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Definitions

Workflow: the execution of a set of application programs
— Often for a diverse set of application programs
— Often with logical and physical dependencies

e Logical: data dependencies
e Physical: resource dependencies (space, processor, solution priorities)

— Scripting is one way to implement workflows (Ad-hoc, Parallel libraries, Swift)
— Generation of engine-specific input is another (DAGMan, Pegasus, Galaxy, Kepler)
= Scripting: higher-level dynamic programming
— J. Ousterhout: “Scripting: Higher level programming for the 215 century”
= High throughput computing (HTC)
= Many-task computing (MTC)
= Dataflow
= Data parallel vs. task parallel

— Workflow is almost always task-parallel at its outer levels
— SPMD: typified by MPI
— MPMD: multiple programs, multiple data — more typical of workflow



Many-task Applications

=  Many-task Computing applications assemble existing parallel or sequential
programs

= Those programs read and write data to a filesystem (but this limitation is
being overcome...)

= Applications often have multiple stages

= Task dependencies between stages are in the form of file production and
consumption

= Can have very high rates (eg hundreds per second) of very short tasks
(minutes down to sub-second)

Slide courtesy of Zhao Zhang



When do you need workflow?

Typical application: protein-ligand docking for drug screening
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Parallel BLAST as a workflow Original script by

database D. R. MathOg,
\ Parallel BLAST on
split databases.

Bioinformatics, 19
(14), 2003.

BLAST STAGE TASKS, INPUTS, OUTPUTS, AND INPUT AND OUTPUT SIZE

Based on

script of
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Can workflow scale?

BLAST workflow lags MPI BLAST by ~ 5%
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Analysis & visualization of
high-resolution climate models
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Climate models are continuing to increase both their resolution and the
number of variables resulting in multi-terabyte model outputs. This large
volume of data overwhelms the series of processing steps used to derive
climate averages and produce visualizations. Since many of the tasks in the e
post-processing sequence are independent, we have applied task-parallel (1836400 ta 1016400 by 0:20pau)
scripting to speed up the post-processing. We have re-written portions of the
complex shell script that process output from the Community Atmosphere
Model in Swift, a high-level implicitly-parallel scripting language that uses
data dependencies to automatically parallelize a workflow. This has resulted
in valuable speedups in model analysis for this heavily-used procedure.

. .

Work of: J Dennis, M Woitasek, S Mickelson, R Jacob

s http://swift-lang.org



Spatial normalization of functional MRI runs
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Numerous many-task workflow applications

Simulation of super-
cooled glass materials

Protein folding using
homology-free approaches

Climate model analysis and
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TARGET RESOURCES

=  System types

Clouds

Clusters (campus, department)
Petascale HPC systems

Grids (OSG, LCG, ...)
Multi/many-cores — 256 core nodes!

= Patterns

A single big HPC machine

HPC Machine with attached resources
Extend campus cluster with cloud
Many HPC machines

Many combinations of above

Open Science Grid
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Diffuse scattering workflows
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Architecture realization for APS experimer S

Swift-enabled
Galaxy Portal

Data
Capture Sldserv
(200 TB)
Host
Experiment hutch sector

\ dservers J

NFS NFS

GridFTP | .
GridFTP aps le—>

APS Data Experiment Fast Skim

Archive Data Server Cluster
petrel (1 PB) clutch orthros (320)

—
1PB

Data
Transfer

Catalog

|
Globus SaaS services i
GridFTP GridETP SHOFTF

ALCF Cloud
Swift and Globus paths for jobs, data, and metad mira (768 LCRC pads (160),
WITL an ODUS patns for jobs, data, and meta a tukey (1,000) blues, fusion (10K) £C2 (1,0009)

: % L J U YN y

GridFTP parallel data path

Q_ 13

T
External Compute resources



Workflow patterns and issues

=  Parameter sweeps

= Ensembles

= Data analysis

= Scaling studies

=  Specialized patterns: uncertainty quantification, branch and bound
=  Programming an application from libraries of applications

= Dataflow vs control flow
— Ultimately, workflow is essentially dataflow
— The difference is who writes and thinks about the dataflow

= Pipelining and concurrency (and how dataflow is good at this)
=  Workflow manager drives application (outer workflow, inner scripts)
= Workflow manager embedded in application (outer scripts, inner workflow)
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PROGRAMMING MODELS

= MPI, OpenMP, Hybrid

= Map reduce

= Record processing (with functions) vs file processing (with apps)
= Generating workflows for other engines

=  Dynamically interpret the workflow

= Script mode (for Blue Gene, Cray systems)

= Dependent job processing

15




\
A partial sampler of workflow tools

=  High throughput tools
— Condor
— Cluster schedulers / local resource managers (PBS, SGE, Cobalt, LSF, LL, SLURM,..)

=  Workflow task dependency managers
— DAGMan
— Schedulers with job dependencies
= |ntegrated dependency and data management
— Pegasus
= Dataflow languages
— Dryad, Ciel, Swift
= Big data solutions
— Hadoop, Spark, Zookeeper, Uzi
= Multicore tools
— GNU Parallel, iPython parallel support
= Languages with parallel support
— Py _nnn, Java_nnn, Haskell, R, MATLAB => PSOM, Parallel BASH (Walker)
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A sampler of workflow tools (con’t)

= Interactive workflow frameworks
— Galaxy
— Taverna
— Kepler
— LONI Pipeline (neuroscience)
— Microsoft Workflow manager
— Airivata

= Science gateways

17



Galaxy workflow portal
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Two fundamental problems in scaling workflow

= Task rate
— 60,000 cores / 60 sec/task = 1,000 tasks per second!

= Data management

— 1K tasks / sec may generate 5GB/sec — not so bad if blocked efficiently
— 1K tasks / sec may generate 2,000 files / sec — not so easy

19



Multi-level scheduling: pilot jobs can improve
task rate performance

= Pilot jobs are long-running meta-jobs
— allocate compute resources and run many smaller jobs
= PANDA
— Widely used on OSG and LCG by the ATLAS physics collaboration
= GWMS using Condor Glide-Ins
— A generalized solution widely deployed on OSG
=  SAGA and Bigjob
— Obtaining good results on XSEDE resources
= Java CoG Coasters
— Allocates/frees resources based on demand
— Peaks at 600 tasks per second
= Falkon
— Research system reached 3,000 tasks per second and 1B tasks

20



Workflow patterns and data exchange
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Some engineering problems
and research challenges for extreme workflow

= Engineering

Diversity of interfaces, hard to tame and test, hard to abstract
Inter-language bindings and data interchange — challenge to usability
Integration with extreme-scale networks, runtimes and language stacks

=  Research

Economics and policy-based scheduling

Retry/recovery of large distributed task and data graphs
Power management

Load balancing

Programming models: integration of dataflow and big-data techniques and
tools

22



Summary: Challenges of workflow at extreme
scale

Inter-resource coordination

Hybrid programming tools

The challenges of data motion

— Data management strategies and system envelopes
The challenges of task scheduling and dispatch

— Task rates and task distribution
— Resource utilization vs. time to solution

Workflow expression and separation of concerns
Provenance: tracking what was done

23
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The Swift parallel scripting language
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= Parallel scripting language for clusters, clouds & grids

— For writing loosely-coupled scripts of application programs
and utilities linked by exchanging files

— Can call scripts in shell, python, R, Octave, MATLAB, ...

= Swift does 3 important things for you:
— Makes parallelism transparent — with functional dataflow

— Makes basic failure recovery transparent

— Makes computing location transparent — can run your script
on multiple distributed sites and diverse computing
resources (from desktop to petascale)

25
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Swift programming model:
all progress driven by concurrent dataflow

(Int r) myproc (int 1, int 7j)
{

int £ = F(1);

int g = G(3);

r = f + g;

= () and G () implemented in native code or external programs
F () and G () runin concurrently in different processes
r is computed when they are both done

This parallelism is automatic
Works recursively throughout the program’s call graph

26




Swift programming model

= Data types

int i=4;
int All;
string s = "hello world";

= Mapped data types
file image<"snapshot. jpg">;

= Structured data
image A[]<array mapper..>;
type protein ({
file pdb;
file docking pocket;
}

protein p<ext; exec=protein.map>;

= Conventional expressions
if (% 3) {

y = x+2;

s = @strcat("y:

"’ Y);

= Parallel loops
foreach £,i in A {
B[i] = convert(A[i])

= Data flow
analyze (B[0], BI[1]);
analyze (B[2], B[3]);

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

27
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Language-driven: Swift parallel scripting 10
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Swift runs parallel scripts on a broad range
of parallel computing resources.
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Programming model:
all execution driven by parallel data flow

(int r) myproc (int 1)

{
J = £(1);
k = g(i);
r = j + k;
}

= f() and g() are computed in parallel
= myproc() returns r when they are done

= This parallelism is automatic
= Works recursively throughout the program’s call graph

29
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Encapsulation enables distributed
parallelism

Application program

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution, parallelization, and automatic
provenance capture

o\\=_*» 30
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app( ) functions specify cmd line argument passing

To run:
psim -s 1ubg.fas -pdb p -t 100.0 -d 25.0 >log

100.0 ¥ 25.0 In Swift code:

app (PDB pg, File log) predict (Protein seq,
Float t, Float dt)
{
psim "-c" "-s" @pseq.fasta "-pdb" @pg
Il_tll temp ll_dll dt;
PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;

File log;

(structure, log) = predict(p, 100., 25.);

o\\=f "

s Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm



Large scale parallelization with simple loops
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foreach simin[1:10000{ &

(structure[sim], log[sim]) = predict(p, 100., 25.); R
}

result = analyze(structure)
° 32
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Nested parallel prediction loops in Swift

Sweep( )

{
int nSim = 1000;

int maxRounds = 3;
Protein pSet| ] <ext; exec="Protein.map">;
float startTemp[ ] = [ 100.0, 200.0 |;
float delT[]=[ 1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach tin startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

} 10 proteins x 1000 simulations x
} 3 rounds x 2 temps x 5 deltas
Sweep(); = 300K tasks

33
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Spatial normalization of functional run

Qataset-level workflow
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Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun ( Run ir, string direction)
(Run snr) functional ( Run r, NormAnat a, { L
_ , foreach Volume iv, i inir.v {
Air shrink’) or.v[i] = reorient(iv, direction);
{ RunyroRun = reorientRun(r, "y"); }

Run roRun = reorientRun( yroRun , "x"); }

Volume std = roRun|[0];

Run rndr = random_select( roRun, 0.1 );

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" );
Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mnQAAiIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" );
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr = reslice_warp_run( boldNormWarp, roRun );

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" ),
}é 35
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Dataset mapping example: fMRI datasets

On-Disk
Data
Layout

=

—

‘2 DBIC
=45 Study
- =88 Group
=8 Subject
ok Anat

- = yRUn
=9 Subject
: =8 Subject
#-45 Study
#-45 Study

Viapping function
or script

type Study {
Group g[ |;

}

type Group {
Subject s[ ];

}

type Subject {
Volume anat;
Run run[ ];

}

type Run {
Volume v[ |;

}

type Volume {
Image img;
Header hdr;

}

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm
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Nested loops can generate massive parallelism

Protein folding example:

Sweep( )
{
int nSim = 1000;
int maxRounds = 3;
Protein pSet[ ] <ext; exec="Protein.map'">;
float startTemp[ ] = [ 100.0, 200.0 7];
float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 ];
foreach p, pn in pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

) } 10 proteins x 1000 simulations x

} 3 rounds x 2 temps x 5 deltas

} _
Sweep () ; = 300K tasks

37



Flexible worker-node agents for execution and
data transport

= Main role is to efficiently run Swift tasks on allocated
compute nodes, local and remote

» Handles short tasks efficiently

= Runs over Grid infrastructure: Condor, GRAM

" Also runs with few infrastructure dependencies
= Can optionally perform data staging

" Provisioning can be automatic or external (manually
launched or externally scripted)

38
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N
Worker architecture handles diverse environments

Swift file a = compute (b, c);
= I compilation
Eg
a7 Karajan <execute task="compute”> ...
I API
Coaster Client
I Socket
2
e L Coaster Service
) (7p]
o
2
2 8
£ Worker Worker Worker Worker
O
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Implementation: The job packing problem (Il)
(also not to scale)

= Commit jobs to blocks and adjust as necessary based on actual walltime

walltime

now

= The actual packing problem is NP-complete

= Solved using a greedy algorithm: always pick the largest job that will fit in
a block first

40
12/6/2011
Coasters: uniform resource provisioning



Swift is a parallel scripting system for grids, clouds and clusters

— for loosely-coupled applications - application and utility programs linked by
exchanging files

Swift is easy to write: simple high-level C-like functional language

— Small Swift scripts can do large-scale work
Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— Untar and run — acts as a self-contained Grid client

Swift is fast: uses efficient, scalable and flexible “Karajan” execution
engine.

— Scaling close to 1M tasks —.5M in live science work, and growing
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,
economics, statistics, and more.

Try Swift! http://swift-lang.org (Swift/K) and www.mcs.anl.gov/exm
(Swift/T)
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