AAAAAAAAAAAAAAAAAA

Asynchronous Dynamic Load Balancing
(ADLB)

A high-level, non-general-purpose, but easy-to-use

programming model and portable library for task
parallelism

Rusty Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

Two Classes of Parallel Programming Models

= Data Parallelism
— Parallelism arises from the fact that physics is largely local

— Same operations carried out on different data representing different
patches of space

— Communication usually necessary between patches (local)

e global (collective) communication sometimes also needed

— Load balancing sometimes needed

= Task Parallelism

— Work to be done consists of largely independent tasks, perhaps not all
of the same type

— Little or no communication between tasks
— Traditionally needs a separate “master” task for scheduling
— Load balancing fundamental

Load Balancing

= Definition: the assignment (scheduling) of tasks (code + data)
to processes so as to minimize the total idle times of
processes

= Static load balancing
— all tasks are known in advance and pre-assigned to processes
— works well if all tasks take the same amount of time
— requires no coordination process

= Dynamic load balancing

— tasks are assigned to a worker process by master process when
worker process becomes available by completing previous task

— Requires communication between manager and worker processes

— Tasks may create additional tasks
— Tasks may be quite different from one another

Generic Manager/Worker Algorithm

Manager ~—— || Shared

Worker Worker Worker Worker Worker

= Easily implemented in MPI

= Solves some problems
— implements dynamic load balancing
— termination
— dynamic task creation

— can implement workflow structure of tasks

= Provides some scalability problems

— Manager can become a communication bottleneck (granularity dependent)
— Memory can become a bottleneck (depends on task description size)

The ADLB lIdea

= No explicit master for load balancing; workers make calls to
ADLB library; those subroutines access local and remote data
structures (remote ones via MPI).

= Simple Put/Get interface from application code to distributed
work queue hides MPI calls

= Potential proactive load balancing in background

The ADLB Model (no master)

Worker Worker Worker Worker Worker

A

Shared
Work queue

= Doesn’t really change algorithms in Workers
= Not anew idea (e.g. Linda)

= But need scalable, portable, distributed implementation of shared work
queue

— MPI complexity hidden here

API for a Simple Programming Model

= Basic calls

ADLB_Init(num_servers, am_server, app_comm)
ADLB_Server()

ADLB_Put(type, priority, len, buf, target_rank, answer_dest)
ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
ADLB Ireserve(...)

ADLB_Get_Reserved(handle, buffer)

ADLB_Set_Done()

ADLB_Finalize()

= Afew others, for optimizing and debugging

ADLB_{Begin,End} Batch_Put()
Getting performance statistics with ADLB_Get_info(key)

APl Notes

= Types, answer_rank, target_rank can be used to implement
some common patterns
— Sending a message
— Decomposing a task into subtasks
— Maybe should be built into API

= Return codes (defined constants)
— ADLB_SUCCESS
— ADLB_NO_MORE_WORK
— ADLB_DONE_BY_EXHAUSTION
— ADLB_NO_CURRENT_WORK (for ADLB_Ireserve)

= Batch puts are for inserting work units that share a large
proportion of their data

More API Notes

= |f some parameters are allowed to default, this becomes a
simple, high-level, work-stealing API
— examples follow

= Use of the “fancy” parameters on Puts and Reserve-Gets
allows variations that allow more elaborate patterns to be
constructed

= This allows ADLB to be used as a low-level execution engine
for higher-level models

— ADLB is being used as execution engine for the Swift
workflow management language

How It Works (production implementation)

Q Application Processes
() ADLB Servers

10

The ADLB Server Logic

= Main loop:
— MPI_Iprobe for message in busy loop
— MPI_Recv message

— Process according to type
e Update status vector of work stored on remote servers
e Manage work queue and request queue
e (may involve posting MPI_Isends to isend queue)

— MPI_Test all requests in isend queue
— Return to top of loop

" The status vector replaces single master or shared
memory

— Circulates among servers at high priority

11

ADLB Uses Multiple MPI Features

ADLB _Init returns separate application communicator, so application
processes can communicate with one another using MPI as well as by using
ADLB features.

Servers are in MP|_Iprobe loop for responsiveness.
MPI_Datatypes for some complex, structured messages (status)

Servers use nonblocking sends and receives, maintain queue of active
MPI_Request objects.

Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany. No MPI_Wait.

Client side uses MPI_Ssend to implement ADLB_Put in order to conserve
memory on servers, MPl_Send for other actions.

Servers respond to requests with MPI_Rsend since MPI_Irecvs are known to
be posted by clients before requests.

MPI provides portability: laptop, Linux cluster, BG/Q
MPI profiling library is used to understand application/ADLB behavior.

12

Typical Code Pattern

rc = MPI_Init(&argc, &argv);

aprintf_flag = 0; /* no output from adlb itself */
num_servers = 1; /* one server might be enough */
use_debug_server = 0; /* default: no debug server */

rc = ADLB_Init(num_servers, use_debug_server, aprintf_flag, num_t,
type_vec, &am_server, &am_debug_server, &app_comm);

if (am_server) {
ADLB_Server(3000000, 0.0); /* mem limit, no logging */
3
else { /* application process */
code using ADLB_Put and ADLB_Reserve, ADLB_Get_Reserved, etc.
}
ADLB_Finalize(Q);
MPI_Finalize();

13

Some Example Applications

= Fun - Sudoku solver

= Simple but useful Physics application — parameter
sweep

= World’s simplest batch scheduler for clusters

= Serious — GFMC: complex Monte Carlo physics application

14

A Tutorial Example: Sudoku

112 9 I
3 6 1
7 38
5|3
7 9 1 8 |2 6
5|6
1 9
6 7 1
2 5 3 8

= (The following algorithm is not a good way to solve this, but it fits on one slide.)

15

Parallel Sudoku Solver with ADLB

Program:

1f (rank = 0)

ADLB_Put initial board
1 ADLB_Get board (Reserve+Get)

while success (else done)
ooh
find first blank square

Ol
N W|0o | O

6 1f failure (problem solved!)

print solution
ADLB_Set_Done
9 else

~N =01 ©O
o

1 for each valid value

set blank square to value
2 5 38 ADLB_Put new board
ADLB_Get board

end while

Work unit =
partially completed “board”

16

How it Works

Put
1‘ ii 9 7
"el’ 6[1
7 8
1 Get
7 ol 1 8] 2 6] <%
51 6
1 9
7 1

/
\OO

124" 9 7 1.(39 9 7 1@ 9 7
N 6|1 h 6] 1 N 6|1
7] 18 7] |8 7] 18
5]3 513 5|3
7| [9l1] [8]2] [6 7] [9]1] [8l2] |6 7] [9l1] [8]2] [6
5|6 516 5|6
11 9 1 [9 11 9
6|7 1 6|7 1 6|7 1
2 5 3|8 2 5 3/8 2 5 3|8
Put
|]

After initial Put, all processes execute same loop (no master)

9 7
3 6
8
5|3
91 [8]2] |6
5] 6
1
7 1
5 8

17

Optimizing Within the ADLB Framework

= Can embed smarter strategies in this algorithm

— ooh = “optional optimization here”, to fill in more squares

— Even so, potentially a /ot of work units for ADLB to manage

= Can use priorities to address this problem
— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is enough
work to go around

e How one would do it sequentially

= Exhaustion automatically detected by ADLB (e.g., proof that
there is only one solution, or the case of an invalid input
board)

18

A Physics Application - Parameter Sweep in
Material Science Application

B Finding materials to use in luminescent solar concentrators
— Stationary, no moving parts
— Operate efficiently under diffuse light conditions (northern climates)

— Inexpensive collector, concentrate light on high-performance solar
cell

B |n this case, the authors never learned any parallel programming
approach other than ADLB

(a) incident sunlight

37 @ KQ photovoltalc cell

luminescent material

light guide

\d

—w

19

The “Batcher”: World’s Simplest Job Scheduler for
Linux Clusters

= Simple (100 lines of code) but potentially useful

" |nputis a file (or stream) of Unix command lines, which
become the ADLB work units put into the work pool by one
manager process

= ADLB worker processes execute each one with the Unix
“system” call

= Easy to add priority considerations

20

Green’s Function Monte Carlo - A Complex Application

= Green’s Function Monte Carlo -- the “gold standard” for ab initio
calculations in nuclear physics at Argonne (Steve Pieper, PHY)

= A non-trivial manager/worker algorithm, with assorted work types and
priorities; multiple processes create work dynamically; large work units

= Had scaled to 2000 processors on BG/L, then hit scalability wall.

= Needed to get to 10’s of thousands of processors at least, in order to carry
out calculations on 12C, an explicit goal of the UNEDF SciDAC project.

= The algorithm threatened to become even more complex, with more
types and dependencies among work units, together with smaller work
units

= Wanted to maintain master/slave structure of physics code
= This situation brought forth ADLB

= Achieving scalability has been a multi-step process
— balancing processing
— balancing memory
— balancing communication
= Now runs on 100,000 processes
é 21

\ |
Early Experiments with GFMC/ADLB on BG/P

= Using GFMC to compute the binding energy of 14 neutrons in an artificial
well (“neutron drop” = teeny-weeny neutron star)

= A weak scaling experiment

BG/P ADLB _ Time Efficiency
Configs . .
cores Servers (min.) (incl. serv.)
4K 130 20 38.1 93.8%
8K 230 40 38.2 93.7%
16K 455 80 39.6 89.8%
32K 905 160 44.2 80.4%

Recent work: “micro-parallelization” needed for 12C, OpenMP in GFMC.

— asuccessful example of hybrid programming, with ADLB + MPI + OpenMP

22

Progress with GFMC

Efficiency in %

100

90

o0
-

1
-

60

Efficiency = compute_time/wall_time — 25 Feb 2010

Oct 2009

Jun 2009

Feb 2009

2c ADLB+GFMC

128 512 2,048 8,192
Number of nodes (4 OpenMP cores per node)

wg

\'NA
.
RN

23

An Alternate Implementation of the Same API

= Motivation for 1-sided, single-server version:

— Eliminate multiple views of “shared” queue data structure and the effort
required to keep them (almost) coherent)

— Free up more processors for application calculations by eliminating most
servers.

— Use larger client memory to store work packages
= Relies on “passive target” MPI-2 remote memory operations

= Single master proved to be a scalability bottleneck at 32,000 processors
(8K nodes on BG/P) not because of processing capability but because of
network congestion.

ADLB_Put ADLB_Get

MPI_Put MP|_Get

24

Getting ADLB

Web site is http://www.cs.mtsu.edu/~rbutler/adlb
— documentation

— download button

What you get:

— source code ﬁ: |
— configure script and Makefile »~
— README, with APl documentation
— Examples o

e Sudoku %

e Batcher ’

— Batcher README
e Traveling Salesman Problem ->
To run your application
— Configure, make to build ADLB library
— Compile your application with mpicc, use Makefile as example
— Run with mpiexec

Problems/questions/suggestions to {lusk,rbutler}@mcs.anl.gov

25

Future Directions

= APl design

— Some higher-level function calls might be useful

— User community will generate these

" |mplementations

— The one-sided version

implemented

single server to coordinate matching of requests to work units
stores work units on client processes

Uses MPI_Put/Get (passive target) to move work

Hit scalability wall for GFMC at about 8000 processes

— The thread version

uses separate thread on each client; no servers

e the original plan

maybe for BG/Q, where there are more threads per node
not re-implemented (yet)

26

Conclusions

= There are benefits to limiting generality of approach

= Scalability need not come at the expense of complexity

= ADLB might be handy

27

The End

28

