
Community Codes and Good Software
Techniques

 Scientific codes are complex
 Introduction to the next two days

Katherine Riley
August 13, 2014

Scientific applications are complex

¤  Physics/Domain
Problem

¤  Applied
Mathematics

¤  Computer Science
¤  I/O
¤  Verification
¤  Validation
¤  Software

Engineering

2

Using	
 the	
 largest	
 computer	
 systems	
 pushes	
 the	
 boundaries	
 of	

all	
 of	
 these	

Scientific applications are complex

¤  Physics/Domain
Problem

¤  Applied
Mathematics

¤  Computer Science
¤  I/O
¤  Verification
¤  Validation
¤  Software

Engineering

3

Using	
 the	
 largest	
 computer	
 systems	
 pushes	
 the	
 boundaries	
 of	

all	
 of	
 these	

ATPESC Material Covered so far

¤  Architecture
¤  Programming Models

¥  MPI, OpenMP, Acceleratos/OpenACC
¥  Chapel, Charm++, UPC, ADLB, etc

¤  Numerical Algorithms
¥  Libraries, toolkits, etc

¤  Tools & Performance
¤  Visualizing & Analyzing Data
¤  I/O & Data

4

Combine	
 your	
 science	
 to	
 have	
 the	
 primary	
 building	
 blocks	
 of	

your	
 applica9on	
 code	
 	

Simple	
 –	
 right?	

Putting all this to use

¤  Architecture
¤  Programming Models

¥  MPI, OpenMP, Acceleratos/
OpenACC

¥  Chapel, Charm++, UPC,
ADLB, etc

¤  Numerical Algorithms
¥  Libraries, toolkits, etc

¤  Tools & Performance
¤  Visualizing & Analyzing

Data
¤  I/O & Data

5

So=ware	
 Prac9ce	
 Scien9fic	
 Process	

Producing	
 Domain	

Science	

Putting all this to use

¤  Architecture
¤  Programming Models

¥  MPI, OpenMP, Acceleratos/
OpenACC

¥  Chapel, Charm++, UPC,
ADLB, etc

¤  Numerical Algorithms
¥  Libraries, toolkits, etc

¤  Tools & Performance
¤  Visualizing & Analyzing

Data
¤  I/O & Data

6

So=ware	
 Prac9ce	
 Scien9fic	
 Process	

Producing	
 Domain	

Science	

It	
 is	
 geCng	
 friendlier	

Perhaps	
 because	
 it	
 has	
 to	

Individual components and the whole picture
¤  Architecture
¤  Programming Models

¥  MPI, OpenMP, Acceleratos/
OpenACC

¥  Chapel, Charm++, UPC, ADLB,
etc

¤  Numerical Algorithms
¥  Libraries, toolkits, etc

¤  Tools & Performance
¤  Visualizing & Analyzing Data
¤  I/O

Concepts
¤  Software Practices
¤  Scientific Process
¤  Portability
¤  Extensibility
¤  Performance
¤  Provenance
¤  Resilience
¤  Reproducibility
¤  Verification and Validation

¤ And more…

7

Your	
 code	
 will	
 live	
 longer	
 than	
 you	
 think	
 it	
 will.	

Much matters and it all impacts

¤  Besides science..

8

Software Engineering and HPC
Efficiency vs. Other Quality Metrics

Source:!
Code Complete!
Steve McConnell!

Selective Slice of Good Scientific Practice
¤  Error

¥  Numerical Sensitivity
¥  Machine rounding
¥  Reproducibility

¤  Verification
¥  All parts of the code keep

giving what you expect
¥  Reproducibility

¤  Validation
¥  Compare to experiments
¥  Reproducibility

¤  Reproducibility of results
¤  Exact code used
¤  Documented
¤  Method transparency
¤  Data availability
¤  Coding Standards

9

Experimentalists	
 have	
 a	
 strong	
 culture	
 of	
 reproducing	
 results.	
 	

Computa9onal	
 science	
 needs	
 to	
 get	
 there.	
 	
 It	
 is	
 trying.	

	

Scien&st's	
 Nightmare:	
 So3ware	
 Problem	
 Leads	
 to	
 Five	
 Retrac&ons	

Greg	
 Miller	

Science	
 22	
 December	
 2006:	
 314	
 (5807),	
 1856-­‐1857.	
 [DOI:10.1126/science.
314.5807.1856]	

Some first steps for good Scientific Process
¤ Error

¥  Applied math (numerical
analysis)

¤ Verification
¥  Unit testing
¥  Regular testing – on scale

of development speed

¤ Validation
¥  Prove it represents the

real world
¥  Very science driven

¤ Reproducibility
¥  Version tag code used for

simulations
¥  Clear documentation on

code – even publish it
¥  Data provenance
¥  Data archiving
¥  Understand & document

workflow
¥  Agree & Document coding

standards

10

“Scien'fic	
 Data	
 is	
 an	
 open-­‐access,	
 peer-­‐reviewed	
 publica9on	
 for	

descrip9ons	
 of	
 scien9fically	
 valuable	
 datasets.	
 Our	
 primary	
 ar9cle-­‐type,	

the	
 Data	
 Descriptor,	
 is	
 designed	
 to	
 make	
 your	
 data	
 more	
 discoverable,	

interpretable	
 and	
 reusable.”	

Okay - don’t run away

¤  Scientific code is complex

¤  A lot of concepts
¥  Some you know already
¥  Some addressed at ATPESC
¥  Some brand new

¤  It is overwhelming if you are trying to consider 100 things at once
before working on codes

¤  Don’t

¤  Start with what works for you or your team but know that as the

scale of science grow, the big picture becomes more crucial
¤  If adopting an existing code, consider more

11

How to start the Software Process

¤ Decide on crucial
data structures
¥  Informed by science,

architectures, future
¥  How much will you

share?
¥  Data flow through

functionality

¤ Architecture of code
¥  Functional abstractions
¥  Parallelism

abstractions
¥  Data ownership clear
¥  Interplay between

architecture and
performance

¥  Coding Standards

¤ Understand workflow

12

Why is Software Process Important

¤  Modern scientific computing is no longer a solo effort
¥  Should not be a solo effort
¥  Most interesting modeling questions that could be simulated by

the heroic individual programming scientist have already been
investigated

¥  “Productivity language” that are meant to alleviate the
complexity of programming high performance software have not
delivered yet

¥  Thus, coding is complicated and requires division of roles and
responsibilities.

¤  Working together on a common code is difficult unless
there is a software process

13

Software Process Components

For All Codes
¤ Code Repository
¤ Build Process
¤ Code Architecture
¤ Coding Standards
¤ Verification Process
¤ Maintenance (Support)

Practices

Publicly Distributed

14

¤ Distribution Policies
¤ Contribution Policies
¤ Attribution Policies

Many flavors of code and trade-offs

¤  Blackbox use of existing code
¤  Alteration of/collaboration on existing code
¤  Use of libraries
¤  Use of a framework
¤  Development of new code

¤  Trade offs include (not complete)
¥  Speed to science
¥  Features
¥  Control of methods & accuracy
¥  Complexity of use
¥  Validation
¥  Verification

15

Building a Scientific Code

16

Domain	
 component	
 interfaces	

•  Data	
 mediator	
 interac9ons	

•  Hierarchical	
 organiza9on	

•  Mul9scale/mul9physics	
 coupling	

Na9ve	
 code	
 &	
 Data	
 objects	

•  Single	
 use	
 code	

•  Coordinated	
 component	
 use	

•  Applica9on	
 specific	

Documenta9on	

•  Source	
 markup	

•  Embedded	
 examples	

Build	
 Content	

•  Rules	

•  Parameters	

Shared	
 data	
 objects	

•  Meshes	

•  Matrices	

Library	
 Interfaces	

•  Data	

transforma9on	

•  Parameter	
 config	

Libraries	

•  Solvers	

Frameworks	
 &	

tools	

SW	
 Engineering	

•  Produc9vity	
 tools	

•  Models,	
 processes	

Programming	

Model	
 &	

Languages	

Tes9ng	
 Content	

•  Unit	
 Tests	

•  Glue	
 Tes9ng	

Adapted	
 	
 a	

slide	
 from	

Mike	
 Heroux,	

SNL	

Considerations

Some of the technical
considerations

¤  Choosing your tools, codes, etc
¥  Libraries
¥  Frameworks
¥  Open source code
¥  Community code
¥  Closed or commercial code

¤  Writing the code
¥  Data structures
¥  Data structures
¥  Data structures from storage to

memory to cache and back to
storage (locality)

¥  Parallelization of work and data
¥  Languages

Everything else

17

¤  Development
¥  Availability where and when you

need them
¥  Sustained support
¥  Feature support

¤  The future of the code
¥  HPC is the land of low level

languages
¥  HPC is the land of some bleeding

¤  Flexibility to replace libraries
¤  Flexibility to adapt to

architectures
¤  ..

Obstacles for Reusing Code
¤  Using externally developed software seen as risk

¥  Can be hard to learn
¥  May not not be what you need
¥  May not be what you think you need
¥  Upgrades of external software can be risky

¡  Backward compatible?
¡  Regression in capability?

¥  Support model may not be sufficient
¥  Long term commitment may be missing

¤  What can reduce the risk of depending on external
software?
¥  Use strong software engineering processes and practices

¡  high quality, low defects, frequent releases, regulated backward
compatibility, …

¡  10-30 year commitment
¡  Develop self-sustaning software

18

Models for developing scientific codes

¤  Open source community developed codes
¥  Always available, any contribution open source code
¥  Central controls of code development
¥  Closed non-commercial codes
¥  Commercial code

¤  Speed of change
¤  Key design ideas

¥  Scientific mission – scientists involved
¥  Always capable of science
¥  Portability – range of platform scale very beneficial
¥  Documented
¥  Clear design
¥  Prove the code

19

Self Sustaining Software
¤  Open-source: The software has a sufficiently loose open-source license

allowing the source code to be arbitrarily modified and used and reused in a
variety of contexts (including unrestricted usage in commercial codes).

¤  Core domain distillation document: The software is accompanied with a short
focused high-level document describing the purpose of the software and its
core domain model.

¤  Exceptionally well testing: The current functionality of the software and its
behavior is rigorously defined and protected with strong automated unit and
verification tests.

¤  Clean structure and code: The internal code structure and interfaces are
clean and consistent.

¤  Minimal controlled internal and external dependencies: The software has
well structured internal dependencies and minimal external upstream software
dependencies and those dependencies are carefully managed.

¤  Properties apply recursively to upstream software: All of the dependent
external upstream software are also themselves self-sustaining software.

¤  All properties are preserved under maintenance: All maintenance of the
software preserves all of these properties of self-sustaining software (by
applying Agile/Emergent Design and Continuous Refactoring and other good
Lean/Agile software development practices).

20

Side note on legacy codes

Productivity in science fundamentally depends
on productivity in software

Grand-
Challenge
Science

Effective
Use of HPC

Science
Applications

Complex
Legacy

Applications

HPC SW
& Libs

Computational
Science

Billion-way
concurrency!

Non-
professional
Developers

Extreme-scale
Computational

Software

Computational
Science

Expertise

Productive Collaborations

Research Need:
Software Productivity for

Extreme-scale Science

11

Software
Engineering
Expertise

¤  People
disagree

¤  I think this is
wrong

¤  But not
totally wrong

¤  DOE has an
investment
to maintain

21

From	
 a	
 set	
 of	
 DOE	
 workshops	
 on	

HPC	
 produc9vity	

Consider the HPC ecosystem

¤  Developing code exclusively for a small cluster is not the same as
developing code for HPC

¤  You can develop HPC code that will work well on your cluster and
your laptop

¤  In HPC, the trade-off with design and performance is omnipresent
¤  Have reached a complexity point that code reuse & design is very

important
¤  All your lessons from software engineering do not apply

22

C"
14"

C++"
22"

F"
30"

Python
2"

Charm
++"
1"

Languages
Code	
 Availability	

Open	
 52%	

Closed	
 26%	

Fuzzy	
 22%	

Quick	
 glimpse	
 of	
 some	
 stats	

on	
 Mira	
 applica9ons.	
 	
 	

100%	
 MPI,	
 65%	
 threaded	

Over the next two days

¤  Impact of Community Codes on Astrophysics – Anshu Dubey
¤  Climate and Community Codes – Rob Jacob
¤  Portable Performant Scientific Code – Hal Finkel
¤  Quantum Monte Carlo and Electronic Structure – Anouar Benali
¤  Organizing the USQCD – Rich Brower

¤  Software Engineering Practices – Aron Ahmadia & Chris Kees
¤  Modern Features of a Production Scientific Code -Martin Berzins
¤  Workflows – Mike Wilde
¤  Data Provenance – David Koop

23

Goals

¤  Show you the approach and effectiveness of code cooperation in a
variety of domains

¤  Illustrate some of the challenges of those approaches
¥  Sociological & Technical

¤  Expose some of the processes around developing large, production
scientific codes

¤  Ensure you know the importance and specifics of the scientific process

¤  We are not trying to teach you these codes
¤  We are passing on experience
¤  A lot* of people have spent a lot of time thinking about maintain codes

that use the largest systems in the world

24

*A	
 lot	
 normalized	
 for	
 the	
 size	
 of	
 the	
 HPC	
 community.	
 	

Especially	
 the	
 largest	
 scales.	

Questions

25

