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Power Constraints Lead to New HPC Architectures

(Low Capacity, High Bandwidth)
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Clock cycle remains fixed (end of Dennard scaling). More FP capacity comes from
more cores (Moore’s law is still in operation).

Relative size of the memory decreases. Memory architecture becomes more
complex, in ways that can’t be hidden from / ignored by the applications developer.
Flops are overprovisioned relative to data motion / data storage.
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Roofline Model (Williams, et al. 2009)

Empirical Roofline Graph (Results.cori1.nersc.gov.02/Run.001)
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Arithmetic Intensity (Al) — number of flops / byte moved. Property of algorithm (including
working set size).

Flops / byte below a threshold — computation is only done as fast as data can get between
the arithmetic unit and memory.

Roofline gives upper bounds.

Trends: Horizontal line moving up, slanted lines remaining more or less fixed
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Poisson’s Equation

Can view it as solving a PDE, or computing the convolution with a Green’s
function.

A = f & 6l@)= G+ f@) = [ Gla-yfw)dy. Gz =~

Anl|z|

Naive implementation of convolution leads to O(N?) calculation.

Local regularity: the field induced by a localized charged is smooth away from
the support of the charge.
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d
Exploiting local regularity leads to fast O(N log N) methods: Multigrid, Fast
Multipole, Tree.
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Structured-Grid Discretizations for Poisson

Mehrstellen Discretizations of Laplacian:

(A"M)g = Z as§b3+s

s€[—s,s]3
Q/2-1
T"(¢) = Coh®A(Ag) + > h*T L2 (Ag) + hPLI(¢)
q'=2
A s=1=0QQ=6,5s=2= =10

Q = order of accuracy on harmonic functions. High-order accuracy of
general solutions recovered by modifying the right-hand side.

(G"* f*) = (A" (M), G+ Mgl = > h*GMg - J1£g')"
g’'€z3
Ghlg) = h1GM1[g]




Multigrid in parallel

Domain decomposition into patches (so each step
Is actually a loop over patches):
Iterate to convergence:
Point relaxation
d+=\(f — A"¢) (p times)
Solve (relax) coarsened problem
RC = A" (Av(¢)) + Av(f — A"¢)

solve A2y = RC
Interpolate correction

Pp+=I(¢° — Av(¢))
Point relaxation

or=A(f — Ahgb) (p times)

Data moved / unknown (bytes) = # iterations (10) x 8 x (3 + | + | + 3) = 640. Every step requires
moving data to and from main memory.

Flops = # iterations(10) x ((size of stencil)(7-27) x p + | + 8 + (size of stencil) x p) = 300-1200
Al~Y2-2.

Can we change the algorithm to better exploit local regularity to reduce data. motion? .. .
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Method of Local Corrections

Domain decomposition into patches:

Compute local solution on larger, overlapping boxes
¢patch — Gh % fpatch

Compute coarsened solution

_ ih ( Z A4h ¢patch)

patches
Compute boundary conditions on each patch as the

sum of overlapping patches, plus interpolated
correction
¢patch — ¢l0cal —|—I(¢C - ¢local)
and solve Dirichlet problems.
Done! (no iteration)

Data moved / unknown (bytes) = ~150 bytes. Only storing results from initial calculation on
Coarsened grid, boundaries of patches.
Flops / unknown = 5000, mostly in the initial local convolutions on enlarged patches.

Al ~ 33.
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Multigrid vs. MLC on Roofline

Empirical Roofline Graph (Results.cori1.nersc.gov.02/Run.001)
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Multigrid: Ranges from 7-point to 27 point stencils.
455 Gflops/sec limit on MLC due to inability to fully utilize FMA.
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Hockney’s Method for Discrete Convolutions

Discrete convolutions diagonalized by discrete Fourier transforms (Hockney,

1970)
S fi-d)eG) = Y £ - 5)g(G) = FHEF(9)s

’LEZD JEB”
fori € B, supp(f) C B’
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We can increase the width of the padding so that the size of B” leads to
efficient FFTs. Convolution is now N log(N).
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MLC Error Analysis

Asymptotic error estimate is given by
M — ¢ = O(h?) + || fl|ocO(aN) 7

N = diameter in grid points of the source patch, aN = diameter of the
destination patch. The first term is the error from the local convolutions, the
second term is the error due to coarse-grid representation of the global
coupling.

h > hy,esnoigs SOIUtION error goes down under grid refinement.
h < hyesnolgs SOlUtION error no longer goes down under grid refinement
(localization error).

Potential lever arms and performance tradeoffs in choosing o, N, Q .
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Discrete Potential Theory of Mehrstellen Operators

1.0e+03

Our error estimate is a direct
consequence of the rapid decay of the ot
truncation error of the operator as a -\
function of max-norm distance fromthe |
charge. The decay rate increases with

Plot of

max |(Ah:1G),;]
I3]0 =4

for Q=4 (magenta) Q =6 (red) and
Q=10 (blue). Solid lines are power-
law fits ~i(@*3). (Exact answer is 0).
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Results: Accuracy

Errors are all max norm errors scaled by the max norm of the solution.
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Uniform-grid test case: Adaptive-grid test case:
+: ()=6, &:3_25, N=32 *+ Q=6, a=3.25, N=32
O: 0=6. 0=3.25, N=64 "/ @=6, a=2.125, N=64
%1 Q=10, ¢=3.25, N=32 ' =6, a=3.25, N=64

O: Q=10, a=3.25, N=64 ¥: =10, a=3.25, N=32
O: @=10, a=3.25, N=64
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MLC: transition from local error to localization error.

Q = 6: transition from local error
to smooth localization error as
we refine the mesh.

Q=6, N=512 . Q=6, N=1024

Q = 10: localization error is still
small relative to the local error.

Q=10, N=512 T Q=10, N=1024
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Performance and Scaling of MLC on NERSC Cori |

Numerical parameters: O = 6, a = 3.25, N = 32. Plots are of wall-clock time to solution
(in seconds) vs. number of cores. Red lines represent perfect scaling (or 10% slower).
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Replication weak scaling: 10° grid point adaptive
base case, replicated to obtain larger problems,
computed on 64 — 32K cores. Solution error is
independent of scale (~7 x 10-°).

= 92% weak scaling efficiency. Time to solution 39.1 —
42.4 seconds.

=|_argest calculation has 5.1 x 10" unknowns, with an
equivalent uniform-grid resolution of (64K)3 = 2.8 x

Strong scaling: Fixed problem size with
10° grid points, adaptive distribution (0.2%
of domain refined at finest level), using 64
— 4K cores. Greater than 60% strong
scaling efficiency over that range.

Time to solution 39.1 -> .97 seconds.

1074 unknowns.
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Performance Comparison

Cori | (Haswell) 32 cores / node, 8 nodes.

Multigrid: 10° unknowns (10243 grid) using HPGMG (non-adaptive) benchmark, 10 v-
cycles: 9 seconds, 17 Gflops / node (RLB = 200 Gflops).

MLC: 10° unknowns, both uniform and adaptive cases: 8 seconds, 70 Gflops / node.
Hockney kernel: 3.64 seconds, 140 Gflops / node (RLB = 455 Gflops).

MLC isn’t coming close to the roofline (nor is Multigrid, for that matter). Why not ?
 In MLC case, the non-unit stride access to set up SIMD is one of the problems. A

possible cure is to use split representation in FFT ({real array, imaginary array},
rather than array of {real,imaginary}). But FFTW doesn’t do that (not really — the
split APl is supported, but it copies the data into the non-split format).

« Data choreography needs more squeezing.
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Algorithmic Details

Use of Mehrstellen discretizations: 3x3x3 stencil for Q=6; 5x5x5 stencil
for Q=10. The use of such compact stencils minimizes the size of the
local convolutions for a given degree of overlap.

Reduce the size of the local convolution by representing the solution in
an outer annulus agR < ||ih||s < aRin terms of a low order Legendre
expansion of the charge. Only the expansion coefficients need to be
computed, and precomputed convolutions of Legendre polynomials with
the Green’s functions read from a table.

Computational kernel is discrete convolution on modest-sized patches
(input length 33, output length 110-140). Initially, one patch / core.
Multiple threads working on a single patch decreases the extent to which
L3 must be shared — Hockney fits into L3, with only the minimum traffic to
DRAM.
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Future Work

Making it software (almost ready for a 1.0 release as part of the Chombo
distribution).

We are still exploring the performance / accuracy tradeoff space. Patch
size (N,alpha), overlap (alpha), harmonic order of accuracy (Q).

M — ¢ = O(h?) + || fllocO(aN) ™

We need to take a deep dive into FFT - substantial amount of difficult,
platform-dependent work to get high performance Hockney kernels.

This kind of work can be automated (symbolic transformations, code
generation).

Fast local convolutions suggest alternative approach to solving constant-
coefficient PDE. Convolution methods for Maxwell ? Fast evaluation for
high-order stencils ?
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Final Comments

“We make very limited claims to novelty for [the methods] presented
here. The ideas involved are quite standard and, indeed, old-fashioned.”

Hockney, 1970; Mayo, 1984 (finite difference localization for boundary
integrals); Anderson, 1986 (MLC for particles).

Changing the math can have a large lever arm.
Collaborators:

Scott Baden, Greg Balls, Christos Kavouklis, Peter McCorquodale, Brian
Van Straalen.
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