Charm++
Motivations and Basic Ideas

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana Champaign

ILLINOTIS PARALLELTD

4UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB m

ATPESC DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

Challenges in Parallel Programming

Applications are getting more sophisticated
— Adaptive refinements
— Multi-scale, multi-module, multi-physics
— E.g. Load imbalance emerges as a huge problem for some apps

Exacerbated by strong scaling needs from apps

Future challenge: hardware variability
— Static/dynamic
— Heterogeneity: processor types, process variation, ..
— Power/Temperature/Energy
— Component failure
To deal with these, we must seek
— Not full automation

— Not full burden on app-developers

— But: a good division of labor between the system and app
developers

What is Charm++?

 Charm++is a generalized approach to writing
parallel programs

— An alternative to the likes of MPI, UPC, GA etc.

— But not to sequential languages such as C, C++,
and Fortran

* Represents:
— The style of writing parallel programs
— The runtime system
— And the entire ecosystem that surrounds it

So, What is Charm++?

Object Oriented Parallel Programming

|dentify the entities being simulated (say atoms,
routers, humans)

Define the computational tasks being performed (think
force computation)

Create C++ classes to encapsulate them
Use member functions to interact

What about processors? Do you really want to worry
about them?

Overdecomposition

* Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/..
* Not so hard: we do decomposition anyway

.

| —
!

| —
L
-

8/7/14 ATPESC

Migratability

* Allow these work and data units to be migratable
at runtime

— i.e. the programmer or runtime, can move them

* Consequences for the app-developer

— Communication must now be addressed to logical
units with global names, not to physical processors

— But this is a good thing
* Consequences for RTS

— Must keep track of where each unit is
— Naming and location management

Asynchrony:

. Now: Message-Driven Execution

— You have multiple units on each processor
— They address each other via logical names

* Need for scheduling:
— What sequence should the work units execute in?

— One answer: let the programmer sequence them
e Seen in current codes, e.g. some AMR frameworks

— Message-driven execution:

* Let the work-unit that happens to have data (“message”)
available for it execute next

* Let the RTS select among ready work units

* Programmer should not specify what executes next, but can
influence it via priorities

Realization of this model in Charm++

 Overdecomposed entities: chares
— Chares are C++ objects

— With methods designated as “entry” methods
* Which can be invoked asynchronously by remote chares

— Chares are organized into indexed collections
* Each collection may have its own indexing scheme
— 1D, ..7D,
— Sparse
— Bitvector or string as an index
— Chares communicate via asynchronous method
invocations

* Ali].foo(....); Aisthe name of a collection, i is the index of the
particular chare.

Message-driven Execution

Al..].foo(...)

EENNEREEEE N NNEE| AEEEE

8/7/14 ATPESC .

8/7/14 .T. 10

8/7/14

11

8/7/14 .T. 12

Empowering the RTS

Adaptive
Runtime System

Adaptivity

Introspection
w Overdecomposition Migratability

e The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
e Spread over time, async collectives

— Automatic latency tolerance
— Prefetch data with almost perfect predictability

8/7/14 ATPESC 13

Adaptive Runtime Systems

 Decomposing program into a large number of
Objects empowers the RTS, which can:
— Migrate Objects at will
— Schedule tasks (Dependent Execution Blocks) at will
— Instrument computation and communication at the
level of these logical units
* Object A communicates y bytes to B every iteration
* Sequential Block S has a high cache miss ratio
— Maintain historical data to track changes in application
behavior

* Historical => previous iterations
* E.g., to trigger load balancing

Benefits in Charm++

Scalable Tools

Automatic overlap of Communication
and Computation

age-ariv g Perfect prefetch

compositionality

Fault Tolerance

Emulation for
Performance

Prediction

Dynamic load balancing (topology-aware,
scalable)

runtime system

Temperature/Power/Energy
Optimizations

8/7/14 ATPESC 15

Benefits in Charm++

Scalable Tools

Automatic overlap of Communication
and Computation

age-ariv g Perfect prefetch

compositionality

Fault Tolerance

Emulation for
Performance

Prediction

Dynamic load balancing (topology-aware,
scalable)

runtime system

Temperature/Power/Energy
Optimizations

8/7/14 ATPESC 16

Utility for Multi-cores, Many-cores,

Accelerators:

* Objects connote and promote locality

* Message-driven execution
— A strong principle of prediction for data and code use

— Much stronger than principle of locality
e Can use to scale memory wall:
* Prefetching of needed data: [M

— into scratch pad memories, for example
Processor 1

Scheduler

H o

Message Queue

Impact on communication

* Current use of communication network:
— Compute-communicate cycles in typical MPIl apps
— So, the network is used for a fraction of time,
— and is on the critical path

e So, current communication networks are over-
engineered for by necessity

BSP based application

8/7/14 ATPESC 18

Impact on communication

* With overdecomposition
— Communication is spread over an iteration

— Also, adaptive overlap of communication and
computation

P1

e X
I

i
2 _ 1N

Overdecomposition enables overlap

8/7/14 ATPESC 19

Decomposition Challenges

Current method is to decompose to processors
— But this has many problems

— Deciding which processor does what work in detail is
difficult at large scale

Decomposition should be independent of number of
processors — enabled by object based decomposition

Adaptive scheduling of the objects on available
resources by the RTS

Decomposition Independent of numCores

* Rocket simulation example under traditional MPI
1 2
* With migratable-objects:

— Benefit: load balance, communication optimizations, modularity

8/7/14 ATPESC 21

Compositionality

* [tisimportant to support parallel composition
— For multi-module, multi-physics, multi-paradigm
applications...
* What | mean by parallel composition
— B || Cwhere B, C are independently developed modules
— B is parallel module by itself, and so is C
— Programmers who wrote B were unaware of C
— No dependency between B and C

* This is not supported well by MPI

— Developers support it by breaking abstraction boundaries
* E.g., wildcard recvs in module A to process messages for module B

— Nor by OpenMP implementations:

Without message-driven execution (and

virtualization), you get either:
Space-division

Time

8/7/14 ATPESC

23

8/7/14

OR: Sequentialization

ATPESC

Time

24

Parallel Composition: A1; (B || C); A2

N
>

Recall: Different modules, written in different
languages/paradigms, can overlap in time and on
processors, without programmer having to worry
about this explicitly

So, What is Charm++?

 Charm++ is a way of parallel programming
based on

— Objects

— Overdecomposition
— Message

— Asynchrony

— Migratability

— Runtime system

Overdecomposed Objects

@
O Parallel Address Space O O
@ o @ @
o O O
@0 O O

8/7/14

AAAAAA

Message-driven

Parallel Address Space

F.m4() Emi

()
- ﬂ G.m2()
AP Y

e Certain member functions of certain classes are

globally visible

* |Invocation of a member function may lead to
communication

e Charm++ Basics:

e Structured Dagger Notation

 Designing Charm++ programs, with

application case studies

8/7/14 ATPESC

29

