Community Codes and Good Software
Techniques

Scientific codes are complex
Introduction to the next two days

Katherine Riley
August 13, 2014

Argonne Leadership
\ Computing Facility

|
Scientific applications are complex

® Physics/Domain Scioneh
Problem Questions

® Applied
Mathematics

Computer Science
1/0

Verification
Validation

Software
Engineering

© © © 0 6

Argonne Leadership <
Computing Facility \
[}

Scientific applications are complex

® Physics/Domain Scioneh

Questions

Problem

® Applied
Mathematics

Computer Science
1/Q
Verification
Validation

Software
Engineering

© ©®© G\ o

Argonne Leadership
Computing Facility \
[}

ATPESC Material Covered so far

® Architecture

® Programming Models
MPI, OpenMP, Acceleratos/OpenACC
Chapel, Charm++, UPC, ADLB, etc

® Numerical Algorithms
Libraries, toolkits, etc

® Tools & Performance
® Visualizing & Analyzing Data
® I/0 & Data

Combine your science to have the primary building blocks of

your application code
Simple —right?

Argonne Leadership \\\ \\\)
Computing Facility \ \‘
nr o

|
Putting all this to use

© Architecture Software Practice Scientific Process
® Programming Models

MPI, OpenMP, Acceleratos/
OpenACC

Chapel, Charm++, UPC,
ADLB, etc

® Numerical Algorithms
Libraries, toolkits, etc

® Tools & Performance

® Visualizing & Analyzing
Data

® |I/0 & Data

Producing Domain

Science

Argonne Leadership
Computing Facility

Putting all this to use

® Architecture Software Practice Scientific Process
® Programming Models

MPI, OpenMP, Acceleratos/

OpenACC
Chapel, Charm++, UPC,
ADLB, etc
® Numerical Algorithms : o
. _ . It is getting friendlier
Libraries, toolkits, etc i Perhaps because it has to

® Tools & Performance

® Visualizing & Analyzing
Data

® |I/0 & Data

Producing Domain

Science

Argonne Leadership
Computing Facility

|
Individual components and the whole picture

® Architecture Concepts
® Programming Models ® Software Practices
MPI, OpenMP, Acceleratos/ ® Scientific Process
OpenACC ® Portability
Chapel, Charm++, UPC, ADLB, ® Extensibility
etc ® Performance
® Numerical Algorithms ® Provenance
Libraries, toolkits, etc ® Resilience
® Tools & Performance ® Reproducibility
® Visualizing & Analyzing Data ® Verification and Validation
e /0 ® And more...

Your code will live longer than you think it will.

Argonne Leadership
Computing Facility

.\\

= Software Engineering and HPC
Efficiency vs. Other Quality Metrics

How focusing Source:

on the factor Code Complete
below affects Steve McConnell
the factor to
the right

Adaptability

Usability
Integrity

=P | Correctness
=» | Efficiency
=» | Reliability
<4 | Robustness

Correctness

-

Usability
—_

< Efficiency

S —
Reliability

<4 |=» | > | Accuracy

<+
->
<
<+ |-

-
-

Integrity +

->
-
<

->
|||
<«|>

Adaptability

«|>>
<
- | <«
<«|>
-

ACCUIECY, Helps it 4

; Sandia
Hurts it + (Fy] taiona

Lahoratories

«|>
-
|«

Robustness

Selective Slice of Good Scientific Practice

® Error ® Validation
Numerical Sensitivity Compare to experiments
Machine rounding Reproducibility
Reproducibility ® Reproducibility of results

Exact code used

® Verification ®
® Documented
®
®

All parts of the code keep
giving what you expect
Reproducibility

Method transparency
Data availability
@ Coding Standards

Experimentalists have a strong culture of reproducing results.
Computational science needs to get there. It is trying.

Scientist's Nightmare: Software Problem Leads to Five Retractions

Greg Miller

Science 22 December 2006: 314 (5807), 1856-1857. [DOI:10.1126/science.
314.5807.1856]

Argonne Leadership 9
Computing Facility \

® Error ® Reproducibility

Applied math (numerical Version tag code used for
analysis) simulations
® Verification Clear documentation on

code - even publish it

Unit testin
; Data provenance

Regular testing - on scale

of development speed Data archiving
® Validation Understand & document
workflow
Prove it represents the .
real world Agree & Document coding
standards

Very science driven

“Scientific Data is an open-access, peer-reviewed publication for
descriptions of scientifically valuable datasets. Our primary article-type,
the Data Descriptor, is designed to make your data more discoverable,

interpretable and reusable.”
Argonne&
Computing Facility

|
Okay - don’t run away

® Scientific code is complex

® A lot of concepts
Some you know already

Some addressed at ATPESC
Some brand new

® It is overwhelming if you are trying to consider 100 things at once
before working on codes

® Don’t

® Start with what works for you or your team but know that as the
scale of science grow, the big picture becomes more crucial

® If adopting an existing code, consider more

Argonne Leadership 11
Computing Facility \

I

® Decide on crucial ® Architecture of code

data structures Functional abstractions

Informed by science, Parallelism
architectures, future abstractions

How much will you Data ownership clear
share? Interplay between

Data flow through architecture and
functionality performance

Coding Standards
® Understand workflow

® Modern scientific computing is no longer a solo effort

Should not be a solo effort

Most interesting modeling questions that could be simulated by
the heroic individual programming scientist have already been
investigated

“Productivity language” that are meant to alleviate the
complexity of programming high performance software have not
delivered yet

Thus, coding is complicated and requires division of roles and
responsibilities.

® Working together on a common code is difficult unless

th

ere is a software process

Argonne Leadership
Computing Facility

]
Software Process Components

For All Codes Publicly Distributed

® Code Repository ® Distribution Policies
® Build Process ® Contribution Policies
® Code Architecture ® Attribution Policies
® Coding Standards

® Verification Process

® Maintenance (Support)
Practices

14

|
Many flavors of code and trade-offs

Blackbox use of existing code

Alteration of/collaboration on existing code
Use of libraries

Use of a framework

Development of new code

© ®© ©®© ©®© ©

® Trade offs include (not complete)
Speed to science

Features

Control of methods & accuracy
Complexity of use

Validation

Verification

Argonne Leadership 15
Computing Facility \

)]

© ©@ ©® ®© e ©

Building a Scientific Code

Domain component interfaces
 Data mediator interactions

e Hierarchical organization

* Multiscale/multiphysics coupling

Native code & Data objects
* Single use code

* Coordinated component use
* Application specific

Shared data objects
* Meshes
* Matrices

Documentation
e Source markup
* Embedded examples

Library Interfaces

Testing Content
* Data

Adapted a transformation * Unit Tests
slide from _ * Glue Testing
Mike Heroux, * Parameter config

SNL Build Content

* Rules
e Parameters

Programming
&8 Model &
Languages

Argonne Leadership o
Computing Facility \ '
[y

SW Engineering
e Productivity tools
* Models, processes

Libraries Frameworks &

e Solvers tools

]
Considerations

Some of the technical

consi

derations

@ Choosing your tools, codes, etc

©@ @ @ ® ©

Libraries

Frameworks

Open source code
Community code

Closed or commercial code

® Writing the code

Argonne Leadership
Computing Facility \

Data structures
Data structures

Data structures from storage to
memory to cache and back to
storage (locality)

Parallelization of work and data
Languages

Everything else

@ Development

Availability where and when you
need them

Sustained support
Feature support
@ The future of the code

HPC is the land of low level
languages

HPC is the land of some bleeding
@ Flexibility to replace libraries

® Flexibility to adapt to
architectures

)]

17

® Using externally developed software seen as risk
Can be hard to learn
May not not be what you need
May not be what you think you need
Upgrades of external software can be risky
o Backward compatible?
o Regression in capability?
Support model may not be sufficient
Long term commitment may be missing

® What can reduce the risk of depending on external
software?

Use strong software engineering processes and practices

o high quality, low defects, frequent releases, regulated backward
compatibility, ...

o 10-30 year commitment

o Develop self-sustaning software

Argonne Leadership
Computing Facility

|
Models for developing scientific codes

® Open source community developed codes
Always available, any contribution open source code
Central controls of code development
Closed non-commercial codes
Commercial code

® Speed of change

® Key design ideas

Scientific mission - scientists involved

Always capable of science

Portability - range of platform scale very beneficial
Documented

Clear design

Prove the code

Argonne Leadership 19
Computing Facility \

)]

©@ © ©® ®© e ©

® Open-source: The software has a sufficiently loose open-source license
allowing the source code to be arbitrarily modified and used and reused in a
variety of contexts (including unrestricted usage in commercial codes).

® Core domain distillation document: The software is accompanied with a short
focused high-level document describing the purpose of the software and its
core domain model.

© Exceptionally well testing: The current functionality of the software and its
behavior is rigorously defined and protected with strong automated unit and
verification tests.

® Clean structure and code: The internal code structure and interfaces are
clean and consistent.

@ Minimal controlled internal and external dependencies: The software has
well structured internal dependencies and minimal external upstream software
dependencies and those dependencies are carefully managed.

@ Properties apply recursively to upstream software: All of the dependent
external upstream software are also themselves self-sustaining software.

@ All properties are preserved under maintenance: All maintenance of the
software preserves all of these properties of self-sustaining software (by
applying Agile/Emergent Design and Continuous Refactoring and other good
Lean/Agile software development practices).

Argonne Leadership
Computing Facility

Side note on legacy codes

Productivity in science fundamentally depends © Pgople
on productivity in software dlsagree

® | think this is
Grand- Complex .
Challenge = Lelgacy / WI'OI"Ig
Science Application
\/ \ ® But not

X totally wrong

7 Software

 Engineerin

| Egperﬁseg © POE haS an
Investment
to maintain

Computational
Science

Billion-way
concurrency!

C%
S

Extreme-scale
Computational S

Science
A 4

o
Research Need: ' /‘IPK"C’%
Software Productivity for W

Extreme-scale Science

Computational
Software

From a set of DOE workshops on

\ HPC productivity
Argonne Leadership
Computing Facility \

]
Consider the HPC ecosystem

® Developing code exclusively for a small cluster is not the same as
developing code for HPC

® You can develop HPC code that will work well on your cluster and
your laptop

® In HPC, the trade-off with design and performance is omnipresent
® Have reached a complexity point that code reuse & design is very

important
® All your lessons from software engineering do not apply
Languages Charm
Python 1
Quick glimpse of some stats 2 Open 52%
on Mira applications. F Closed 6%
100% MPI, 65% threaded 30 0>€ °
Fuzzy 22%

Argonne Leadership 22
Computing Facility \

)]

|
Over the next two days

Impact of Community Codes on Astrophysics - Anshu Dubey
Climate and Community Codes - Rob Jacob

Portable Performant Scientific Code - Hal Finkel

Quantum Monte Carlo and Electronic Structure - Anouar Benali
Organizing the USQCD - Rich Brower

© ®© ©®© ©®© ©

Software Engineering Practices - Aron Ahmadia & Chris Kees
Modern Features of a Production Scientific Code -Martin Berzins
Workflows - Mike Wilde

Data Provenance - David Koop

© ©®© ©®© ©

23

Argonne Leadership
Computing Facility

® Show you the approach and effectiveness of code cooperation in a
variety of domains

® lllustrate some of the challenges of those approaches
Sociological & Technical

® Expose some of the processes around developing large, production
scientific codes

® Ensure you know the importance and specifics of the scientific process

® We are not trying to teach you these codes
We are passing on experience

® A lot* of people have spent a lot of time thinking about maintain codes
that use the largest systems in the world

O]

*A lot normalized for the size of the HPC community.

Especially the largest scales.
Argonne Leadership
Computing Facility

Questions

Argonne Leadership
Computing Facility

25

