Gaining Insight into Parallel Program

Performance using HPCToolkit

John Mellor-Crummey
Department of Computer Science
Rice University

http://hpctoolkit.org

ATPESC August 11, 2014

Acknowledgments

e Current funding
— Argonne National Laboratory Subcontract 4F-30241
— DOE Office of Science ASCR X-Stack “PIPER” Award
— Intel

* Project team
— Research Staff
— Laksono Adhianto, Mike Fagan, Mark Krentel
— Students
— Milind Chabbi, Karthik Murthy

— Recent Alumni
— Xu Liu (William and Mary, 2014)
— Nathan Tallent (PNNL, 2010)

Challenges for Computational Scientists

 Rapidly evolving platforms and applications

— architecture
— rapidly changing multicore microprocessor designs
— increasing architectural diversity

multicore, manycore, accelerators

— increasing scale of parallel systems

— applications
— transition from MPI everywhere to threaded implementations
— enhance vector parallelism
— augment computational capabilities

e Computational scientists needs
— adapt to changes in emerging architectures
— improve scalability within and across nodes
— assess weaknesses in algorithms and their implementations

[Performance tools can play an important role as a guide j

3

Performance Analysis Challenges

e Complex node architectures are hard to use efficiently
— multi-level parallelism: multiple cores, ILP, SIMD, accelerators
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

e Complex applications present challenges
— measurement and analysis
— understanding behaviors and tuning performance

e Supercomputer platforms compound the complexity
— unique hardware & microkernel-based operating systems

— multifaceted performance concerns
— computation
— data movement
— communication
- 1/0

What Users Want

e Multi-platform, programming model independent tools

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— (heterogeneous) parallelism within and across nodes
— optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped

— complex execution environments
— dynamic binaries on clusters; static binaries on supercomputers
— batch jobs

o Effective performance analysis
— insightful analysis that pinpoints and explains problems
— correlate measurements with code for actionable results
— support analysis at the desired level

intuitive enough for application scientists and engineers
detailed enough for library developers and compiler writers

e Scalable to petascale and beyond

Outline

e QOverview of Rice’s HPCToolkit

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Understanding temporal behavior
* Assessing process variability

e Understanding threading performance
— blame shifting

e Today and the future

Rice University’s HPCToolkit

e Employs binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

 Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

 Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Supports top-down performance analysis

— identify costs of interest and drill down to causes
— up and down call chains
— over time 7

HPCToolkit Workflow

profile
execution
[hpcrun]

compile & link

optimized

call path

profile

binary

source I
code

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

 For dynamically-linked executables, e.g., Linux
— compile and link as you usually do: nothing special needed
— For statically-linked executables, e.g., Blue Gene/Q

— add monitoring by using hpclink as prefix to your link line

— uses “linker wrapping” to catch “control” operations
process and thread creation, finalization, signals, ...

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

Measure execution unobtrusively

— launch optimized application binaries

— dynamically-linked: launch with hpcrun, arguments control monitoring
— statically-linked: environment variables control monitoring

— collect statistical call path profiles of events of interest

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

10

Call Path Profiling

Measure and attribute costs in context
sample timer or hardware counter overflows
gather calling context using stack unwinding

Call path sample Calling context tree
return address

return address
return address

instruction pointer ‘

@<

5 p

...not call frequency

Overhead proportional to sampling frequency...

11

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

e Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

12

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

optimized
binary

binary
analysis
[hpcstruct]

program
structure

e Combine multiple profiles
— multiple threads; multiple processes; multiple executions

e Correlate metrics to static & dynamic program structure

interpret profile
database —] correlate w/ source
[hpcprof/hpcprof-mpi]

presentation

[hpcviewer/

hpctraceviewer]

13

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link

source I
code

e Presentation

— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight
e.g. scalability losses, waste, CPIl, bandwidth

— graph thread-level metrics for contexts
— explore evolution of behavior over time

interpret profile
: database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

14

Code-centric Analysis with hpcviewer

hpeviewer: amrCodunov3d.Ling

" PatchGodunov.cpp "% PolytropicPhysics.cpp = LevelGodunov.H

// Advance the finer level ond take into account possible

// subcycling by allowing for a change in "stepsleft™.

)49 //[NOTE: the ifQ) test looks rcdundant with cbove, but it is nf
)59 /7 may change during a reortd().

1mestepla_ievei+l,stepsleft, timeBoundary);

/7 The first time the next finer level time oligns with the cu
// level time. After that this is not the case.

= PolytropicPhysicsF.f
r

Lo inlined procedures

1%.64.CC.ftn. OPTHICH . MPl.ex

= AMR.cpp 83 | | AMRH

- costs for

e loops
‘o function calls in full context

)57 //7[NOTE: this if() test _is_ redundant. <dbs>)

*3; Calling Context View 33 %%, Callers View | 1, Flat View _I Vlew ContrOI I —'l=
Scope WALLCLOCK (us)Sum (1) v WALLCLOCK (us):Mean () | WALLCLOC
Experiment Aggregate Metrics 1.92¢+11 100 % 1.80c+08
¥Ymain 1.92¢+11 100 & 1.80c+08
v B»282: amrGodunov() 1.87e+11 97.4% 1.75¢+08
1.77e+11 92.1% 1.66c+08
. . 1.77e+ +08
“run(double, Int) Inav|gat|0n panel 1. nul metnc pane[ws
¥inlin rom Cpp: 1.77e
] Cpp. B1> 1.77e+11 92.1% 1.66c+08
-ma%p: 622 | 1.77e+11 92.1% 1.660+08
¥ B»654: AMR::timeStep(int, int, bool) 1.77e+11 92.1% 1.66c+08
|;vm|med from AMR.cpp: 794] 1.77e+11 92.1% 1.660+08
¥ioop at .Cpp: 943 | 1.77e+11 92.0% 1.66c+08
¥ B»953: AMR::timeStep(int, int, bool) 1.77e+1l 92.0% 1.66c+08
Vinlined from AMR.cpp: 794 1.77e+11 92.0% 1.660+08
: 1.73e+11 90.3% 1.620+08
- :timeStep(int, int, 1.73e+11 50.3% 1.62¢+08
MM“ 1.73e+11 90.3% 1.620+08
> B0 LevelPolytropicGas:.advance 1.73e+11 90.3% 1.620+08
» B»919: BoxlLayout::size() const 5.37¢+06 0.0% 5.04¢+03
» B»911: AMRLevelPolytropicGas::.computeDt() 2.04¢+05 0.0% 1.91e+02
AMR.cpp: 795 2.400+04 0.0% 2.25¢+01
» B» 967 AMRLevelPolytropicGas::postTimeStep() 1.20e+04 0.0% 1.12¢+01
> 9801 std:.ostreamé& std osueam M msen<long>(long) 1.200+04 0.0% 1.12¢+01

The Problem of Scaling

Efficiency

1.000

0.875

0.750

0.625

0.500

— lIdeal efficiency
— Actual efficiency

© D
N

X o X o b
\b‘?@q’u,\@%

CPUs

Note: higher is better

16

Goal: Automatic Scaling Analysis

* Pinpoint scalability bottlenecks
e Guide user to problems
* Quantify the magnitude of each problem

 Diagnose the nature of the problem

17

Challenges for Pinpointing Scalability Bottlenecks

e Parallel applications
— modern software uses layers of libraries
— performance is often context dependent

Example climate code skeleton

* Monitoring
— bottleneck nature: computation, data movement, synchronization?

— 2 pragmatic constraints
— acceptable data volume
— low perturbation for use in production runs 18

Performance Analysis with Expectations

* You have performance expectations for your parallel code
— strong scaling: linear speedup
— weak scaling: constant execution time

 Put your expectations to work

— measure performance under different conditions
— e.g. different levels of parallelism or different inputs

— express your expectations as an equation

— compute the deviation from expectations for each calling context

— for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

19

Pinpointing and Quantifying Scalability Bottlenecks

4 N 4 N

v
R e (A
|~1/-(2->il — I}/P X'l »A« i\ 400K
e _/Q \ _/

N

. 200K
:' coefficients for analysis ! %
' of weak scaling : y

20

Scalability Analysis Demo

Code:
Simulation:
Platform:
Experiment:
Scaling type:

xxxxx

Nova outbursts on white dwarfs

| PP YT T
Magnetic

1 .ellular nation
Rayleigh-Taylor Cellular detonatio

University of Chicago FLASH
white dwarf detonation
Blue Gene/P

8192 vs. 256 processors
weak

A

Laser-driven shock instabilities

E Orzag/Tang MHD . . -
vortex Rayleigh-Taylor instability

Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago 21

Scalability Analysis of Flash (Demo)

O 0 O hpcviewer: FLASH/white dwarf: IBM BG/P, weak 256->8192
"¢ Driver_initFlash.F90 W =0
206 1-=mm- First pass only add lrefine = 1 blocks to tree(s)
207 1emmmm Second pass add the rest of the blocks.
208 Do ipass = 1,2
209
210 lnblocks_old = 1lnblocks
211 proc = mype
212 I-—-—- Loop through all processors
213 Do iproc = @, nprocs-1
214
215 If (iproc == @) Then
216 off_proc = .False.
217 Else
'% Calling Context View &3 ‘ 5\\ Callers View’ h. Flat View’ =0
|4 2|6 fo || 5 A A
Scope \% scalability loss ¥ 256/WALLCLOCK (u
Experiment Aggregate Metrics 2.46e+01 100 % 5.07e+08 :
Vflash 2.46e+01 100 % 5.07e+08 :
P B> driver_evolveflash 1.4le+01 57.5% 4.46e+08 ¢
¥ By driver_initflash 1.04e+01 42.5% 6.02e+07 :
¥V By arid_initdomain 8.58e+00 34.9% 3.45e+07
¥ B gr_expanddomain 8.58e+00 34.9% 3.45e+07
Vloop at gr_expandDomain.F90: 119 6.85e+00 27.9% 3.42e+07
¥ B amr_refine_derefine 5.56e+00 22.6% 2.87e+06
¥ B»amr_morton_process 5.45e+00 22.2% 9.75e+05
¥ B> find_surrblks 5.18e+00 21.1% 8.40e+05
V By local_tree_build 5.18e+00 21.1% 8.25e+05
Vloop at local_tree_build.F90: 211 5.18e+00 21.1% 8.25e+05
Vloop at local_tree_build.F90: 216 5.18e+00 21.1% 8.25e+05
P loop at local_tree_build.F90: 286 1.14e+00 4.6% 2.55e+05
> B> pmpi_sendrecv_replace 5.47e-01 2.2% 5.00e+04

22

Difference call
path profile
from two
executions

— different

number of
nodes

— different
number of
threads

Pinpoint and
quantify
scalability
bottlenecks
within and
across nodes

Scalability Analysis

O 0 O hpcviewer: FLASH/white dwarf: IBM BG/P, weak 256->8192
%‘ Driver_initFlash.F90 ‘ | =0
206 1-----First pass only add lrefine = 1 blocks to tree(s)
207 1=mmmm Second pass add the rest of the blocks.
208 Do ipass = 1,2
209 = H H
210 Inblocks_old = lnblocks s|gn|f|cant scaling
211 proc = mype

212 1===-- Loop through all processors

losses caused by

213 Do iproc = @, nprocs-1
ji If (iproc == @) Then paSSIng data around
517 Eree roc T cfalee a ring of processors

‘ "\ Calling Context View &3 ’ R, Callers View | f1, Flat View‘

|4 2|6 fa |5 A A

'Scope 1% scalability loss v
Experiment Aggregate Metrics 2.46e+01 100 %
¥flash 2.46e+01 100 %
b B driver_evolveflash 1.4le+01 57.5%

¥ B> driver_initflash 1.04e+01 42.5%

¥ B> grid_initdomain 8.58e+00 34.9%

¥ Bpgr_expanddomain 8.58e+00 34.9%

Vloop at gr_expandDomain.F90: 119 6.85e+00 27.9%

¥ B> amr_refine_derefine 5.56e+00 22.6%

¥ [Bpamr_morton_process 5.45e+00 22.2%

¥ B> find_surrblks 5.18e+00 21.1%

¥ Bplocal_tree_build 5.18e+00 21.1%

Vloop at local_tree_build.FS0: 211 5.18e+00 21.1%

Vloop at local_tree_build.F90: 216 5.18e+00 21.1%

P loop at local_tree_build.F90: 286 1.14e+00 4.6%

P By pmpi_sendrecv_replace 5.47e-01 2.2%

256 /WALLCLOCK (u
5.07e+08 :

U RN 0 @m0 w N W W wen s

.07e+08
.46e+08 ¢
.02e+07
.45e+07
.45e+07
.42e+07
.87e+06
.75e+05
.40e+05
.25e+05
.25e+05
.25e+05
.55e+05
.00e+04

23

Improved Flash Scaling of AMR Setup

22 Ll 1 1 1 1 1 Ll

20 - standard surr_blks construction (orrery) —|— 4

18 custom surr_blks construction % i

16

-
-
k3
-
.
-
-
-
-
.
L
L]
-
.
L
*
.O
- “ —
L]
.
.
.
-
*
.
.
.
.
»
.
.
-
K3
.
..
.

10 |

Time (seconds)

o
.
.
-
L
.
o
»
3
-
.
.
=
-
.
o
-
.
-
-
-
-
-~
.
.
-
’.
*

»*
L
-
-
.
.
-
ot
*

e e e e——— s

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of cores

Graph courtesy of Anshu Dubey, U Chicago 24

Profi

Understanding Temporal Behavior

ling compresses out the temporal dimension

—temporal patterns, e.g. serialization, are invisible in profiles

What can we do? Trace call path samples
—sketch:

Processes

N times per second, take a call path sample of each thread
organize the samples for each thread along a time line
view how the execution evolves left to right

what do we view?

assign each procedure a color; view a depth slice of an execution

Time

25

hpctraceviewer: detail of FLASH3@256PE

Time-centric analysis: load imbalance among threads appears
as different lengths of colored bands along the x axis

pctraceviewer: flash3
e v A2l @22 $ (DM =0 #cumn =o

Time Range: (72,4433 89.3275] Rank Range: [27.76] Cross Mair: (84,7973, 41)

W peprn view L Summary View — = |

Measurement & Attribution of L2 Activity

 L2Unit measurement capabilities
— e.g., counts load/store activity
— node-wide counting; not thread-centric
— global or per slice counting

— supports threshold-based sampling
— samples delivered late: about 800 cycles after threshold reached
— each sample delivered to ALL threads/cores

e HPCToolkit approach

— attribute a share of L2Unit activity to each thread context for
each sample

— e.g., when using a threshold of 1M loads and T threads,
attribute 1M/T events to the active context in each thread when each
sample event occurs

— best effort attribution
— strength: correlate L2Unit activity with regions of your code
— weakness: some threads may get blamed for activity of others

27

OpenMP: A Challenge for Tools

e Large gap between between threaded programming models
and their implementations

000 . 2-hpcviewer: LULESH OMP.host _ A
o User-level calling context for
e L code in OpenMP parallel regions
- and tasks executed by worker
e threads Is not readily available

|4 & |6 |5 A A~

Scope |REALTIME (usec):Sum (I) ¥ REALTIME (usec):Sum (E)
Experiment Aggregate Metrics 6.32e+08 100 % 6.32e+08 100 %
¥monitor_begin_thread 6.06e+08 95.8%
¥ B»940: __kmp_launch_worker(void*) 5.80e+08 91.8%
¥ B 729: __kmp_launch_thread 5.80e+08 91.8% 1.51e+04 0.0%
v B»6314: _ kmp_invoke_task_func 3.38e+08 53.5%
v e 28 o invoke o Racm 3.38e+08 53.5%
» [L__Z28CalcFBHourglassForceForElemsPdS_S_S_S_S_S_d_ 6.48e+07 10.3% 4.14e+07 6.5%
» B»L__Z22CalcKinematicsForElemsid_1931_ par_loop0_2_855 5.36e+07 8.5% 1.72e+07 2.7%
» B»L__Z28CalcHourglassControlForElemsPdd_1516__par_loop0_2_424 4.73e+07 7.5% 1.64e+07 2.6%
» B»L__Z23IntegrateStressForElemsiPdS_S_S_ 864_ par_loop0_2_125 4.34e+07 6.9% 8.66e+06 1.4%
E>L _Z31CalcMonotonicQGradientsForElemsv 2040 par loop0 2 965 2.82e+07 4.5% 1.59e407 2.5%
> B»6333: __kmp_join_barrier(int) aaa 1.63e+07 2.6% 2.50e+04 0.0%
> B6302: __kmp_clear_x87_fpu_status_word 2.00e+04 0.0% 2.00e+04 0.0%
kmp_runtime.c: 6236
> B»940: __kmp_launch_monitor(void*) 2.53e+07 4.0%
¥Ymonitor_main 2.63e+07 4.2%
¥ B> 483: main 2.63e+07 4.2% 2.10e+05 0.0%
> B»3187: LagrangelLeapFrog() 2.52e+07 4.0%
> B»3049: Domain::AllocateNodeElemIndexes() 4.66e+05 0.1% 2.15e+05 0.0%
> B»2995: Domain::AllocateElemPersistent(unsigned long) 8.09e+04 0.0%

e Runtime support is necessary for tools to bridge the gap

28

Challenges for OpenMP Node Programs

e Tools provide implementation-level view of OpenMP threads

— asymmetric threads
— master thread
— worker thread

— run-time frames are interspersed with user code

Hard to understand causes of idleness
— long serial sections

— load imbalance in parallel regions

— waiting for critical sections or locks

29

OMPT: An OpenMP Tools API

e Goal: a standardized tool interface for OpenMP
— prerequisite for portable tools
— missing piece of the OpenMP language standard

* Design objectives
— enable tools to measure and attribute costs to application source
and runtime system

« support low-overhead tools based on asynchronous sampling
- attribute to user-level calling contexts

« associate a thread’s activity at any point with a descriptive state
— minimize overhead if OMPT interface is not in use

« features that may increase overhead are optional
— define interface for trace-based performance tools

— don’t impose an unreasonable development burden
* runtime implementers
« tool developers

30

Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

000 hpecviewer: luleshMP1_OMP.host
il oMo L, ==
1214)
31215
3216 {
1217 #pragma omp parallel for firstprivate(numNode) '
3218 for(Index_t gnode~@ ; gnode<numNode ; ++gnode) Sou rce VIeW
31219 {

3220 Index_t count « nodeElemCount[gnode] ;
3221 Index_t start - nodeElemStart[gnode] ;
3222 Real_t fx_tmp - Real_t(2.9) ;

BTN

E [Plot graph)] CalcFBHourglassForceForElems{int*, double®, double®, double®, double®, double®, double*, double*, double®, int*, int*, int*, double*, double*, double*, double*, double*, doub... I3
Jdems(int*, double*, double*, double*, double*, double*, double*, double*, double*, int*, int*, int*, double*, double*, double*, double*, double*, double*, double*,
-

3 . T e ¢ o e oo e %o S ¢ o ° ¢ o
1.067 - : .) .
i thread
f read view
O.OEO L = T T 2 T L 2 L) T = Ll L 2 T T 2 L Ll 2 T T 2
00.00 00.50 01.00 01.50 02.00 02.50 03.00 03.50 04.00 04.50 05.00 05.50 06.00 06.50 07.00
Process.Thread
*3; Calling Context View 52 | %, Callers View | Jg, Flat V'lew: <0
06 WS A A
Scope IREALTIME (usec):Sum () =/ REALTIME (usec):Sum (E)
Experiment Aggregate Metrics 3.55¢+10 100 % 3.55¢+10 100 %
¥monitor_main 2.58e+10 72.8%
¥ B»483: main 2.58e¢+10 72.8% 7.02¢+03 0.0%
¥Yloop at luleshMPI_OMP.cc: 5625 2.58e+10 72.8% 4.01e+03 0.0%
¥ B> 5626: LagrangeleapFrog(Domain*) 2.53e+10 71.2% 1.50e+04 0.0%
¥ B»4796: LagrangeNodal(Domain®) 1.68e+410 47.5% 5.02e+04 0.0%
¥ B»3476: CalcForceForNodes(Domain®) L. hfmein 4L ae borkaand A DG
¥ B»3370: CalcVolumeForceForElems{Domain®) 1.44e410 40.7% 1.56e407 0.Jos
¥ B> 3344: CalcHourglassControlForElems(Domain®, double*, double) 1.4 :m@tr»lc Vlew 5%
¥ B» 3289: CalcFBHourglassForceForElems(int*, double*, double*, double*, double*, double*, d¢ 7.460409 22 1% 2.41c408 0J17%
» B»3066: CalcFBHourglassForceForElems(int*, double*, double*, double*, double*, double*, 3.66e+09 10.3% 2.57e+09 7.2%
> B»3217: __kmp_fork_barrier(int, int) 3.08¢409 8.7% 5.01e+03 0.0%
» B»3066: __kmp_fork_barrier(int, int) 5.44e+08 1.5% 1.00e+04 0.0%

» B»3217: CalcFBHourglassForceForElems(int*, double*, double*, double*, double*, double*, 3.16e408 0.9% 3.15¢408 0.9%

LidaehMDI AMD - 2INEA A _ACaano n _£a A ALasno LI LY

Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000

000 hpctraceviewer: luleshMPI_OMP.host

& Trace View |HH10-‘@Q {}|')(‘ s <0

Time Range: [524.031s ,526.198s] Rank Range: [0.0,7.3] Cross Hair: (525.266s, 2.3)

4 Depth View n Summary View

time-centric
view

57 v ey e

B monitor_main

W main

Bl LagrangeLeapFrog(Dor
M LagrangeNodal(Domaii
[l CaicForceForNodes(Do
M CalcvolumeForceForEl
M CalcHourglassControlf
Ml CalcFBHourglassForcel
B _xmp_hyper_barrier_r
B _kmp_wait_sleep

Mini Map

Blame-shifting: Analyze Thread Performance

Problem Approach

Apportion blame
: . among workin
Undirected A thread is idle threads for no
Blame waiting for work sheﬂdli_ng etnok.gh
Les 1.3 parallelism to keep
Shifting all threads busy

A thread is idle
waiting for a mutex

: Blame the thread

Dérlec':ed holding the mutex for
_ a_me2 3 idleness of threads

Shifting+ waiting for the mutex

Tallent & Mellor-Crummey: PPoPP 2009
2Tallent, Mellor-Crummey, Porterfield: PPoPP 2010
3Liu, Mellor-Crummey, Fagan: ICS 2013

OpenMP Tools API Status

April 2014: OpenMP TR2

—OMPT: An OpenMP Tools Application Programming Interface for Performance
Analysis

— Alexandre Eichenberger (IBM), John Mellor-Crummey (Rice), Martin Schulz
(LLNL), Nawal Copty (Oracle), Jim Cownie (Intel), Robert Dietrich (TU Dresden),
Xu Liu (Rice), Eugene Loh (Oracle), Daniel Lorenz (Juelich), and other members
of the OpenMP tools subcommittee

—major step toward having a tools APl added to OpenMP standard

OMPT implementations: IBM, Intel (prototype), GOMP (partial), LLVM
(soon)

Next steps

—transition OMPT prototype into Intel for use with production OpenMP runtime
— http://code.google.com/p/ompt-intel-openmp
— contributors: Rice, University of Oregon, RWTH Aachen, TU Dresden
— status: finalizing code in preparation for merge into Intel’s LLVM OpenMP

ongoing dialog with Jim Cownie (Intel SSG/DPD/TCAR)
—propose OMPT additions to the language standard
—refine HPCToolkit OMPT support for production use

Ongoing Work and Future Plans

e Argonne
— deploy OMPT support for OpenMP on Blue Gene/Q
— scale /O strategy
— one file per node rather than one file per thread

— scale traceviewer
— split traceviewer into client server
server runs as a parallel program on vis cluster
client runs on your laptop

e Other work
— data-centric analysis: associate costs with variables
— analysis and attribution of performance to optimized code

e Future plans
— resource-centric performance analysis
— within and across nodes
— scale measurement and analysis for exascale
— automated analysis to deliver performance insights

35

HPCToolkit at ALCF

e ALCF systems (vesta, mira, cetus)

— in your .soft file, add one of the following lines below
— +hpctoolkit-devel
— (this package is always the most up-to-date)

e Man pages

— automatically added to MANPATH by the aforementioned
softenv command

e ALCF guide to HPCToolkit
— http:/Iwww.alcf.anl.gov/user-guides/hpctoolkit

e Download binary packages for HPCToolkit’s user interfaces
on your laptop

— http://hpctoolkit.org/download/hpcviewer

36

Detailed HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

e Comprehensive user manual:

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide
— essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs
— a guide for using hpctoolkit on BG/Q and Cray platforms

— The hpcviewer and hpctraceviewer user interfaces

— Effective strategies for analyzing program performance with
HPCToolkit

— analyzing scalability, waste, multicore performance ...
— HPCToolkit and MPI

— HPCToolkit Troubleshooting
— why don’t | have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can | do?

Installation guide

37

Using HPCToolkit

 Add hpctoolkit’s bin directory to your path using softenv

e Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

e Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -1m ...

e See what sampling triggers are available on BG/Q
— use hpclink to link your executable

— launch executable with environment variable
HPCRUN_EVENT LIST=LIST
— you can launch this on 1 core of 1 node
— no need to provide arguments or input files for your program
they will be ignored

38

Collecting Performance Data on BG/Q

e Collecting traces on BG/Q
— set environment variable HPCRUN_TRACE=1

— use WALLCLOCK or PAPI_TOT_CYC as one of your sample
sources when collecting a trace

e Launching your job on BG/Q using hpctoolkit

— qsub -A ... -t 10 -n 1024 --mode c1 --proccount 16384 \
--cwd pwd’ \
--env OMP_NUM_THREADS=2:\
HPCRUN_EVENT LIST=WALLCLOCK@5000:\
HPCRUN_TRACE=1\
your_executable

39

Monitoring Large Executions

e Collecting performance data on every node is typically not
necessary

e Can improve scalability of data collection by recording data
for only a fraction of processes

— set environment variable HPCRUN_PROCESS_FRACTION

— e.g. collect data for 10% of your processes
— set environment variable HPCRUN_PROCESS_ FRACTION=0.10

40

Digesting your Performance Data

 Use hpcstruct to reconstruct program structure
— e.g. hpcstruct your_ app
— creates your_app.hpcstruct

 Correlate measurements to source code with hpcprof and hpcprof-mpi
— run hpcprof on the front-end to analyze data from small runs

— run hpcprof-mpi on the compute nodes to analyze data from lots of
nodes/threads in parallel
— notes
much faster to do this on an x86_64 vis cluster than on BG/Q
avoid expensive per-thread profiles with --metric-db no

 Digesting performance data in parallel with hpcprof-mpi

— qsub -A... -t 20 -n 32 --mode c1 --proccount 32 --cwd ‘pwd" \
Iprojects/Tools/hpctoolkit/pkgs-vesta/hpctoolkit/bin/hpcprof-mpi \
-S your_app.hpcstruct \

-l /path/to/lyour_app/src/+\
hpctoolkit-your_app-measurements.jobid

 Hint: you can run hpcprof-mpi on the x86_64 vis cluster

41

Analysis and Visualization

 Use hpcviewer to open resulting database
— warning: first time you graph any data, it will pause to combine
info from all threads into one file
 Use hpctraceviewer to explore traces
— warning: first time you open a trace database, the viewer will
pause to combine info from all threads into one file
 Try our our user interfaces before collecting your own data

— example performance data
http://hpctoolkit.org/examples.html

42

