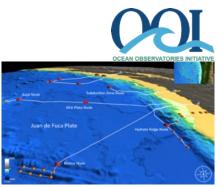
Big Data Analytics: The Apache Spark Approach

Michael Franklin ATPESC August 2017

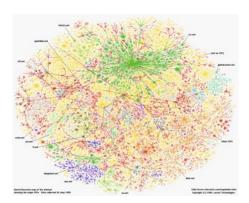
Nearly every field of endeavor is transitioning from "data poor" to "data rich"

Astronomy: LSST

Physics: LHC



Oceanography



Sociology: The Web

Biology: Sequencing

Economics: mobile, POS terminals

Data-Driven Medicine

Neuroscience: EEG, fMRI

Sports

The Fourth Paradigm of Science

- 1. Empirical + experimental
- 2. Theoretical
- 3. Computational
- 4. Data-Intensive

FOURTH PARADIGM

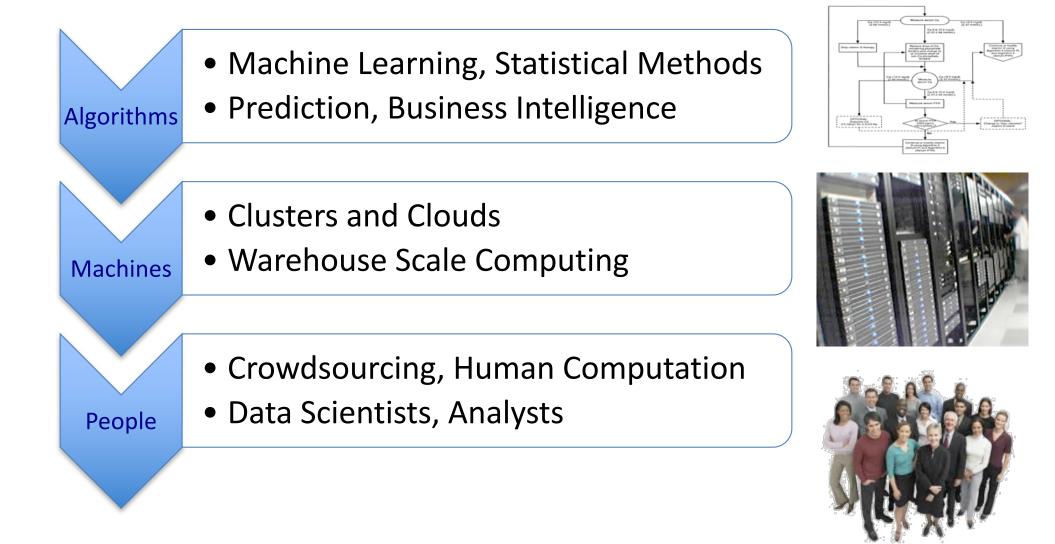
DATA-INTENSIVE SCIENTIFIC DISCOVERY

LOTED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

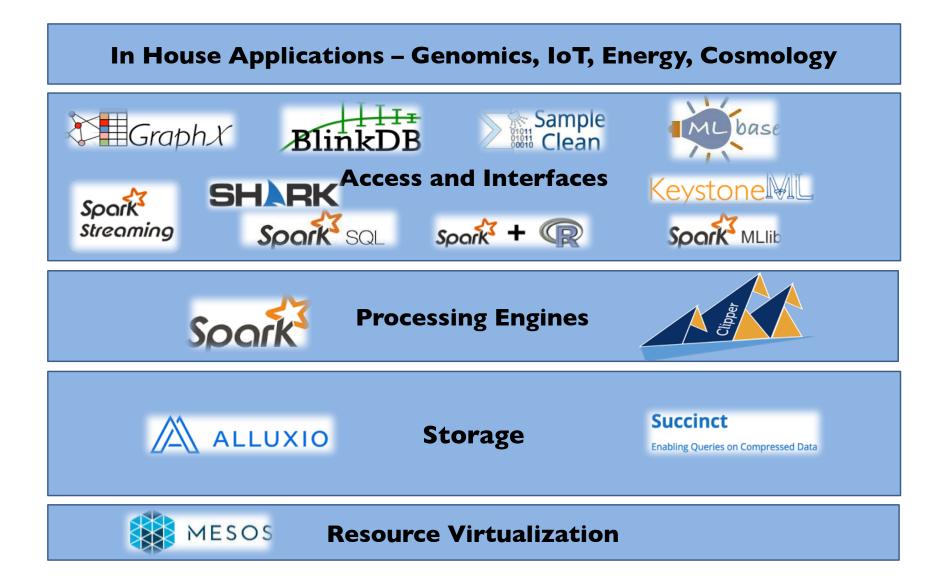
Open Source Ecosystem & Context

2006-2010 Autonomic Computing & Cloud				- amplab// UCBERKELEY 2011-2016 Big Data Analytics		
Usenix HotCloud Workshop 2010 Spark: Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica <i>University of California, Berkeley</i> MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications n commodity clusters. However, most of these systems suitable for other popular applications. This paper for				Flume Bigtop Oozie	Spark Impala Solr Kafka Flume Bigt op Oozie	Sentry Tez Parquet YARN Spark YARN Impala Solr Kafka Flume Bigtop
Core Hadoop HDFS, MR		Hive Pig Mahout Hbase ZooKeeper Core Hadoop		MRUnit HCatalog Sqoop Whirr Avro Hive Pig Mahout Hbase Zoo keep er Core Hadoop	MRUnit HCatalog Sqoop Whirr Avro Hive Pig Mahout Hbase Zookeeper Core Hadoop	Oozie MRUnit HCatalog Sqoop Whirr Avro Hive Pig Mahout Hbase Zookeeper Core Hadoop Knox
2006	2008	2009	2010	2011	2012	Present

AMPLab Project Vision "Making Sense of Data at Scale"



Berkeley Data Analytics Stack



Some AMPLab numbers

- Funding roughly 50/50 Govt/Industry Split
 - NSF CISE Expeditions, DARPA, DOE, DHS
 - Google, SAP, Amazon, IBM (Founding Sponsors) + dozens more
- Nearly 2M visits to amplab.cs.berkeley.edu
- 200+ Papers in Sys, ML, DB, ... 3 ACM Dissertation Awards (1 + 2 HM); Numerous Best Paper and Best Demo Awards
- 40+ Ph.D.s granted (so far); Alumni on faculty at Berkeley, Harvey Mudd, Michigan, MIT, Stanford, Texas, Wisconsin,...
- 3 Spinout companies directly from AMPLab:
 - Databricks, Mesosphere, Alluxio
 - Nearly \$250M raised to date
- Many industrial products & services based on or using Spark
- 3 Marriages (and numerous long-term relationships)

Apache Spark Meetups (August 2017)

618 groups with 391,371 members spark.meetup.com

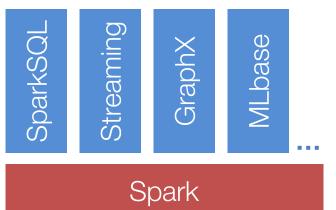
We Hit A Data Management Inflection Point

- <u>Massively scalable</u> processing and storage
- <u>Pay-as-you-go</u> processing and storage (a.k.a. the cloud)
- <u>Flexible</u> schema on read vs. schema on write
- Integration of search, query and analysis
- <u>Sophisticated</u> machine learning/prediction
- <u>Human-in-the-loop</u> analytics
- Open source ecosystem driving innovation

BDAS Unification Strategy

- Specializing MapReduce leads to stovepiped systems
- Instead, generalize MapReduce:
 - 1. Richer Programming Model
 - ➔ Fewer Systems to Master
 - 2. Data Sharing
 - Less Data Movement leads to Better Performance

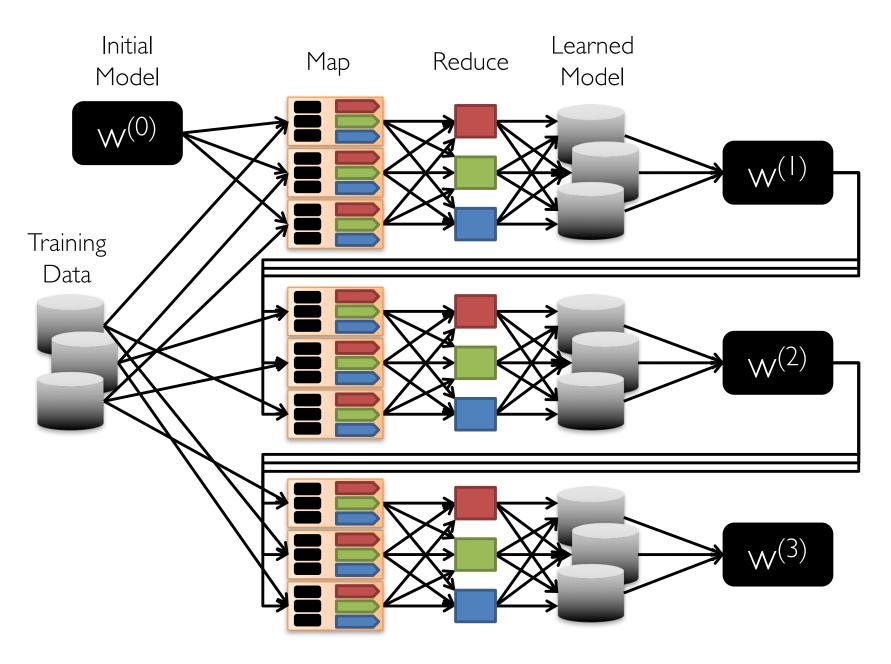
Spark showed 10x performance improvement on existing HDFS data with no migration.



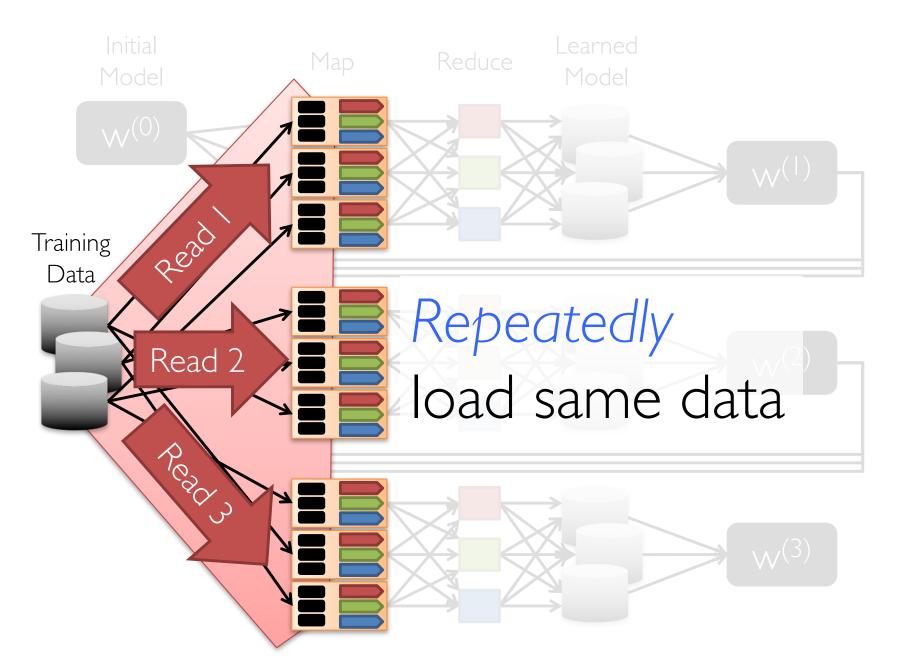
Abstraction: Dataflow Operators

•	map	•	reduce	sample
•	filter	•	count	take
•	groupBy	•	fold	first
•	sort	•	reduceByKey	partitionBy
•	union	•	groupByKey	mapWith
•	join	•	cogroup	pipe
•	leftOuterJoin	٠	cross	save
•	rightOuterJoin	•	zip	

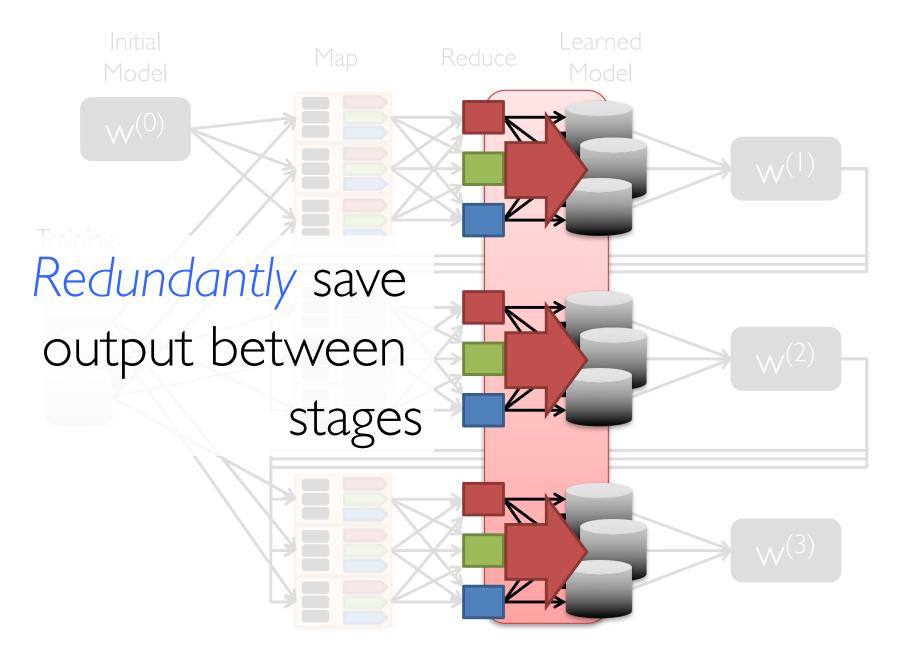
Iteration in Map-Reduce



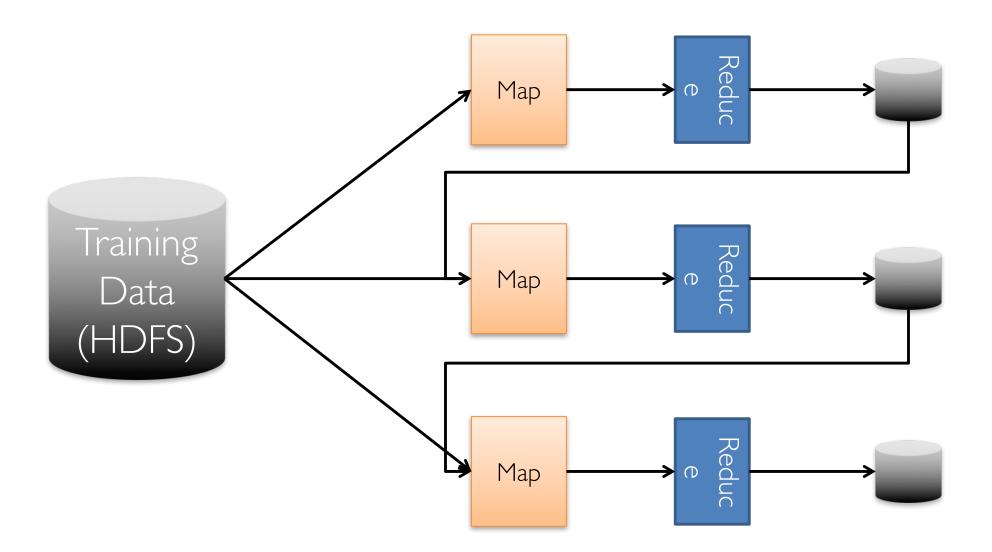
Cost of Iteration in Map-Reduce



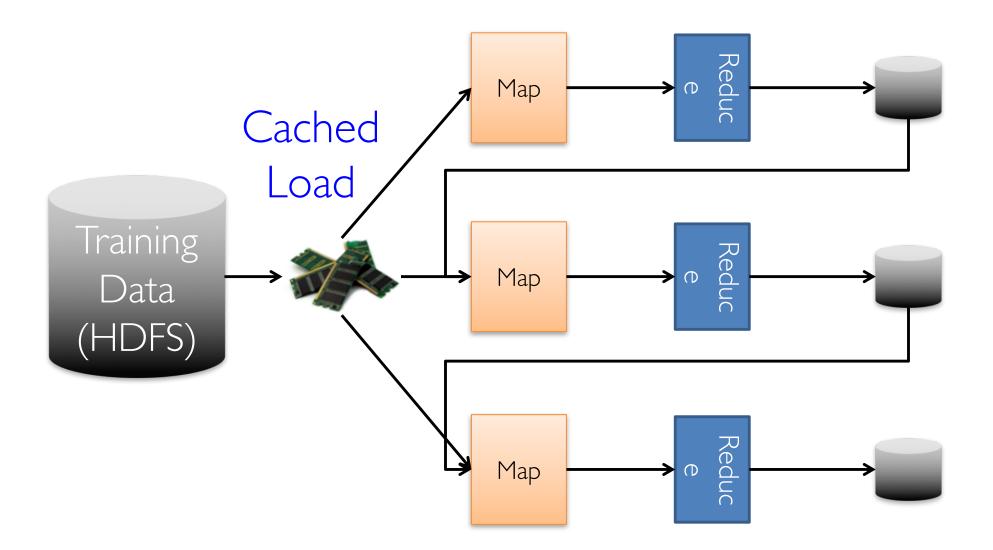
Cost of Iteration in Map-Reduce



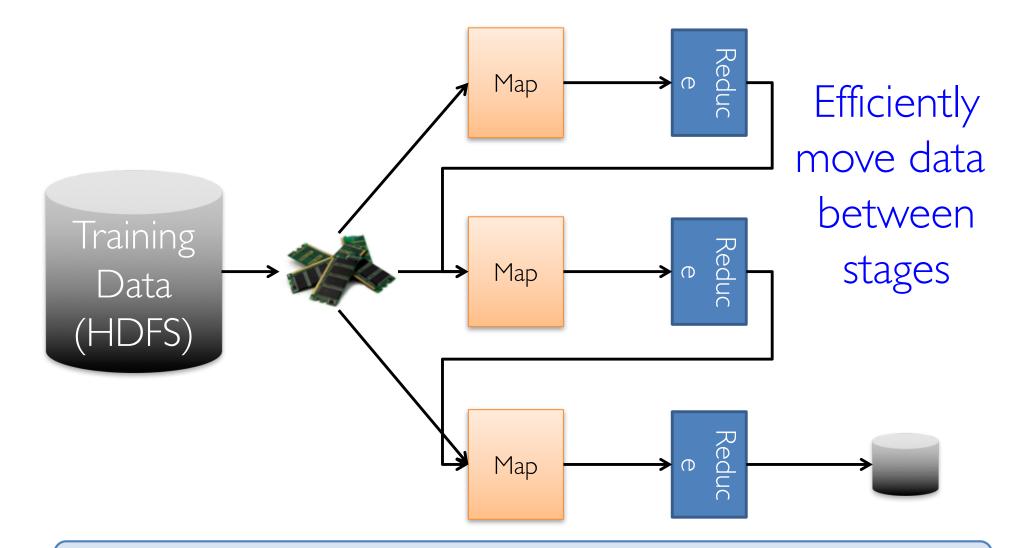
Dataflow View



Memory Opt. Dataflow



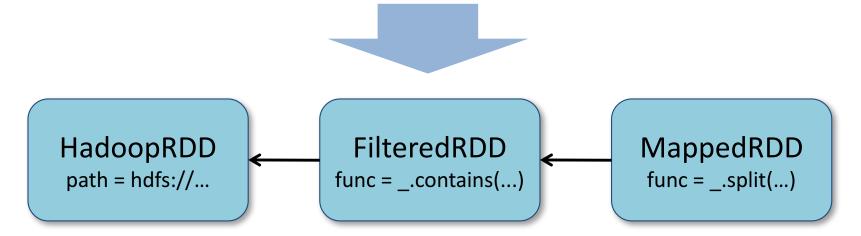
Memory Opt. Dataflow View



Spark: 10-100× faster than Hadoop MapReduce,

Spark Fault Tolerance

- RDDs: Immutable collections of objects that can be stored in memory or disk across a cluster
 - Built via parallel transformations (map, filter, ...)
 - Automatically rebuilt on (partial) failure



M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster computing, NSDI 2012.

DataFrames (main abstraction in Spark 2.0)

employees

.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))

.agg(count("name"))

Notes:

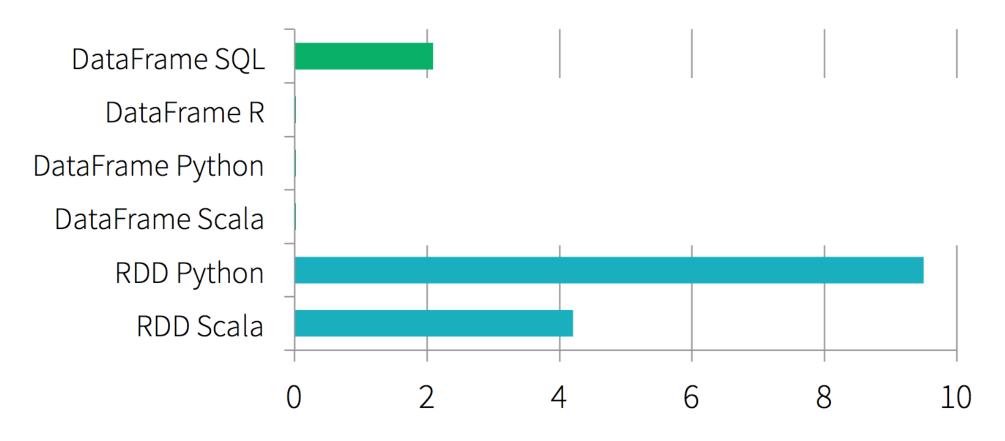
Some people think this is an improvement over SQL ③
 Dataframes can be typed

Catalyst Optimizer

- Typical DB optimizations across SQL and DF
 - Extensibility via Optimization Rules written in Scala
 - Open Source optimizer evolution!
- Code generation for inner-loops, iterator removal
- Extensible Data Sources: CSV, Avro, Parquet, JDBC, ... via TableScan (all cols), PrunedScan (project), FilteredPrunedScan(push advisory selects and projects) CatalystScan (push advisory full Catalyst expression trees)
- Extensible (User Defined) Types

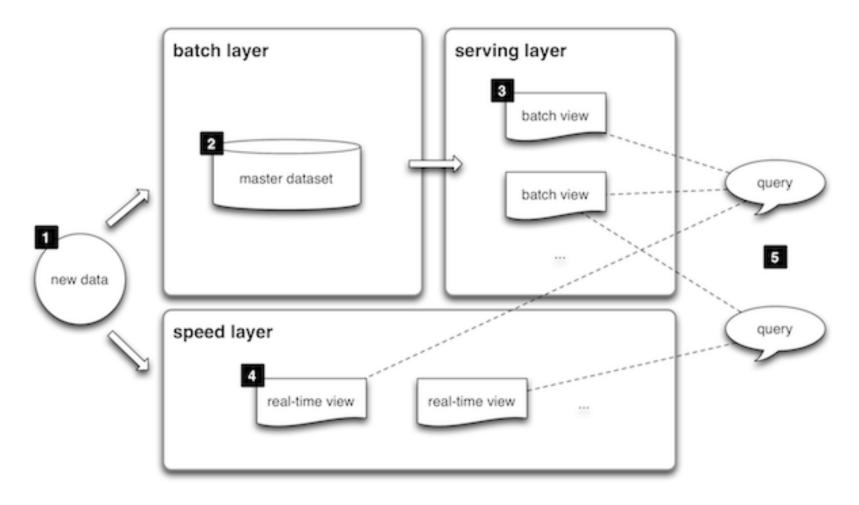
M. Armbrust, et al, Spark SQL: Relational Data Processing in Spark, SIGMOD 2015.

An interesting thing about SparkSQL Performance



Time to Aggregate 10 million int pairs (secs)

Lambda Architecture: one way to combine Real-Time + Batch

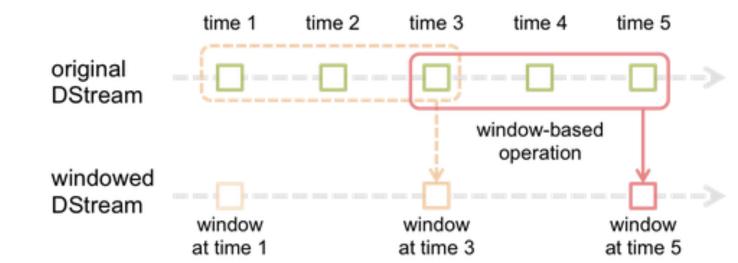


lambda-architecture.net

Spark Streaming

Microbatch approach provides low latency

Additional operators provide windowed operations



M. Zaharia, et al, Discretized Streams: Fault-Tollerant Streaming Computation at Scale, SOSP 2013 S. Venketaraman et al, Azkar: Fast and Adaptable Stream Processing at Scale, SOSP 2017

Spark Structured Streams (unified)

Batch Analytics

```
// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")
```

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy(\$"action", window(\$"time", "1 hour")).count()
 .write.format("jdbc")
 .save("jdbc:mysql//...")

Streaming Analytics

```
// Read data continuously from an S3 location
val inputDF = spark readStream.json("s3://logs")
```

Putting it all Together: Multi-modal Analytics

SQL

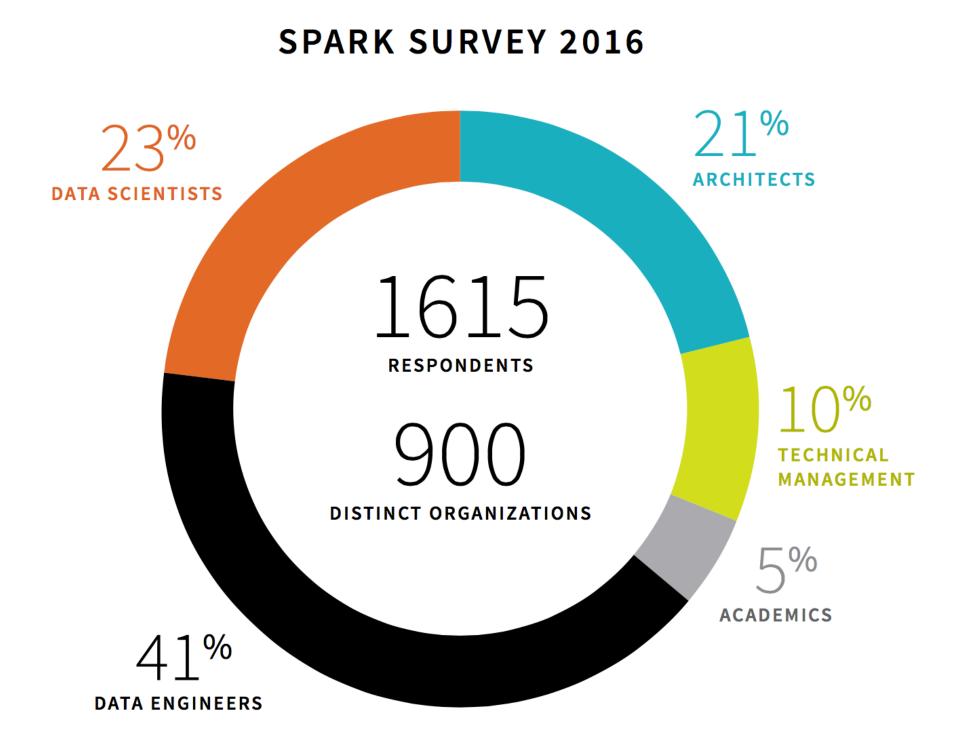
// Load historical data as an RDD using Spark SQL val trainingData = sql("SELECT location, language FROM old_tweets")

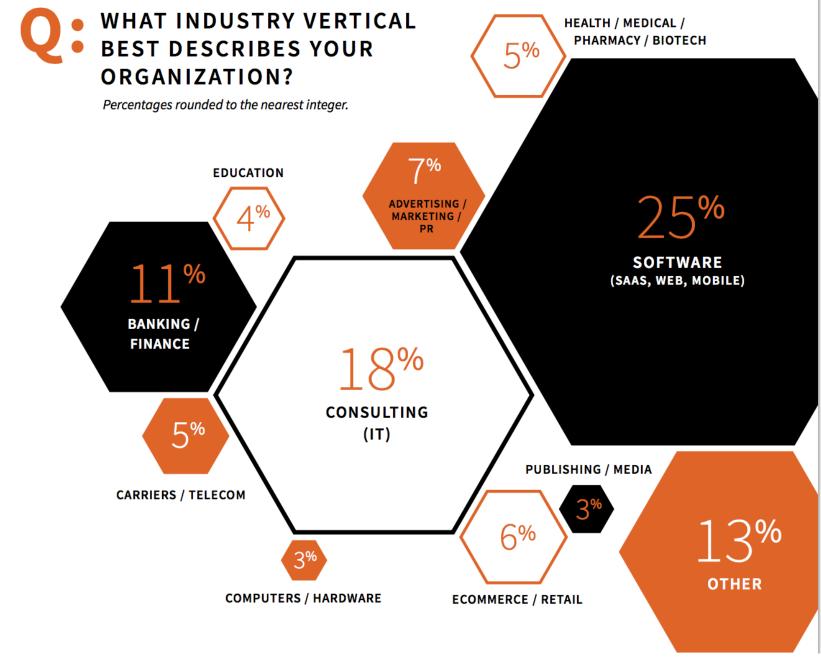
Machine // Train a K-means model using MLlib val model = new KMeans() Learning .setFeaturesCol("location") .setPredictionCol("language")

.fit(trainingData)

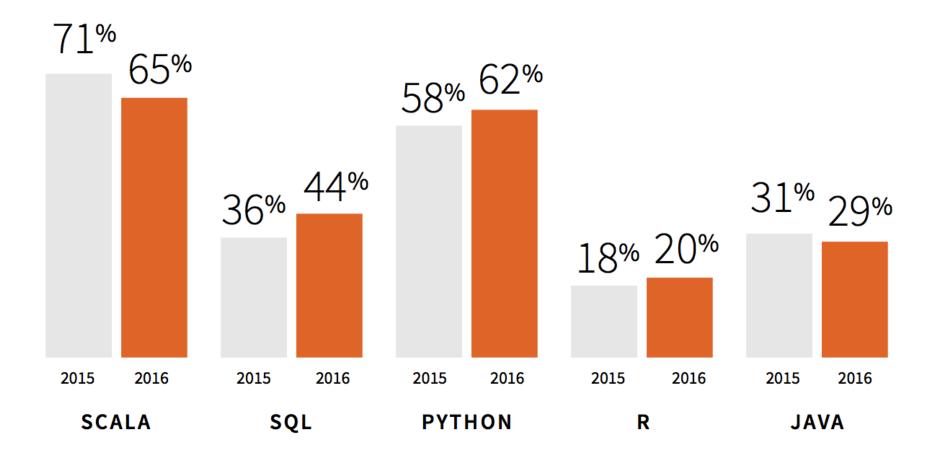
Streaming witterUtils.createStream(...)

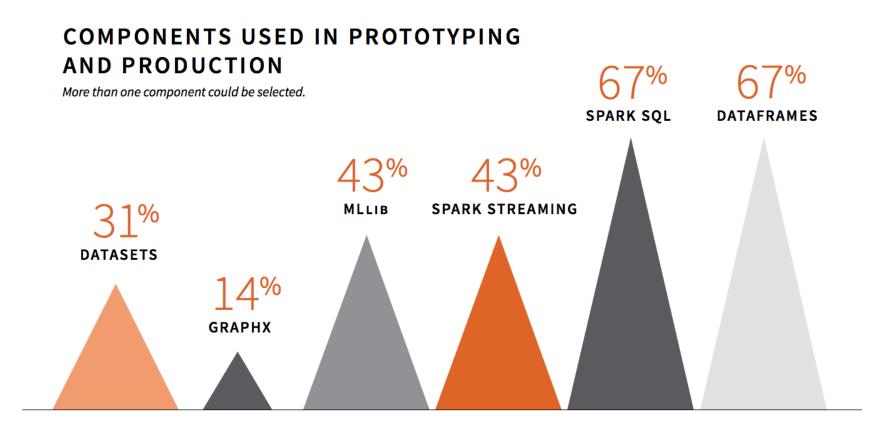
.map(tweet => model.predict(tweet.location))



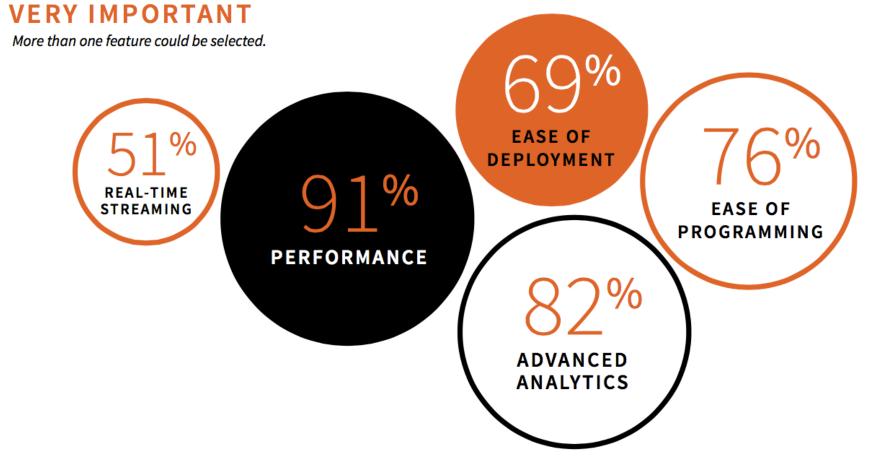


From: Spark User Survey 2016, 1615 respondents from 900 organizations http://go.databricks.com/2016-spark-survey





% OF RESPONDENTS WHO CONSIDERED THE FEATURE



Spark Ecosystem Attributes

- Spark focus was initially on
 - Performance + Scalability with Fault Tolerance
- Eventually, ease of development was a key feature
 - especially across multiple modalities: DB, Graph, Stream, etc.
- This was true of most Big Data software of that generation
- Low Latency (streaming) and Deep Learning are also garnering significant attention lately

What's Next?

Innovation in (open source) Big Data Software continues.

Performance, Scalability, and Fault Tolerance remain important, but we face new challenges, <u>including</u>:

Data Science Lifecycle

- Data Acquisition, Integration, Cleaning (i.e., wrangling)
- Data Integration remains a "wicked problem"
- Model Building
- Communicating results, Curation, "Translational Data Science"

Ease of Development and Deployment

- Can leverage database ideas (e.g., declarative query optimization)
- New components for "model serving" and "model management"

"Safe" Data Science

- end-to-end Bias Mitigation
- Security, Ethics and Data Privacy
- Explaining and influencing decisions
- Human-in-the-loop

Thanks and for More Info

Mike Franklin

mjfranklin@uchicago.edu

