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Goal: Programmability for large scale analysis

=  Qur solution is “many-task” computing: higher-level applications
composed of many run-to-completion tasks: input->compute—>output
Message passing is handled by our implementation details

=  Programmability

e Large number of applications have this natural structure at upper levels: Parameter
studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming, UQ

e Coupling extreme-scale applications to preprocessing, analysis, and visualization
= Data-driven computing

e Dataflow-based execution models

e Data organization tools in the programming languages
= Challenges

e Load balancing, data movement, expressibility
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Swift/T: Swift for high-performance computing

Had this: For extreme scale, we need this:
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Swift/T: Enabling high-performance workflows

= Write site-independent scripts

=  Automatic parallelization and data movement

= Run native code, script fragments as applications

= Rapidly subdivide large partitions for
MPI jobs

= Move work to data locations

14M tasks/s
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Support calls to native libraries

Top-level dataflow script

sweep.swift
[ useri.c user2.f user3.cpp
wrapper wrapper wrapper

Swift/T runtime
Task distribution / Data store

MPI

= |ncluding MPI libraries



Characteristics of very large Swift programs

int X = 100, Y = 100; = The goal is to support billion-way
int ALILL concurrency: 0(109)
int B[ ];
foreach x in [0:X-1] {
foreach y in [0:Y-1] { = Swift script logic will control trillions
if (check(x, y)) | of variables and data dependent
Alx][y] = 9(£(x), £(¥))7  tacks
} else {
Alx] [yl = 0;
} = Need to distribute Swift logic
J processing over the HPC compute
B[x] = sum(A[x]);

system



Swift/T: Fully parallel evaluation

of complex scripts

int X = 100, Y = 100;
int A[][];
int BI[];
foreach x in [0:X-1] {
foreach y in [0:Y-1] {
if (check(x, vy)) {
)

Alx] [yl = g(f(x), £(y));
} else {
Alx]ly]l = 0;
}
}
B[x] = sum(A[x]);
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Swift/T optimization challenge: distributed vars

| a = fl(); b = f2(a);
2 c, d= f3(a, b); e = f4(f5(c);
3 f = £4(£5(d); g = f6(e, £f);

(a) Swift/T code fragment

(b) Unoptimized version, passing data as shared data and
perform synchronization

o http://swift-lang.org °



Swift/T optimizations improve data locality

value of e

value of a value of b value Of C passed
Pooe 29 PF
Valueofts. )"f

(c) After wait pushdown and elimination of shared data in favor
of parent-to-child data passing

value of e

@ {O RO, .
f5(); f4(); |

(d) After pipeline fusion merges tasks

Vs Y http://swift-lang.org 10



Swift/T: scaling of trivial foreach { } loop
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters
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oMy LegET ideal
8 1OOM ----------------- ' 10ms
0 oM | e e 1ms
IV fms
= 0.1M * ;n:s
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Basic scalability
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e 1.5 billion tasks/s on 512K cores of Blue Waters, so far

 Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.
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Swift/T application benchmarks
on Blue Waters
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GeMTC: GPU-enabled Many-Task Computing

Motivation: Support for MTC on all accelerators!

Goals: Approach:
1) MTC support  2) Programmability Design & implement GeMTC middleware:
3) Efficiency 4) MPMD on SIMD 1) Manages GPU 2) Spread host/device
5) Increase concurrency from 15 to 192 3) Workflow system integration (with
(~13x) Swift/T

CPU GPU
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Swift/T + GeMTC Node Layout
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GeMTC Efficiency: 512 Nodes,
86K GPU Workers

168 active workers per GPU
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Example execution

Code

Engines: evaluate dataflow operations

Al2] =

f (getenv (“N”))

14

Perform getenv ()

Submit £

’//,——%>

Subscribe to A[2]

Submit g
]

Workers: execute tasks

|
Task put/

Task put

Process £
Store A[2]

e
Aﬁﬁcaﬁon

Process g
Store A[3]

Wozniak et al. Turbine: A distributed-memory dataflow engine for high
performance many-task applications. Fundamenta Informaticae 128(3), 2013
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Support calls to embedded interpreters

/ Swift Development Pattern

p
Swift/T - Multi-Node Scripting + Toolkit Solution (Python, R, Tcl, etc.) ]
.

eye() + ones()..
Native Code
Library
\ C, C++, Fortran ” ”

We have plugins
for Python, R, Tcl,
Julia, and QtScript

* Wozniak et al. Toward computational experiment management
via multi-language applications. Proc. ASCR SWP4XS, 2014.

o 18



STC: The Swift-Turbine Compiler

Swift STC Turbine ETU'b'?e
Script Code ibshenliot)
' - - mpiexec
Data Semantic Task / Data ’ p—
Definitions Analysis Dependency ~ Interpreter
Data Flow Flattening & Memory Turbine
~ Expressions Optimization Management libraries
External Code Library ‘ ek
Functions Generation Access User
' Libraries

Create/Store/Retrieve typed data
— Manage arrays
— Manage data-dependent tasks

STC translates high-level Swift
expressions into low-level
Turbine operations:

* Wozniak et al. Large-scale application composition via distributed-memory
data flow processing. Proc. CCGrid 2013.

* Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.
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Logging and debugging in Swift

= Traditionally, Swift programs are debugged through the log or the TUI
(text user interface)

= Logs were produced using normal methods, containing:
— Variable names and values as set with respect to thread
— Calls to Swift functions
— Calls to application code

= Arestart log could be produced to restart a large Swift run after certain
fault conditions

= Methods require single Swift site: do not scale to larger runs

20



Logging in MPI

The Message Passing Environment (MPE)
= Common approach to logging MPI programs

= Can log MPI calls or application events — can store arbitrary data
= Can visualize log with Jumpshot
ff viie me] ﬁfﬁfﬁf? EEIE] Tﬂf
. . W:%mﬁ%\ 7507353075 J‘sausss 597 7ssns75 Izr:;;' /%uunws 3555 "—_” :xc“;
= Partial logs are stored at the site of =~ Jemm ) s
each process o ’ *
. (A}
— Written as necessary to shared D>
file system 5
e inlarge blocks gi
Oe
e in parallel Ds
010
— Results are merged into a big log file o
(CLOG, SLOG) o
Os :
‘lineID “lA |
. Work has been done optimize the . "lz 175.10 175.15 175.20 175.25 17530 17535 17540 17545 175.50 1:"5';:5( SSSSSS 1:: —

file format for various queries

A 21



Logging in Swift & MPI

= Now, combine it together
= Allows user to track down erroneous Swift program logic

= Use MPE to log data, task operations, calls to native code
= Use MPE metadata to annotate events for later queries

= MPE cannot be used to debug native MPI programs that abort
— On program abort, the MPE log is not flushed from the process-local cache
— Cannot reconstruct final fatal events

= MPE can be used to debug Swift application programs that abort
— We finalize MPE before aborting Swift
— (Does not help much when developing Swift itself)
— But primary use case is non-fatal arithmetic/logic errors

22



A
Visualization of Swift/T execution

= User writes and runs Swift script

= Notices that native application code is called with nonsensical inputs
=  Turns on MPE logging — visualizes with MPE

Process rank

| | | | | | | | | | | | |
79.93 79.935 79.94 79.945 79.95 79.955 79.96 79.965 79.97 79.975 79.93 79.985 79.93

Time >
Jumpshot view of PIPS application run

— PIPS task computation Store variable
Blue: Get next task
Server process (handling of control task is highlighted in yellow)

= Simpler than visualizing messaging pattern (which is not the user’s code!)
= Represents Von Neumann computing model — load, compute, store 23



Debugging Swift/T execution

= Starting from GUI, user can identify erroneous task
— Uses time and rank coordinates from task metadata

= Can identify variables used as task inputs
= Can trace provenance of those variables back in reverse dataflow

|
o ——
erroneous task
- — -
- —

Aha! Found script defect. & & & (searching backwards)

* Wozniak et al. A model for tracing and debugging large-scale task-
parallel programs with MPE. Proc. LASH-C at PPoPP, 2013.

a 2



Other Swift/T features

= Task locality: Ability to send a task to a process
— Allows for big data —type applications
— Allows for stateful objects to remain resident in the workflow
— location L = find data(D);
int y = @location=L f (D, x);
= Task priorities: Ability to set task priority
— Useful for tweaking load balancing
= Updateable variables
— Allow data to be modified after its initial write

— Consumer tasks may receive original or updated values when they emerge
from the work queue

* Wozniak et al. Language features for scalable distributed-memory
dataflow computing. Proc. Dataflow Execution Models at PACT, 2014.

25




SWIFT/T: MPI TASKS



Dataflow+data-parallel analysis/visualization

Analysis Library
OSUFlow

Analysis Library DIv

Data

source Parallel Runtime
OSU FIOW MPI Analysis Library
DIY OSUFlow
Data ParaIIelI)Ithime
source Parallel Runtime Analysis Library o
OSUFlow
M PI DIY
Parallel Runtime
‘ MPI
®

Dataflow-structured analysis framework
based on OSUFlow/DIY




Parameter optimization for data-parallel analysis:
Block factor

™ L]
N
\\//
~
8 processes 4 Erocesses | Erocess
I Elock per process 2 blocks per process 8 blocks per process

Can map blocks to processes in varying ways

; 28



Parameter optimization for data-parallel analysis:
Process configurations

bp
3 r
np A A
'(5’%‘2‘ 7T OSUFlow
2561 Swift + ADLB
128
641 DIY Lk
32
| g——
3l MP]
2
| Y bp
-

I 2 4 8 16 32 64 128

* Try all configurations to find best performance
* Goal: Rapidly develop and execute sweep of MPI executions

29



Refresher: MPI_Comm_create_group()

= |n MPI 2, creating a subcommunicator was collective over the parent
communicator
— Required global coordination
— Scalability concern
— (Could use intercommunicator merges- somewhat slow)
= InMPI3,thenewMPI Comm create group () allows the
implementation to assemble the new communicator quickly from a group
— only group members must participate

— In ADLB, servers just pass rank list for new group to workers

= Motivating investigation by Dinan et al. identified fault tolerance and
dynamic load balancing as key use cases — both relevant to Swift
(Dinan et al., EuroMPI 2011.)

30



Parallel tasks in Swift/T

Swift expression: z = @par=8 f(x,V);

When x, y are stored, Turbine releases task £ with parallelism=8
Performs ADLB Put (£, parallelism=8)

Each worker performs ADLB Get (&task, &comm)

ADLB server finds 8 available workers

Workers receive ranks from server Swit | Compiler | Turbine
—™ program * code
— Perform MPI Comm create groug — ——
t L) |3 t ¥
ADLB_Get ( ) returns: [ Engine ] [ Engine ] [ Engine] [ Engine ] [ Engine ]
tas k=f r S 1 ze (Comm) :8 [ ' Load baﬁancingl szasewices’(ADLB) ¢ ]
Workers perform user task Leaf tasks |} Motificatiors

Worker

— communicate on comm

comm is released by Turbine

* Wozniak et al. Dataflow coordination of data-parallel tasks via MPI 3.0.
Proc EuroMPI, 2013.

31




OSUFlow application

// Define call to OSUFlow feature MpiDraw
@par (float t) mpidraw(int bf) "mpidraw";

main {
foreach b in [0:7] {

// Block factor: 1-128

bf = round(2**b);

foreach n in [4:9] {
// Number of processes/task: 16-512
np = round(2**n);
t = @par=np mpidraw(bf);
printf("RESULT: bf=%i np=%i -> time=%0.3f",

bf, np, t);
133
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SWIFT/T APPLICATIONS



Swift integration into NAMD and VMD

www.ks.uiuc.edu/Research/swift

& - C M [ www.ks.uiuc.edu/Research/swift/ w| =

I Apps 4D git-svn
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Software

Outreach

Funded by a grant from
the National Institute of
General Medical Sciences
of the National Institutes
of Health

v

Integrating NAMD and VMD with Swift/T

NAMD and VMD have recently been successfully coupled to the Swift/T high performance parallel scripting language developed as part of the ExM project, a collaboration led by Argonne National Laboratory with
University of Chicago and University of British Columbia, as a part of the Department of Energy ASCR X-Stack program. Swift/T is now supported as part of the Swift project under the NSF SI2 program. Standard NAMD
2.10 and VMD 1.9.2 binaries can be launched across the nodes of a parallel computer and efficiently execute Swift/T dataflow programs with functions implemented in the embedded Tcl scripting language. The NAMD and
VMD user communities are already familiar with Tcl, and Tcl allows access to the two programs' complete functionality. The NAMD integration with Swift/T has been used to demonstrate n:m multiplexing of n replicas across a
smaller arbitrary number m of NAMD processes, a very complex capability to implement with normal NAMD scripting that can be expressed naturally in under 100 lines of Swift/T code.

All example files: directory, tar archive

VMD Swift/T Hello World
VMD and Turbine must be built with compatible Tcl libraries so that VMD can dynamically load libtclturbine.so.

Example command: mpiexec -n 8 vmdwrapper -e vmdswift.tcl
Wrapper script to run standard VMD under MPI: vmmdwrapper

Tcl package and Swift startup for VMD: vmdswift.tcl

Swift program source code: hello.swift

Swift compiler Tcl output: hello.tcl

NAMD Swift/T Replica Exchange
NAMD and Turbine must be built with compatible Tcl libraries so that NAMD can dynamically load libtclturbine.so.

« Example command: mpiexec -n 8 namdwrapper namdswift.tcl apoal.namd --run 0 --source $cwd/replica.tcl < /dev/null &
« Wrapper script to run multicore NAMD under MPI: namdwrapper

« Tcl package and Swift startup for NAMD: namdswift.tcl

« Swift program source code: replica.swift

« Swift compiler Tcl output: replica.tcl

NAMD Swift/T MPI Tight Binding

Charm++ and NAMD must be built from source code. An MPI-based Charm++ must be used. Apply the patches below to Charm++ and NAMD, respectively, to allow Turbine to access the Charm++ inter-partition
communicator. Charm++, NAMD, and Turbine must be built with compatible Tcl and MP!I libraries so that NAMD can dynamically load libtclturbine.so.

+ Example command: mpiexec -n 32 Linux-x86_64-g++.mpi/namd2 namdswift.tcl apoal.namd --run 0 --source $cwd/replica.tcl +replicas 8
+stdout /var/tmp/stdout.%d.log < /dev/null &

« Patch for Charm++ source code: charmswift.patch

« Patch for NAMD source code: namdswift.patch

L ; Beckman Institute for Advanced Science and Technology // National Institutes of Health // National Science Foundation // Physics, Computer Science, anc Biophysics at University of Illinois at Urbana-Champaign
x %’Mﬂn Contact Us // Material on this page is copyrighted; contact Webmaster for more information. /f Document last modified on 10 Jul 2014 /f 109 accesses since 25 Jun 2014 . _I ILLINOTIS
of Living Cells UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN
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ExMatEx: Co-design for materials research

(<)

10% tensile strain

< > A

@:p%pl.p.. [

= CoHMM: Heterogeneous Multiscale Method
=  CoMD: Molecular Dynamics

strain

= Coarse-grain strain evolution using basic conservation laws
= Fine-grain molecular dynamics as necessary for physical coefficients

From http://www.exmatex.org

36



CoHMM/Swift

N\

CoHMM

CoMD W

Concurrency gained primarily

by calls to CoMD

300 lines of sequential C
Coordinates multiple sequential
calls to CoMD

We rewrote this in Swift

1000’s lines of sequential C
Simplified MD simulator
Typically called as standalone
program

We exposed CoMD as a Swift
function — no exec()

37



CoMD: Library access from Swift

= CoMD binding: (example-1)

string s = "-f data/8k.inp.gz";
int N = 3;
foreach 1 in [0:N-1] {
float virial stress = COMDSWIFT runSim(s) ;
printf ("Swift: virial stress: %e",
virial stress);

38



CoMD: Library access from CoHMM

C

#define ZERO TEMP COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"
#ifdef ZERO TEMP COMD

// open pipe to CoMD

FILE *fPipe = popen (ZERO TEMP COMD, "r");

if (fPipe == NULL) {
Swift
#define ZERO TEMP COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"

#ifdef ZERO TEMP COMD
string command = ZERO TEMP COMD;
stressXX = COMDSWIFT runSim(command) ;

felse
// Just the derivative of the zero temp energy wrt A
stressXX = rhoO*c*c* (A-1);

#endif

39



CoHMM: Translation from C to Swift: main()

C

int main(int argc, char **argv) {
initializedConservedFields () ;
for (i = 0; 1 < 100; i++) {
for (3 = 0; 3 < 1; Jj++)
fullStep() ;

Swift
main {
(A[O], pl[O0], e[0]) = initializedConservedFields();
for (int t = 0; t < 5; t = t+1) {
(A[t+1], pl[t+l], e[t+1l]) =
fullStep (A[t], plt]l, eltl]l):

40



CoHMM: Translation from C to Swift: call CoMD

C
vold fluxes (double *A, double *p, double *e,
double *f A, double *f p, double *f e) {
for (int i = 0; 1 < L; 1++) {

double stress = stressFn(A[i], e[i])
double v = p[i] / rhoO;
f Al1] = -v;
f pl[i] = -stress;
f e[1] = —-stress*v;
Swift
(float £ A[], float f pl[], float f e[])
fluxes (float A[], float pl[], float e[]) {

foreach 1 in [0:L-1]
float stress

{
= stressFn(A[i], e[i]);
float v = p[i] /

rhoO0;
f Al1] = -v;
f pl[i] = -stress;

f e[1] = —-stress*v;

41



Can we build a Makefile in Swift?

= User wants to test a variety of compiler optimizations

= Compile set of codes under wide range of possible configurations
= Run each compiled code to obtain performance numbers

= Run this at large scale on a supercomputer (Cray XE6)

= |n Make you say:
CFLAGS =
f.o : f.c
gcc $(CFLAGS) f.c -o f.o

In Swift you say:

string cflags|[] = ...;
f o = gcc(f ¢, cflags);

42



CHEW example code

Apps

app (object_file o) gcc(c_file ¢, string cflags[]) {
// Example:

// gcc ¢ -02 -o f.of.c

gec" "-c" cflags "-0" o0 ¢;

app (x_file x) Id(object_file o], string Idflags[]) {
// Example:
// gcc -0 fxfl.of2.0...

"gcc" Idflags "-0" x o;

}

app (output_file o) run(x_file x) {
"sh" "-c" x @stdout=0;

}

app (timing_file t) extract(output_file o) {
"ta”" Il_lll 0 mpn Ilcutll Il_fll |I2|| Il_dll mnin @StdOUt:t;
}

Swift code

string program_name = "programs/program1.c";
c_file c = input(program_name);

// For each
foreach O_level in [0:3] {
make file names...
// Construct compiler flags
string O_flag = sprintf("-0%i", O_level);
string cflags[] = [ "-fPIC", O_flag ];

object_file o<my_object> = gcc(c, cflags);
object_file objects[]=[o0];

string |dflags[] = [];

// Link the program

x_file x<xmy_executable> = Id(objects, Idflags);
// Run the program

output_file out<my_output> = run(x);

// Extract the run time from the program output
timing_file t<my_time> = extract(out);

43



Swift Use of GPUs
GeMTC: GPU-enabled Many-Task Computing

Approach:

1) Deploy kernel to manage GPU warps
2) Manage memory
3) Integrate with workflow system (Swift/T)

Server %\) ; Work Stealing i Server ]

)\

7 " N ) s
CPU Worker ] éPU Worker j [ j i CPU Worker J
\_ J —_— —_— \
[ J [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
e N ) ) e
CPU Worker ] CPU Worker j r j I CPU Worker ]
\_ J/ 7 7 \
s 3 /) /)
GeMTC Worker] GeMTC Worker @ er @ er GeMTC Worker}
\ / —_— —_—
GPU GPU ] ] ] ] GPU
Node O Node 1 Node N

» Krieder et al. Evaluation of Many-Task Computing on Accelerators for
High-End Systems. Proc. HPDC 2014.



DISCOVERY ENGINES LDRD:
WORKFLOWS
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Source (APS)




Advanced Photon Source (APS)

= Moves electrons at electrons at >99.999999% of the speed of light.

= Magnets bend electron trajectories, producing x-rays, highly focused onto
a small area

= X-rays strike targets in 35 different laboratories — each a lead-lined,
radiation-proof experiment station

TYPICAL APS EXPERIMENT HALL & LAB/OFFICE MODULE CONFIGURATION
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Data management for the energy sciences

=  “Despite the central role of digital data in Dept. of Energy (DOE) research,
the methods used to manage these data and to support the information
and collaboration processes that underpin DOE research are often
surprisingly primitive...”
- DOE Workshop Report on Scientific Collaborations (2011)

= Qur goals:
— Modify the operating systems of APS stations to allow real-time streaming to a
novel data storage/analysis platform.

— Converting data from the standard detector formats (usually TIFF) to HDF5
and adding metadata and provenance, based on the NeXus data format.

— Rewrite analysis operations to work in a massively parallel environment.
— Scale up simulation codes that complement analysis.
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Data ingest/analysis/archive

8 scans/experiment x

50 experiments/week

= 400 scan datasets/week
(15 TB)

Detector

Dataset
3600 files
50 GB total

Globus Transfer

Merge to NeXus

<\
backgrounds 3: 9&
Checkout dataset (50 GB)

Fast transfer required

\

1 hour/task
800 tasks
800 CPU hours

The October run produced 104
directories containing 5M files

totaling about
27 TB.

NeXus File
(reciprocal)
50 GB

NeXus File
10s/task (rea|) :
50 GB

Visual result

|

= 2M tasks

N/
Bragg Peaks
L (Jie Chen)
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PADS: Petascale Active Data Store

« 23 higher-end nodes for data-intensive computing, PADS
repurposed for this work (installed in 2009) 7 |

- Each node has 12-way RAID for very
fast local disk operations

o Previously, difficult to use as “Active Data Store”
- Difficult to access specific nodes through PBS scheduler

- No catalog (where is my data?)
- No way to organize/access Data Store!

« Solution: Swift/T
- Organizes distributed data using Swift data structures and mappers
- Leaves data on nodes for later access
- Allows for targeted tasks (can send work to node with data chunk)
- Integrates with Globus Catalog for metadata, provenance, archive...

- Combining unscheduled resource access with high performance data rates will allow for
real-time beamline data analysis, accelerating progress for materials science efforts
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Interactive analysis powered by scalable storage

Swift analysis job

Array arithmetic distributed as tasks
> via data-driven scheduling

Ny Y 1
C(3) =
=uwn LR LR A[3]+B[3]

Fast local load

e Transparent access to

arrays stored on remote disks

e Small, visual results returned % % %
to GUI

e Bulk data stays on PADS PADS

= Replace GUI analysis internals with operations on remote data
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Remote matrix arithmetic: Initial results

« Initial run shows performance i
issue: addition took too long £ OQ

o Swift profiling isolated issue:
convert addition routine from
script to C function: obtained S T S S .
10,000 X speedup e

T T TV

o Swift/T integrates with MPE/
Jumpshot and other
MPI-based performance analysis
techniques
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Crystal Coordinate Transformation Workflow

Data ingress over
10 minutes

Scattered over N (4 to 40)
PADS nodes

3600 TIFF ﬁ_
4 @/ %/ 9 images Swift dataflow logic reads blocks of A into

RAM as available from detector and

enables user code to fill in B concurrently
fﬁ\i/L/ b

Swift/T execution:
1. Concurrent read of all TIFFs into Swift memory (blobs) as 3D input matrix
2. For each output cell, requisite input cells are retrieved from Swift memory
3. Output cells are concurrently computed and written to GPFS for visualization

. J

A B

<u=|pu9

MapReduce-like pattern expressed elegantly in Swift
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CCTW: Swift/T application (C++)

bag<blob> M[];

foreachiin [1:n]{
blob b1l= cctw_input(“pznpt.nxs”);
blob b2[];
int outputld(];

(outputld, b2) = cctw_transform(i, b1);
foreach b, jin b2 {

int slot = outputld[j];
M[slot] += b;

1
foreach g in M {

blob b = cctw_merge(g);
cctw_write(b);

1}
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Diffuse scattering and crystal analysis

= DISCUS is a general program to generate disordered atomic structures and
compute the corresponding experimental data such as single crystal
diffuse scattering (http://discus.sourceforge.net)

= Given experimental data, can we fit a modeled crystal to the
measurement?

=  Experimental image:
(Billinge, 2006)
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[0 0 L]

DIFFEV: Scaling crystal diffraction simulation

Refinement of a disordered structure

Swift-controlled evolutionary algorithm loop

Q'Experimental data Calculated data no. 1 <\
LUB O PO B 470 L _hg U LI R LR L) e e \
I % L N
S - . R . .’ By - 5
ol E _ '. [ < 5 shared
5 A& '4 y S = N\ read 3
aF - - » L - - - R = & | OpenMP thread 2
B : n 6 tesf fragment  fpead °
e ol B I - : ? 8 w oo bnt read 3
1la oo ent 3
2- L) . L] . -~ LJ - - - - EO g ‘I\ \I %
-t - - 3 N\ ¥ @
i 11 | | sum e-e—e-e
n 3
s L s . ‘ =1 o i - - . = N —
P MNP PR U B 1 1 1 P [ il || o [y vt < 1 1 1 \ compare
0 65 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4 i Craates new gensration from
[H 0 0] results results of parents/children

[H 0 0]

= Determines crystal configuration that produced given scattering image
through simulation and evolutionary algorithm

= Swift/T calls DISCUS via Python interfaces
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DIFFEV: Genetic algorithm via dataflow

[main (cycles) J

Swift Swift Swift Python Dataflow
function for foreach function
for (generation)

c[ do_cycle () ] Task Structure

A

Legend

Swift Function

[ discus_run () J foreach (kid,repetition) Python Interface

% discus () ] DISCUS Macro
'-

[ kuplot_run () ] foreach (kid)

g kuplot ()

Y

[ diffev run() J foreach (kid)

g diffev ()

A

[ kuplot sel ()

A

\
[ diffev_cmp ()
l




N
R. Harder workflow: Genetic algorithm

individuals = toint(argv("individuals"));
ngenerations = toint(argv("ngenerations"));
file winners[];

winners[0] = input(“null.winner"); null
for (int generation = 1; generation < ngenerations;
generation = generation+1) { —
file population(]; /Y\
foreach box_index in [O:individuals-1] { boX.py box.py DOX.pY | ===
file d<sprintf("d-%i-%i.out",generation,box_index)>; 7 7
file s<sprintf("d-%i-%i.score",generation,box_index)>; ‘ . .
(d,s) = box(box_index, generation, winners[generation-1]); tmage rmage rmage -
population[box_index] = d; score score score

} \J‘/

file winner_file<sprintf("d-%i.winner", generation)> =

select(generation, population); select
winners[generation] = winner_file; )
1 winner
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High-Energy Diffraction Microscopy

800 -

600 -

-1000 1 1 1 1 1 1 1 ! 1
-1000 -800 -600 =400 -200 0 200 400 600 200

October 2013: Without Swift

April 2014: With Swift

= Near-field high-energy diffraction microscopy discovers metal grain shapes
and structures

= The experimental results are greatly improved with the application of
Swift-based cluster computing (RED indicates higher confidence in results)
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0: Generate
Parameters
FOP.c
50 tasks

Detector

NF-HEDM: Cross-lab workflow

Dataset
360 files
4 GB total Workflow
Control
Script
Y Bash
1: Imaging
Median calc
75s (90% 1/0) /

~ Medianimage.c

25s/task

% CPU hours
Manual
Swift/K

—

Uses Swift/K
Peak Search
15s per file
Swift/K

Globus Catalog
Scientific Metadata
Workflow Progress

- - - - - - - - - - - -y

Up to
2.2 M CPU hours
per week!

\ / 1 V
y 1
( : FitOrientation.c
2: Convert bins ' 60s/task (PC)
Reduced to Network : 1667 CPU hours
Dataset [ : - 600s/task (BG/Q)
Endian format. AN
360 files U 2 min for all files. Transfer 16,670 CPU hours
5 MB total Swift/T . Swift/T
I
1
Orthros : :
I
1 I

(All data in NFS)

Blue Gene/Q

- o wnf ww e ee w o)

]
}
|}
]
1
1
1
]
]
1
1
1
1
1
1
1
3: Analysis Pass :
1
1
1
1
1
1
1
1
1
|}
1
1
1
|}
1
]

feedback to experiment
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FUTURE WORK



Extreme scale application ensembles

= Develop Swift for exascale experiment ensembles
— Deploy stateful, varying sized jobs
— Outermost, experiment-level coordination via dataflow

— Plug in experiments and human-in-the-loop models (dataflow filters)




Future Work

Develop Swift for exascale
— Continue scaling work: Study distributed dataflow for realistic patterns
— Ease integration with native code

Application collaborations

— Materials science: APS (Osborn, Sharma)
— Molecular dynamics: NAMD (Phillips), LAMMPS (Whitmer)

Connect with novel systems elsewhere in MCS, ALCF:

— Memcached (lsaila et al.)
— Tess (Peterka et al.)
— Filesystems (Ross et al.)

Connect with new applications at the Cl and elsewhere!
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Summary

Swift: High-level scripting for outermost programming constructs
— Handles many aspects of the scientific computing experience
— Described how dataflow logic is distributed
— New features for parallel tasks

Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim Armstrong,
David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder, loan Raicu, Dan
Katz, lan Foster

Thanks to project collaborators: Tom Peterka, Jim Dinan, Ray Osborn,
Reinhard Neder, Guy Jennings, Hemant Sharma, Rachana
Ananthakrishnan, Ben Blaiszik, Kyle Chard, Tim Germann, and others

Questions?
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