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Power Constraints Lead to New HPC Architectures 

•  Clock cycle remains fixed (end of Dennard scaling). More FP capacity comes from 
more cores (Moore’s law is still in operation). 

•  Relative size of the memory decreases. Memory architecture becomes more 
complex, in ways that can’t be hidden from / ignored by the applications developer. 

•  Flops are overprovisioned relative to data motion / data storage.  
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Exascale7Node7Schema6c7Model7
The Programming Model is a Reflection of 
the Underlying Abstract Machine Model 

•  Equal cost SMP/PRAM model 
–  No notion of non-local access 
–  int [nx][ny][nz]; 

•  Cluster: Distributed memory model 
–  CSP: Communicating Sequential Processes 
–  No unified memory 
–  int [localNX][localNY][localNZ]; 

•  2-level (CTA in Martha Kim Taxonomy) 
–  Candidate Type Architecture (CTA) 
–  MPI+X model (for all practical purposes) 

•  Whats Next? 
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Arithmetic Intensity (AI) ‒ number of flops / byte moved. Property of algorithm (including 
working set size). 
Flops / byte below a threshold ‒ computation is only done as fast as data can get between 
the arithmetic unit and memory. 
Roofline gives upper bounds.  
Trends: Horizontal line moving up, slanted lines remaining more or less fixed
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Roofline Model (Williams, et al. 2009) 



Can view it as solving a PDE, or computing the convolution with a Green’s 
function.  
 
 
 
Naïve implementation of convolution leads to O(N2) calculation. 
 
Local regularity: the field induced by a localized charged is smooth away from 
the support of the charge. 
 
 
 
 
Exploiting local regularity leads to fast O(N log N) methods: Multigrid, Fast 
Multipole, Tree. 
. 
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Poisson’s Equation 
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Structured-Grid Discretizations for Poisson 

Mehrstellen Discretizations of Laplacian: 
 
 
 
 
 
 
 
 
Q = order of accuracy on harmonic functions. High-order accuracy of 
general solutions recovered by modifying the right-hand side. 
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Multigrid in parallel 

Domain decomposition into patches (so each step
Is actually a loop over patches):
Iterate to convergence:
Point relaxation

Solve (relax) coarsened problem

Interpolate correction

Point relaxation

Data moved / unknown (bytes) = # iterations (10) x 8 x (3 + 1 + 1 + 3) = 640. Every step requires�
moving data to and from main memory.
Flops = # iterations(10) x ((size of stencil)(7-27) x p  + 1 + 8 + (size of stencil) x p) = 300-1200
AI ~ ½ - 2 .
Can we change the algorithm to better exploit local regularity to reduce data motion?

�+=�(f ��h�) (p times)

RC = �2h(Av(�)) +Av(f ��h�)

solve �2h�C = RC

�+=I(�C �Av(�))

�+=�(f ��h�) (p times)



Domain decomposition into patches:
Compute local solution on larger, overlapping boxes
        
Compute coarsened solution
    

Compute boundary conditions on each patch as the�
sum of overlapping patches, plus interpolated 
correction
�
and solve Dirichlet problems.
Done! (no iteration)

�patch = �local + I(�C � �local)
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Method of Local Corrections  

Data moved / unknown (bytes) = ~150 bytes. Only storing results from initial calculation on
Coarsened grid, boundaries of patches. 
Flops / unknown = 5000, mostly in the initial local convolutions on enlarged patches.
AI ~ 33.

�patch = Gh ⇤ fpatch

�C = G4h ⇤
⇣ X

patches

�4h(S(�patch)
⌘



 10

 100

 1000

 0.01  0.1  1  10  100

GF
LO

Ps
 / 

se
c

FLOPs / Byte

Empirical Roofline Graph (Results.cori1.nersc.gov.02/Run.001)
845.8 GFLOPs/sec (Maximum)

L1
 - 4

70
0.1

 GB/s

L2
 - 1

30
8.9

 GB/s

L3
 - 9

80
.1 

GB/s

DRAM - 1
07

.8 
GB/s

8 

Multigrid vs. MLC on Roofline 

Multigrid MLC

455 GF/s

Multigrid: Ranges from 7-point to 27 point stencils.
455 Gflops/sec limit on MLC due to inability to fully utilize FMA.



Discrete convolutions diagonalized by discrete Fourier transforms (Hockney, 
1970) . 
 
 
 
 
 
 
 
 
 
We can increase the width of the padding so that the size of B’’ leads to 
efficient FFTs. Convolution is now N log(N). 

Hockney’s Method for Discrete Convolutions 

X

i2ZD
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X

j2B00

f(i� j)g(j) = F�1(F(f)F(g))i

for i 2 B , supp(f) ✓ B0
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MLC Error Analysis 

Asymptotic error estimate is given by 

 
N = diameter in grid points of the source patch,         = diameter of the 
destination patch. The first term is the error from the local convolutions, the 
second term is the error due to coarse-grid representation of the global 
coupling.  
 
h > hthreshold: solution error goes down under grid refinement. 
h < hthreshold: solution error no longer goes down under grid refinement 
(localization error). 
 
Potential lever arms and performance tradeoffs in choosing             . ↵, N,Q

�
MLC � � = O(hq) + ||f ||1O(↵N)�Q

↵N



Analytic bounds on the localization error: 
plots of           , where 
                                                                  ,  
for q = 4 (magenta), q=6 (red) and q=10 
(blue) (h/R = 1/32). 

⇣(�0)
||�(✏loc)||1  ⇣(�0)||f ||1 , �0 = � + 1

MLC localization error analysis 

Plot of  
 
 
for q = 4 (magenta), q=6 (red) and 
q=10 (blue). Solid lines are power-
law fits ~i-(q+3). 

max
||i||1=i

|(�h=1G)i|

11 

Discrete Potential Theory of Mehrstellen Operators 

Our error estimate is a direct 
consequence of the rapid decay of the 
truncation error of the operator as a 
function of max-norm distance from the 
charge. The decay rate increases with 
Q. 

Plot of  
 
 
for Q=4 (magenta) Q =6 (red) and  
Q=10 (blue). Solid lines are power-
law fits ~i(Q+3). (Exact answer is 0). 

max
||i||1=i

|(�h=1G)i|



Results: Accuracy 

Errors are all max norm errors scaled by the max norm of the solution.  

Uniform-grid test case: Adaptive-grid test case:



MLC: transition from local error to localization error. 

Q=6, N=512 Q=6, N=1024 

Q=10, N=512 Q=10, N=1024 

Q = 6: transition from local error 
to smooth localization error as 
we refine the mesh. 

Q = 10: localization error is still 
small relative to the local error. 
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Performance and Scaling of MLC on NERSC Cori I 

Numerical parameters: Q = 6, α = 3.25, N = 32. Plots are of wall-clock time to solution 
(in seconds) vs. number of cores. Red lines represent perfect scaling (or 10% slower).

Strong scaling: Fixed problem size with 
109 grid points, adaptive distribution (0.2% 
of domain refined at finest level), using 64 
– 4K cores. Greater than 60% strong 
scaling efficiency over that range. 
Time to solution 39.1 -> .97 seconds.

Replication weak scaling: 109 grid point adaptive 
base case, replicated to obtain larger problems, 
computed on 64 – 32K cores. Solution error is 
independent of scale (~7 x 10-9).
!  92% weak scaling efficiency. Time to solution 39.1 – 
42.4 seconds.
! Largest calculation has 5.1 x 1011 unknowns, with an 
equivalent uniform-grid resolution of (64K)3 = 2.8 x 
1014 unknowns. 
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Performance Comparison 

Cori I (Haswell) 32 cores / node,  8 nodes. 
 
Multigrid: 109 unknowns (10243 grid) using HPGMG (non-adaptive) benchmark, 10 v-
cycles: 9 seconds, 17 Gflops / node (RLB = 200 Gflops). 
 
MLC: 109 unknowns, both uniform and adaptive cases: 8 seconds, 70 Gflops / node. 
Hockney kernel: 3.64 seconds, 140 Gflops / node (RLB = 455 Gflops).  
 
MLC isn’t coming close to the roofline (nor is Multigrid, for that matter). Why not ?  
•  In MLC case, the non-unit stride access to set up SIMD is one of the problems. A 

possible cure is to use split representation in FFT ({real array, imaginary array}, 
rather than array of {real,imaginary}). But FFTW doesn’t do that (not really ‒ the 
split API is supported, but it copies the data into the non-split format). 
 

•  Data choreography needs more squeezing. 
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Algorithmic Details 

•  Use of Mehrstellen discretizations: 3x3x3 stencil for Q=6; 5x5x5 stencil 
for Q=10. The use of such compact stencils minimizes the size of the 
local convolutions for a given degree of overlap. 

•  Reduce the size of the local convolution by representing the solution in 
an outer annulus                               in terms of a low order Legendre 
expansion of the charge. Only the expansion coefficients need to be 
computed, and precomputed convolutions of Legendre polynomials with 
the Green’s functions read from a table. 

•   Computational kernel is discrete convolution on modest-sized patches 
(input length 33, output length 110-140). Initially, one patch / core. 
Multiple threads working on a single patch decreases the extent to which 
L3 must be shared ‒ Hockney fits into L3, with only the minimum traffic to 
DRAM. 

↵0R  ||ih||1  ↵R



Future Work 

•  Making it software (almost ready for a 1.0 release as part of the Chombo 
distribution).  

•  We are still exploring the performance / accuracy tradeoff space. Patch 
size (N,alpha), overlap (alpha), harmonic order of accuracy (Q).  

 
 

•  We need to take a deep dive into FFT - substantial amount of difficult, 
platform-dependent work to get high performance Hockney kernels. 
This kind of work can be automated (symbolic transformations, code 
generation). 

•  Fast local convolutions suggest alternative approach to solving constant-
coefficient PDE. Convolution methods for Maxwell ? Fast evaluation for 
high-order stencils ? 

 

�
MLC � � = O(hq) + ||f ||1O(↵N)�Q
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Final Comments 

“We make very limited claims to novelty for [the methods] presented 
here. The ideas involved are quite standard and, indeed, old-fashioned.”  
 
Hockney, 1970;  Mayo, 1984 (finite difference localization for boundary 
integrals);  Anderson, 1986 (MLC for particles). 
 
Changing the math can have a large lever arm.  
 
Collaborators: 
Scott Baden, Greg Balls, Christos Kavouklis, Peter McCorquodale, Brian 
Van Straalen.  


