia	(ANL)
• P2:	Brian	Van	Essen	(LLNL)
• P3:	Arvind	Ramanathan	(ORNL)
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https://github.com/ECP-CANDLE



Typical	Performance	Experience
CANDLE	- Predicting	drug	response	of	tumor	samples
• MLP/CNN	on	Keras
• 7	layers,	30M	- 500M	parameters
• 200	GB	input	size
• 1	hour/epoch	on	DGX-1;	200	epochs	take	8	days	(200	GPU	

hrs)
• Hyperparameter	search	~	200,000	GPU	hrs	or	8M	CPU	hrs

Protein	function	classification	in	genome	annotation
• Deep	residual	convolution	network	on	Keras
• 50	layers
• 1	GB	input	size
• 20	minutes/epoch	on	DGX-1;	200	epochs	take	3	days	(72	

GPU	hrs)
• Hyperparameter	search	~	72,000	GPU	hrs	or	2.8M	CPU	hrs



Github	and	FTP

• ECP-CANDLE	GitHub	Organization:
• https://github.com/ECP-CANDLE

• ECP-CANDLE	FTP	Site:
• The	FTP	site	hosts	all	the	public	datasets	for the	
benchmarks	from	three	pilots.

• http://ftp.mcs.anl.gov/pub/candle/public/



Things	We	Need
• Deep	Learning	Workflow	Tools
• Data	Management	for	Training	Data	and	Models
• Performance	Measurement,	Modeling	and	
Monitoring	of	Training	Runs

• Deep	Network	Model	Visualization
• Low-level	Solvers,	Optimization	and	Data	
Encoding

• Programming	Models/Runtimes	to	support	next	
generation	Parallel	Deep	Learning	with	sparsity

• OS	Support	for	High-Throughput	Training	


