Workflow for extreme-scale systems

Presenter: Michael Wilde wilde@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory
University of Chicago/Argonne Computation Institute

,'_ % U.S. DEPARTMENT OF
2/ ENERGY

Outline

= Qverview — context of workflow for science and engineering
= Workflow environments

= Expressing workflows — tools and programming models

= Workflow issues for extreme scale

= |0 performance envelopes for workflow

= Expressing workflows in Swift

= Hands-on workflow examples and exercises using Swift
— Language basics using Swift/K
— Running Swift/T on Blue Gene/Q
— Running Swift/K on Tukey

Definitions

Workflow: the execution of a set of application programs
— Often for a diverse set of application programs
— Often with logical and physical dependencies

e Logical: data dependencies
e Physical: resource dependencies (space, processor, solution priorities)

— Scripting is one way to implement workflows (Ad-hoc, Parallel libraries, Swift)
— Generation of engine-specific input is another (DAGMan, Pegasus, Galaxy, Kepler)
= Scripting: higher-level dynamic programming
— J. Ousterhout: “Scripting: Higher level programming for the 215 century”
= High throughput computing (HTC)
= Many-task computing (MTC)
= Dataflow
= Data parallel vs. task parallel

— Workflow is almost always task-parallel at its outer levels
— SPMD: typified by MPI
— MPMD: multiple programs, multiple data — more typical of workflow

Many-task Applications

= Many-task Computing applications assemble existing parallel or sequential
programs

= Those programs read and write data to a filesystem (but this limitation is
being overcome...)

= Applications often have multiple stages

= Task dependencies between stages are in the form of file production and
consumption

= Can have very high rates (eg hundreds per second) of very short tasks
(minutes down to sub-second)

Slide courtesy of Zhao Zhang

When do you need workflow?

Typical application: protein-ligand docking for drug screening

0(10) O(100K) ST
proteins X drug SR P
implicated candidates |.... 7 H
in a disease i eata¢
im
compute
jobs

Q Tens of fruitful

998 8 o~ @,Nf;\\j\/\spm Q candidates for
Sad & T NeN wetlab & APS
HO OH \r .
+ S
[na]q \/PLF Work of M. Kubal, T.A.Binkowski,
v 3 DO33EL . And B. Roux °
Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

\
Parallel BLAST as a workflow Original script by

database D. R. MathOg,
\ Parallel BLAST on
split databases.

Bioinformatics, 19
(14), 2003.

BLAST STAGE TASKS, INPUTS, OUTPUTS, AND INPUT AND OUTPUT SIZE

Based on

script of

D. Matthog Stage # Tasks # In # Out In (MB) Out (MB)

by Z.Zhang, fastasplitn | 1 1 N 4039 4039

L. Gahelha formatdb N N N 4039 4400
blastp N*M N+M N*M T3*N*M 2.4*N*M

s) merge M N*M M 2.4*N*M 4.8*M

v

Can workflow scale?

BLAST workflow lags MPI BLAST by ~ 5%

B mpiblast [mtcblast | improvement

800
m
©
c
S 600
a
@
-
2 400
-
r
¢
e
% 200
E
-
0

256 1024 4096 16384

Scale (Number of Cores)

Z. Zhang, D. S. Katz, J. Wozniak, A. Espinosa, |. Foster. “Design and Analysis of Data Management

in Scalable Parallel Scripting”, Supercomputing 2012.

32768

8%

6%

4%

2%

0%

Improvements

Analysis & visualization of
high-resolution climate models

40.1850.track1.1deg.006 (yrs 971)

>
=z
4

SALT ZONAL=AVE (GLO) b40.20th.track1.1¢eg.005 [1981-2005]
0

o

T

B33E3EEE 2

=S¥E88Y

DEPTH Lkm)
-

i

=

&
£
@

{ 3062401 to 3610401 by O.40pou)
(MODEL — 0BS)

DEPTH (km)

Climate models are continuing to increase both their resolution and the
number of variables resulting in multi-terabyte model outputs. This large
volume of data overwhelms the series of processing steps used to derive
climate averages and produce visualizations. Since many of the tasks in the e
post-processing sequence are independent, we have applied task-parallel (1836400 ta 1016400 by 0:20pau)
scripting to speed up the post-processing. We have re-written portions of the
complex shell script that process output from the Community Atmosphere
Model in Swift, a high-level implicitly-parallel scripting language that uses
data dependencies to automatically parallelize a workflow. This has resulted
in valuable speedups in model analysis for this heavily-used procedure.

. .

Work of: J Dennis, M Woitasek, S Mickelson, R Jacob

s http://swift-lang.org

Spatial normalization of functional MRI runs

reorient
reorient q E F ’
alignlinear Q

reslice

softmean

alignlinear

combine_warp ,// \\

i ~

. reslice_warp <’é’§'€%\;\§;>
‘ SN A,;i

binarize "

strictmean

gsmooth

3

Qataset-level workflow Expanded (10 volume) workflow
;; 9

S , http://swift-lang.org

O 0 © © O

Numerous many-task workflow applications

Simulation of super-
cooled glass materials

Protein folding using
homology-free approaches

Climate model analysis and
decision making in energy

policy

BB T0623, 25 res., 8.2A to 6.3A

LI B B

—xay||

T (excluding tail)

Simulation of RNA-protein =
interaction)

'S
ey

Multiscale subsurface
flow modeling

° Latitude N
w w B
@® © o

w
~

Modeling of power grid

for OE applications

-92

TARGET RESOURCES

= System types

Clouds

Clusters (campus, department)
Petascale HPC systems

Grids (OSG, LCG, ...)
Multi/many-cores — 256 core nodes!

= Patterns

A single big HPC machine

HPC Machine with attached resources
Extend campus cluster with cloud
Many HPC machines

Many combinations of above

Open Science Grid

- THE UNIVERSITY OF

& CHICAGO

11

Diffuse scattering workflows

Knowledge base “
Past experiments; Select experiments

simulations; literature; "\ (mins—hours)
expert knowledge

Contribute to knowledge base

Simulations driven by

experiments (mins—days) Detect errors

Knowledge-driven (secs—mins)
decision making

. Bi-Stripe
Paramagnetic

insulator CE

N

=
o

AAFM AAFM

insulator metal

=
ted-AF Z
0 1 1 1
Material Simulated Simulated PR e T " Experimental Sample
composition structure scattering scattering

4@ Evolutionary optimization

5,. g % "' H]

%, was

(C

Architecture realization for APS experimer S

Swift-enabled
Galaxy Portal

Data
Capture Sldserv
(200 TB)
Host
Experiment hutch sector

\ dservers J

NFS NFS

GridFTP | .
GridFTP aps le—>

APS Data Experiment Fast Skim

Archive Data Server Cluster
petrel (1 PB) clutch orthros (320)

—
1PB

Data
Transfer

Catalog

|
Globus SaaS services i
GridFTP GridETP SHOFTF

ALCF Cloud
Swift and Globus paths for jobs, data, and metad mira (768 LCRC pads (160),
WITL an ODUS patns for jobs, data, and meta a tukey (1,000) blues, fusion (10K) £C2 (1,0009)

: % L J U YN y

GridFTP parallel data path

Q_ 13

T
External Compute resources

Workflow patterns and issues

= Parameter sweeps

= Ensembles

= Data analysis

= Scaling studies

= Specialized patterns: uncertainty quantification, branch and bound
= Programming an application from libraries of applications

= Dataflow vs control flow
— Ultimately, workflow is essentially dataflow
— The difference is who writes and thinks about the dataflow

= Pipelining and concurrency (and how dataflow is good at this)
= Workflow manager drives application (outer workflow, inner scripts)
= Workflow manager embedded in application (outer scripts, inner workflow)

14

PROGRAMMING MODELS

= MPI, OpenMP, Hybrid

= Map reduce

= Record processing (with functions) vs file processing (with apps)
= Generating workflows for other engines

= Dynamically interpret the workflow

= Script mode (for Blue Gene, Cray systems)

= Dependent job processing

15

\
A partial sampler of workflow tools

= High throughput tools
— Condor
— Cluster schedulers / local resource managers (PBS, SGE, Cobalt, LSF, LL, SLURM,..)

= Workflow task dependency managers
— DAGMan
— Schedulers with job dependencies
= |ntegrated dependency and data management
— Pegasus
= Dataflow languages
— Dryad, Ciel, Swift
= Big data solutions
— Hadoop, Spark, Zookeeper, Uzi
= Multicore tools
— GNU Parallel, iPython parallel support
= Languages with parallel support
— Py _nnn, Java_nnn, Haskell, R, MATLAB => PSOM, Parallel BASH (Walker)

16

A sampler of workflow tools (con’t)

= Interactive workflow frameworks
— Galaxy
— Taverna
— Kepler
— LONI Pipeline (neuroscience)
— Microsoft Workflow manager
— Airivata

= Science gateways

17

Galaxy workflow portal

Galaxy Workflow
- - Management System
Vi “ Globus Online ™ N e
Q o [l — e
O = —
\!, /47;0 ()\'\ \26‘\’. lg_t__ =
S Public Q- = | s -
O'o’ o Data %O :::E-_'___ o o -
/7@ /:S‘ ,8 - E:_:

A
i
i

Home Delivery Eé

NN
. Research Lab \
External

instruments _ml] Local Cluster/
= Cloud

Galaxy-accessible
Data Libraries

Storage

b
}

Galaxy powered by Swift
on Clusters and Clouds

Data Management Data Analysis

18

http://swift-lang.org

Two fundamental problems in scaling workflow

= Task rate
— 60,000 cores / 60 sec/task = 1,000 tasks per second!

= Data management

— 1K tasks / sec may generate 5GB/sec — not so bad if blocked efficiently
— 1K tasks / sec may generate 2,000 files / sec — not so easy

19

Multi-level scheduling: pilot jobs can improve
task rate performance

= Pilot jobs are long-running meta-jobs
— allocate compute resources and run many smaller jobs
= PANDA
— Widely used on OSG and LCG by the ATLAS physics collaboration
= GWMS using Condor Glide-Ins
— A generalized solution widely deployed on OSG
= SAGA and Bigjob
— Obtaining good results on XSEDE resources
= Java CoG Coasters
— Allocates/frees resources based on demand
— Peaks at 600 tasks per second
= Falkon
— Research system reached 3,000 tasks per second and 1B tasks

20

Workflow patterns and data exchange

/ y Filesystem Access Patterns:
[| y

“\/ * File Creation
P
— /% * File Open

== o] [Foaoms)] |s.@_._o'u/m_z| e 1-to-1Read
- * N-to-1 Read

 Few-to-1Read
* 1-to-1 Write

/
_—
le—]
le—]
——

,D.S. , M. Wilde, zniak, I. Foster. MTC Envelope: Defining the Capability of

Large Scale Computers in the Context of Parallel Scripting Applications, HPDC 2013.
s

Some engineering problems
and research challenges for extreme workflow

= Engineering

Diversity of interfaces, hard to tame and test, hard to abstract
Inter-language bindings and data interchange — challenge to usability
Integration with extreme-scale networks, runtimes and language stacks

= Research

Economics and policy-based scheduling

Retry/recovery of large distributed task and data graphs
Power management

Load balancing

Programming models: integration of dataflow and big-data techniques and
tools

22

Summary: Challenges of workflow at extreme
scale

Inter-resource coordination

Hybrid programming tools

The challenges of data motion

— Data management strategies and system envelopes
The challenges of task scheduling and dispatch

— Task rates and task distribution
— Resource utilization vs. time to solution

Workflow expression and separation of concerns
Provenance: tracking what was done

23

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

The Swift parallel scripting language

Presenter: Michael Wilde wilde@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory
University of Chicago/Argonne Computation Institute

,'_ % U.S. DEPARTMENT OF
2/ ENERGY

= Parallel scripting language for clusters, clouds & grids

— For writing loosely-coupled scripts of application programs
and utilities linked by exchanging files

— Can call scripts in shell, python, R, Octave, MATLAB, ...

= Swift does 3 important things for you:
— Makes parallelism transparent — with functional dataflow

— Makes basic failure recovery transparent

— Makes computing location transparent — can run your script
on multiple distributed sites and diverse computing
resources (from desktop to petascale)

25

S http://swift-lang.org

Swift programming model:
all progress driven by concurrent dataflow

(Int r) myproc (int 1, int 7j)
{

int £ = F(1);

int g = G(3);

r = f + g;

= () and G () implemented in native code or external programs
F () and G () runin concurrently in different processes
r is computed when they are both done

This parallelism is automatic
Works recursively throughout the program’s call graph

26

Swift programming model

= Data types

int i=4;
int All;
string s = "hello world";

= Mapped data types
file image<"snapshot. jpg">;

= Structured data
image A[]<array mapper..>;
type protein ({
file pdb;
file docking pocket;
}

protein p<ext; exec=protein.map>;

= Conventional expressions
if (% 3) {

y = x+2;

s = @strcat("y:

"’ Y);

= Parallel loops
foreach £,i in A {
B[i] = convert(A[i])

= Data flow
analyze (B[0], BI[1]);
analyze (B[2], B[3]);

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

27
12/6/2011

Coasters: uniform resource provisioning

Language-driven: Swift parallel scripting 10

‘ Data server <::>
#

-~

Swift ,
script
_/- %]
E ppllcatloj
Programs

@bmlt host (login node, laptop, Linux server

Swift runs parallel scripts on a broad range
of parallel computing resources.

28

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Programming model:
all execution driven by parallel data flow

(int r) myproc (int 1)

{
J = £(1);
k = g(i);
r = j + k;
}

= f() and g() are computed in parallel
= myproc() returns r when they are done

= This parallelism is automatic
= Works recursively throughout the program’s call graph

29

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Encapsulation enables distributed
parallelism

Application program

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution, parallelization, and automatic
provenance capture

o\\=_*» 30

' e Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

app() functions specify cmd line argument passing

To run:
psim -s 1ubg.fas -pdb p -t 100.0 -d 25.0 >log

100.0 ¥ 25.0 In Swift code:

app (PDB pg, File log) predict (Protein seq,
Float t, Float dt)
{
psim "-c" "-s" @pseq.fasta "-pdb" @pg
Il_tll temp ll_dll dt;
PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;

File log;

(structure, log) = predict(p, 100., 25.);

o\\=f "

s Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Large scale parallelization with simple loops

1000 - , o : -
Runsofthe (& W v (&
“predict”

b
application

T1af7-50-500

. AT
TN,,."::;‘:-‘oa‘::
Analyze() || == Rt 4
e, 0T YR
wee Ty
foreach simin[1:10000{ &

(structure[sim], log[sim]) = predict(p, 100., 25.); R
}

result = analyze(structure)
° 32

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Nested parallel prediction loops in Swift

Sweep()

{
int nSim = 1000;

int maxRounds = 3;
Protein pSet|] <ext; exec="Protein.map">;
float startTemp[] = [100.0, 200.0 |;
float delT[]=[1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach tin startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} 10 proteins x 1000 simulations x
} 3 rounds x 2 temps x 5 deltas
Sweep(); = 300K tasks

33

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Spatial normalization of functional run

Qataset-level workflow
o\-’?
&

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_warp

binarize

gsmooth

WWW.ci.uchicago.edu/swift www.mcs.anl.gov

reslice_warp < <
—
strictmean | §§§

ki

orkflow

3

Expanded (10 volume
34

/exm

Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun (Run ir, string direction)
(Run snr) functional (Run r, NormAnat a, { L
_ , foreach Volume iv, i inir.v {
Air shrink’) or.v[i] = reorient(iv, direction);
{ RunyroRun = reorientRun(r, "y"); }

Run roRun = reorientRun(yroRun , "x"); }

Volume std = roRun|[0];

Run rndr = random_select(roRun, 0.1);

AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");

Volume meanRand = softmean(reslicedRndr, "y", "null");

Air mnQAAiIr = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);

Run nr = reslice_warp_run(boldNormWarp, roRun);

Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6"),
}é 35

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Dataset mapping example: fMRI datasets

On-Disk
Data
Layout

=

—

‘2 DBIC
=45 Study
- =88 Group
=8 Subject
ok Anat

- = yRUn
=9 Subject
: =8 Subject
#-45 Study
#-45 Study

Viapping function
or script

type Study {
Group g[|;

}

type Group {
Subject s[];

}

type Subject {
Volume anat;
Run run[];

}

type Run {
Volume v[|;

}

type Volume {
Image img;
Header hdr;

}

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

—

Swift’s
= in-memory
data model

36

Nested loops can generate massive parallelism

Protein folding example:

Sweep()
{
int nSim = 1000;
int maxRounds = 3;
Protein pSet[] <ext; exec="Protein.map'">;
float startTemp[] = [100.0, 200.0 7];
float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];
foreach p, pn in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

) } 10 proteins x 1000 simulations x

} 3 rounds x 2 temps x 5 deltas

} _
Sweep () ; = 300K tasks

37

Flexible worker-node agents for execution and
data transport

= Main role is to efficiently run Swift tasks on allocated
compute nodes, local and remote

» Handles short tasks efficiently

= Runs over Grid infrastructure: Condor, GRAM

" Also runs with few infrastructure dependencies
= Can optionally perform data staging

" Provisioning can be automatic or external (manually
launched or externally scripted)

38

http://swift-lang.org

N
Worker architecture handles diverse environments

Swift file a = compute (b, c);
= I compilation
Eg
a7 Karajan <execute task="compute”> ...
I API
Coaster Client
I Socket
2
e L Coaster Service
) (7p]
o
2
2 8
£ Worker Worker Worker Worker
O

39

http://swift-lang.org

Implementation: The job packing problem (Il)
(also not to scale)

= Commit jobs to blocks and adjust as necessary based on actual walltime

walltime

now

= The actual packing problem is NP-complete

= Solved using a greedy algorithm: always pick the largest job that will fit in
a block first

40
12/6/2011
Coasters: uniform resource provisioning

Swift is a parallel scripting system for grids, clouds and clusters

— for loosely-coupled applications - application and utility programs linked by
exchanging files

Swift is easy to write: simple high-level C-like functional language

— Small Swift scripts can do large-scale work
Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— Untar and run — acts as a self-contained Grid client

Swift is fast: uses efficient, scalable and flexible “Karajan” execution
engine.

— Scaling close to 1M tasks —.5M in live science work, and growing
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, and more.

Try Swift! http://swift-lang.org (Swift/K) and www.mcs.anl.gov/exm
(Swift/T)

41

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

