
The Impact of Community Codes in Astrophysics 
 
Anshu Dubey 
 
With slides from 
Brian O’Shea (Enzo) 
Matt Turk (Enzo and yt) 
 
August 13, 2014 
 

 



The Astrophysics Community 

q Had an early culture of releasing research software 
starting in the early eighties 
q N-body codes for many-body gravitational interactions  

q Nbodyx went from Nbody1 to Nbody6 

q Barnes and Hut tree code 
q Hydrodymanics with ZEUS-2D, and later ZEUS-3D  
q SPH codes such as Hydra and Gadget 

q Over time public codes became more sophisticated 
q AMR appeared in FLASH is early 2000 
q Shock-capturing MHD and radiation hydro also started to 

appear 



The Astrophysics Community 

q The tradition has continued with many more 
codes appearing over the years 
q Some codes are extensible 
q Capabilities added over time 

q A comprehensive list can be found at the 
Astrophysics Source Code Library  
http://ascl.net/code/all/page/4/limit/100/order/title/
listmode/full 
q Not only Astro codes, but all codes useful to Astro 



The Astrophysics Community 

q Most codes started as research software and 
became public later 
q Were developed as closed and used by the core group for 

years before being released (Enzo) 
q Others were developed with the intent of being made 

public as soon as possible (FLASH) 
q With the arrival of “yt” there is yet another paradigm 

shift 
q An analysis and visualization packaged developed by the 

astrophysicists for astrophysicists 
q Building the community and development by the 

community from the very beginning 



Why did Community Codes Flourish in 
Astrophysics 

Why do some communities adopt the 
open source model while others do not ? 



Astrophysics Simulations Need Multi-physics and Multi-scale 

Shortly: Relativistic accretion onto NS 

Gravitational collapse/Jeans 
instability 

Intracluster interactions 

Type !a Supernova 

q Mesh methods: Explicit (gas 
dynamics), semi-Implicit 
(gravitational potential), and 
implicit (radiation) 

q Particle methods: tracers, 
massive, charged 

q Point-wise calculations: EOS, 
source terms 

q AMR for data and 
computation compression 

Developing and maintaining such complex codes is 
beyond the resources of capabilities of individuals or 
even small groups: Community codes are the solution  

Galaxy Cluster Merger 



What About Other Communities ? 

q Community/open-source approach more common in 
areas which need multi-physics and/or multi-scale 

q A visionary sees the benefit of software re-use and 
releases the code 

q Sophistication in modeling advances more rapidly in 
such communities 

q Others keep their software close for perceived 
competitive advantage 
q Repeated re-invention of wheel 
q General advancement of model fidelity slower 

Let	
  us	
  examine	
  what	
  does	
  it	
  take	
  to	
  build	
  a	
  community	
  code	
  



“Cathedral and the Bazaar”,  Eric S. Raymond 

q The Cathedral model 
q  Code is available with each software release 
q  Development between releases is restricted to an 

exclusive group of software developers.  
q GNU Emacs and GCC are presented as examples. 

q Central control models 

q The Bazaar model 
q  Code is developed over the Internet in view of the public. 
q  Raymond credits Linus Torvalds, leader of the Linux 

kernel project, as the inventor of this process. 
q Distributed control models 



Scientific codes 
q Mostly follow the cathedral model 
q Many reasons are given, some valid, others spring from bias 
q The valid ones 

q  Scientists tend to be skeptical of software engineering 
q  The code quality becomes hard to maintain 
q  Hard to find financial support for gate keeping and general maintenance  
q  Typical user communities are too small to effectively support the bazaar 

model 
q  The reward structure for majority of potential contributors is incompatible 

q The not so valid ones 
q  Codes are far too complex  
q  Competitive advantage from owning the code 

The	
  real	
  reason	
  many	
  7mes	
  is	
  simply	
  the	
  history	
  of	
  the	
  development	
  of	
  the	
  code	
  
and	
  the	
  pride	
  of	
  ownership	
  



Scientific Community Codes Can Follow 
Several Different Paths : 

q The most common path 
q Someone wrote a very useful piece of code that 

several people in the group started using 
q Collaborations happened 
q People moved and took the code with them 
q Critical mass of users achieved, code becomes 

popular 
q No focused effort to build the code 

q Usually very little software process involved 
q For the whole code, limited shelf life 



A More Sustained Path 

q Sometimes enough like minded people take it a 
step further  
q Some long term planning might result in better 

engineered code 
q Thought given to extensibility and for future code 

growth 
q As the code grows so does its community supported 

model 
q This model is still relatively rare. 

q The occurrences are increasing 



A Desirable Path 

q Explicit funding to build a code for a target 
community 

q Implied support for the design phase 
q The outcome is expected to be long lasting and 

well engineered  
q The occurrences are even rarer 

q And it is getting increasingly harder 

q When it works outcome is more capable and 
longer lasting codes 



Open Source Benefits 

q Nobody can pull the plug  
q Users have the source code, free to use and modify, 

in perpetuity. 
 

q Users don’t have to pay 
q They pay with their time and attention and what they 

give back. 
q Stakeholders are power  
q Not all stakeholders are equivalent 

q User count may not be as helpful as vocal collaborators 



Software Engineering and Process 

q Strong interfaces and encapsulation (enforced 
by the language or build system) enables 
community participation. 
q Users can customize in many different ways 

q Depends somewhat on the code architecture 
q Add needed interfaces on top of infrastructure 
q Use derived classes   

q Open-source means they can control customization  



The Benefits of the Bazaar model 

q Given a large enough beta-tester and co-developer base, almost 
every problem will be characterized quickly and the fix will be 
obvious to someone 
q More varied test cases that demonstrate bugs 
q Debugging can be effectively parallelized. 
q The infrastructure limitations are quickly exposed 

q Capability addition is rapid, codes can do more 
q A corollary to that is a good extensible design 
q Users always want something more and/or something different 

from what is available 
q Greater knowledge pool operating together, more possibility of 

innovation 



The Pitfalls of the Bazaar model 

q Many of the benefitting reasons can equally easily 
go the other way 
q Bigger knowledge pool can also mean more conflicting 

opinions  
q Prioritizations can become extremely challenging 

q Gatekeeping can become a huge challenge for 
maintaining software quality 
q Scientific codes have their own peculiarities for verification 

and validation that can be extremely challenging 
q The orchestration of capability combination is harder when 

there is physics involved because many times it just won’t 
play well together 



Other Considerations : User Expertise 

 
q Novice users – execute one of included 

applications 
q change only the runtime parameters 

q Most users – generate new problems, analyze 
q Generate new Simulations with initial conditions, 

parameters 
q Write alternate and/or derived functions for specialized 

output 
q Advanced users – Customize existing functions 

q Add small amounts of new code needed by their 
application  

q Expert – new research 
q Completely new algorithms and/or capabilities 
q Can contribute to core functionality 



Distribution Policies 

q The licensing agreement 
q How restrictive ? 

q Distribution control 
q Who can get the code 
q Should there be a registration requirement 

q What is included in the release 
q The degree of support for released components 

q How often to release 
q Trade-off between making capabilities available 

quickly and the overhead of releasing 



Contribution Policies 
q Balancing contributors and code distribution needs 

q Contributors want their code to become integrated with 
the code so it is maintained, but may not want it released 
immediately  
q Not exercised enough 
q Contributor may want some IP protection 

q Maintainable code requirements 
q The minimum set needed from the contributor 

q Source code, build scripts, tests, documentation 
q Agreement on user support 

q Contributor or the distributor 
q Add-ons : components not included with the 

distribution, but work with the code 



Community Building 
q Popularizing the code alone does not build a community 
q Neither does customizability – different users want different 

capabilities 

So what does it take ? 
q Enabling contributions from users and providing support for 

them 
q Including policy provisions for balancing the IP protection with 

open source needs 
q Relaxed distribution policies – giving collective ownership to 

groups of users so they can modify the code and share 
among themselves as long as they have the license 

 
 More inclusivity => greater success in community building 

An investment in robust and extensible infrastructure, and a strong  
culture of user support is a pre-requisite  



Examples : FLASH Developed and 
Distributed by One Institution 
q Under sustained funding from the ASC alliance program 
q One of the expected outcomes was a public code 

q Use the same code for many different applications 
q All target applications were for reactive flows 

q Diverging camps from the beginning 
q Camp 1: Produce a well architected modular code 
q Camp 2: Let’s build what can be used for science soon 

q Both goals hard to meet in the near term 
q Two parallel development paths started 

q Not enough resources to sustain both 
q Camp 2 won out 

q Took three iterations of code refactoring to get robust 
framework built 



FLASH’s Community 

q Originally designed for thermo-nuclear flashes 
q Expanded to include N-body capabilities through particles 
q Over the years many other physics capabilities got added  

q Now serves many communities in Astrophysics, and 
also serves HEDP and CFD/FSI  
q Most rapid increase in modeling laser experiments 
q Only open code for the community 

q Very little modification to the basic infrastructure 
needed to accommodate these capabilities 

q Additions typically prove to be synergistic for all the 
communities 



Some Statistics 
 
q Releases roughly every 6-8 months 
q In version 4.x now 
q More than 850 papers have used it for obtaining 

results 
q Increasingly more sophisticated contributions 

from outside the core group 
q Sink particles 
q Incompressible Navier-Stokes solver 
q Primordial Chemistry 



Community Building 
q Took several years  
q Started with collaborations with the Center scientists 
q Alumni of the center took the culture and the code with 

them 
q Their students and post-docs adopted the code 

q Tutorials on-site and at scientific conferences to promote 
q Tutorials had hands-on sessions and help for user’s specific 

problems 
q Easy customizability built into the infrastructure helped 

q As did the included ready to run examples 
q Increasing capabilities enable tackling more complex and 

higher fidelity modeling 
The	
  greatest	
  impact	
  in	
  popularizing	
  the	
  code	
  though	
  was	
  rela7ve	
  ease	
  in	
  ge=ng	
  	
  

started,	
  quick	
  turn-­‐around	
  for	
  user’s	
  ques7ons	
  and	
  hand	
  holding	
  provided	
  through	
  
the	
  mailing	
  lists	
  



Enzo : Transitioned from close to open 
source 

q Started as a closed code 
q From 1996-2003 

q First public release in March 2004 
q Mostly cathedral model 

q Has now moved very close to a bazaar model 
q 25 contributors (~12 active developers) at >10 institutions	



q ~200 people on enzo-users mailing list (~50% active?)	


q Financial support from NSF (AST, OCI, PHY), NASA,and DOE	



•  Complementary community: 	

yt (http://yt-project.org)	





Development Model 

q Entirely distributed development model 
q Small number of developers per institution 

q Use code forks / pull requests to move features 
from development branches to the main branch 

q Almost all discussion on archived public mailing 
lists  
q And on Google docs 



Community 
q Most developers are astrophysicists “scratching 

their own itch” 
q Development spurred by ~1.5 workshops/year  

q And periodic task-oriented “code sprints” 
q Many streams of funding 

q Enthusiastic and heavily involved user/developer 
community 

Challenges: 
q No leader => hard to make major code revisions 
q Part-time developers: distractions, less incentive to do 

“boring but important” infrastructure development 
q Significant work required to build consensus and keep 

community together 



The yt Project 
Growing & Engaging a community 
of practice 



Building a community …  

The technical and social aspects 



"Users" 

Traditional View of Scientific 
Development 

"Developers" 



"Users" 

"Developers" 

Most Scientific Development 



"Devusers" 

Community of Practice 



Foster a community of 
peers, 

not a community of 
elites. 



Immediate 



Immediate 







Common Threads 

q Open source with a governance structure in place 
q Trust building among teams 
q Commitment to transparent communications 
q Strong commitment to user support 
q Either an interdisciplinary team, or a group of people 

comfortable with science and code development 
q Attention to software engineering and documentation 
q Understanding the benefit of sharing as opposed to 

being secretive about the code 



q  Scientists can focus on developing for their algorithmic 
needs instead of getting bogged down by the 
infrastructural development	



q  Graduate students do not start developing codes from 
scratch	


q  Look at the available public codes and converge on 

the ones that most meet their needs	


q  Look at the effort of customization for their 

purposes	


q  Select the public code, and build upon it as they need	



General Impact 

Important	
  to	
  remember	
  that	
  they	
  s7ll	
  need	
  to	
  understand	
  the	
  components	
  developed	
  
by	
  others	
  that	
  they	
  are	
  using,	
  they	
  just	
  don’t	
  have	
  to	
  actually	
  develop	
  everything	
  

themselves.	
  And	
  this	
  is	
  par7cularly	
  true	
  of	
  pesky	
  detailed	
  infrastructure/solvers	
  that	
  
are	
  too	
  well	
  understood	
  to	
  have	
  any	
  research	
  component,	
  but	
  are	
  7me	
  consuming	
  to	
  

implement	
  right	
  



q  Researchers can build upon work of others and get further 
faster, instead of reinventing the wheel	


q  Code component re-use	


q  No need to become an expert in every numerical 

technique	


q  More reliable results because of more stress tested code	



q  Goes back to argument for the bazaar model, enough 
eyes looking at the code will find any errors faster	



q  New implementations take several years to iron out the 
bugs and deficiencies	



q  Different users use the code in different ways and 
stress it in different ways	



q  Open-source science results in more reproducible results	


q  Generally good for the credibility	



General Impact 



q  Involvement in this community has strongly affected 
young scientists’ career trajectories	


q  They have produced more significant and far-reaching 

advances in their fields	


q  They have understood the importance of rigorous 

verification and validation in the scientific process	


q  They have learned to use the good software practices 

to their advantage	


q  Unexpected side benefits: 	



q  Arrival of yt spurred the development in Enzo	


q  FLASH morphed into community code for areas that 

have very little to do with its original target	


q  Took addition of a few physics models and there 

was a working code in a few months	


q  New developments helped the Astro community	


	



General Impact 



q  There are many reasons why community codes are 
good and should be encouraged	


q  Science and engineering by simulation needs more 

scrutiny into the methods and software	


q  There is no need to keep reinventing the wheel	



q  Starting from scratch for any computational 
project where implementations exist is a waste	



q  This is especially true of book-keeping work	


q  Scientists aren’t trained to write good maintainable 

and performant software	


q  Optimization blockers	


q  Spaghetti codes	


q  No rigorous verification program	



Conclusions 

The	
  Solu)on	
  :	
  Let	
  the	
  professionals	
  do	
  the	
  so5ware	
  design	
  and	
  engineering	
  with	
  a	
  lot	
  
of	
  input	
  from	
  the	
  target	
  user	
  community	
  (ideally	
  some	
  users	
  will	
  also	
  be	
  developers)	
  	
  	
  



Culture self-propagates. 
So, it must be seeded 

directly. 



"... it seems likely that significant software 
contributions to existing scientific software 
projects are not likely to be rewarded 
through the traditional reputation economy 
of science.  Together these factors 
provide a reason to expect the over-
production of independent scientific 
software packages, and the 
underproduction of collaborative projects 
in which later academics build on the work 
of earlier ones." 
 

Howison & Herbsleb (2011) 
 


