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Programming Challenges and Solutions 

Message Passing Programming  
Divide up domain in pieces 
Each compute one piece 
Exchange (send/receive) data 
 
PVM, MPI, and many libraries 

Global Address Space Programming 
Each start computing 
Grab whatever you need whenever 
 
Global Address Space Languages 
and Libraries  
 ~10% of NERSC apps use some kind of PGAS-like model 



Shared Memory vs. Message Passing 

Shared Memory 
• Advantage: Convenience 

- Can share data structures 
- Just annotate loops 
- Closer to serial code 

• Disadvantages 
- No locality control 
- Does not scale 
- Race conditions 

Message Passing 
• Advantage: Scalability 

- Locality control 
- Communication is all 

explicit in code (cost 
transparency) 

• Disadvantage 
- Need to rethink data 

structures 
- Tedious pack/unpack code 
- When to say “receive” 



PGAS Languages 

• Global address space: thread may directly read/write remote data  
•  Hides the distinction between shared/distributed memory 

• Partitioned: data is designated as local or global 
•  Does not hide this: critical for locality and scaling 
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Science Across the “Irregularity” Spectrum 

Massive 
Independent 

Jobs for 
Analysis and 
Simulations 

Nearest 
Neighbor 

Simulations 

All-to-All 
Simulations 

Random 
access, large 
data Analysis 

Data analysis and simulation 



Hello World in UPC 

• Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the a few UPC keywords: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 
 
main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 



Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

r =1 



Each thread calls “hit” separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 
 
    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 
 
    srand(MYTHREAD*17); 
 
    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 



Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 



Shared vs. Private 
Variables!



Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 
memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime:  may not 
occur in a function definition, except as static.  Why? 

Shared 
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mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  



Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 



UPC Synchronization 

•  UPC has two basic forms of barriers: 
-  Barrier: block until all other threads arrive  

 upc_barrier 
-  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  UPC also has locks for protecting shared data: 
-  Locks are an opaque type (details hidden):       

upc_lock_t *upc_global_lock_alloc(void); 

-  Critical region protected by lock/unlock: 
void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 



Pi in UPC: Shared Memory Style 

• Like pthreads, but use shared accesses judiciously 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 

other private variables 

one shared scalar variable 



Pi in UPC: Data Parallel Style with Collectives 

• The previous version of Pi works, but is not scalable: 
- On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 
   
  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 



Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

•  In the pictures below, assume THREADS = 4 
- Blue elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 



Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 



Global Memory Allocation  
shared void *upc_alloc(size_t nbytes); 

  nbytes : size of memory in bytes 
•  Non-collective: called by one thread  
•  The calling thread allocates a contiguous memory space in the shared 

space with affinity to itself.  
 shared [] double [n] p2 = upc_alloc(n&sizeof(double); 

void upc_free(shared void *ptr); 
•  Non-collective function; frees the dynamically allocated shared 

memory pointed to by ptr 

Shared 
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Distributed Arrays Directory Style 

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects 

typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 

physical and 
conceptual 
3D array 
layout 



Arrays in a Global Address Space 

• Key features of Titanium arrays 
- Generality: indices may start/end and any point 
- Domain calculus allow for slicing, subarray, 

transpose and other operations without data copies 
• Use domain calculus to identify ghosts and iterate: 

   foreach (p in gridA.shrink(1).domain()) ... 

• Array copies automatically work on intersection 
   gridB.copy(gridA.shrink(1)); 

gridA gridB 

“restricted” (non-
ghost) cells  

ghost 
cells  

intersection (copied 
area) 

Joint work with Titanium group!

Useful in grid 
computations 
including AMR 



UPC Compiler Implementation 

UPC-to-C translator 

•  Pros: portable, can use any 
backend C compiler 

•  Cons: may lose program 
information between the two 
compilation phases 

•  Example: Berkeley UPC 

UPC-to-object-code compiler  

•  Pros: better for implementing 
UPC specific optimizations 

•  Cons: less portable 
•  Example: GCC UPC and 

most vendor UPC compilers 

UPC code 

UPC source-to-source 
translator 

C code 

UPC code 

UPC source-to-object-
code complier 

Machine Instr. 



New in UPC 1.3 Non-blocking Bulk Operations 

#include<upc_nb.h>	
  	
  
	
  
upc_handle_t	
  h	
  =	
  	
  
upc_memcpy_nb(shared	
  void	
  *	
  restrict	
  dst,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  shared	
  const	
  void	
  *	
  restrict	
  src,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  size_t	
  n);	
   
void	
  upc_sync(upc_handle_t	
  h);	
  	
  	
  	
  	
  	
  	
  	
  //	
  blocking	
  wait	
  
int	
  upc_sync_attempt(upc_handle_t	
  h);	
  //	
  non-­‐blocking	
  	
  
	
  
	
  
	
  
 

Important for performance:  
•  Communication overlap with computation 
•  Communication overlap with communication (pipelining) 
•  Low overhead communication  



Communication Strategies for 3D FFT 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea!

chunk = all rows with same destination 

pencil = 1 row 

•  Three approaches: 
• Chunk:  

•  Wait for 2nd dim FFTs to finish 
•  Minimize # messages 

• Slab:  
•  Wait for chunk of rows destined for 1 

proc to finish 
•  Overlap with computation 

• Pencil:  
•  Send each row as it completes 
•  Maximize overlap and 
•  Match natural layout 

slab = all rows in a single plane with 
same destination 



FFT Performance on BlueGene/P 

HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores 

•  UPC implementation 
consistently outperform 
MPI 

•  Uses highly optimized local 
FFT library on each node 

•  UPC version avoids send/
receive synchronization 

•  Lower overhead 
•  Better overlap 
•  Better bisection 

bandwidth 
•  Numbers are getting close 

to HPC record on BG/P 
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UPC 1.3 Atomic Operations 

• More efficient than using locks when applicable 

• Hardware support for atomic operations are available, but 

upc_lock();	
  
update();	
  
upc_unlock();	
  

atomic_update();	
  vs 

Memory 

CPU 

GPU 

NIC 

Memory 

Atomic_CAS on uint64_t 

Atomic_Add on double 

Only support limited operations 
on a subset of data types. e.g., 

Atomic ops from different 
processors may not be 
atomic to each other 



UPC + Remote Invocation for Scalable Meraculous 
Application used in  Genomics Grand Challenge 

k-mers  

New analysis filters errors using 
probabilistic “Bloom Filter”  

Graph algorithm scales to 15K cores on 
NERSC’s Edison using DEGAS language 

rather than shared memory hardware 

contigs 

Future work: Scaffolds using Scalable Alignment 

Human: 44 hours to 20 secs 
Wheat: “doesn’t run” to 32 secs 

x 
x 

New fast I/O using SeqDB over HDF5 

reads 
Meraculous Assembly Pipeline 

Dynamic Exascale Global Address Space project, joint work JGI, Early Career and Mantissa"DEGAS 

DEGAS X-Stack project 
•  Gives tera- to petabtye “shared” 

memory 
•  Combines with new math/data 

algorithm for mapping to anchor 
92% of wheat chromosome 

Meraculous assembler is use in 
production at the Joint Genome Institute 
•  Wheat assembly is a “grand 

challenge”  
•  Hardest part is contig generation  

(large in-memory hash table) 



Beyond Put/Get: Event-Driven Execution 

• DAG Scheduling in a distributed (partitioned) memory context 
• Assignment of work is static; schedule is dynamic 
• Ordering needs to be imposed on the schedule 

- Critical path operation: Panel Factorization 
• General issue: dynamic scheduling in partitioned memory 

- Can deadlock in memory allocation 
- “memory constrained” lookahead 
 

some edges omitted 

Uses a Berkeley extension to 
UPC to remotely synchronize 

28"



DEGAS Programming System: UPC++ 

DEGAS is a DOE-funded X-Stack project led by Lawrence 
Berkeley National Lab (PI: Kathy Yelick), in collaboration 
with LLNL, Rice Univ., UC Berkeley, and UT Austin.    

A template-based programming 
system enabling PGAS features 
for C++ applications 



DEGAS: Dynamic Exascale Global Address Space 

Hierarchical Programming 
Models 

Communication-Avoiding 
Libraries and Compilers 

Adaptive Interoperable 
Runtimes 

Lightweight One-Sided 
Communication 

Communication-avoiding algorithms generalized to 
compilers, and communication optimizations in PGAS 

DEGAS Overview"30"



Making PGAS more Dynamic;  
DAG Programming more Locality-Aware 

DEGAS Overview"31"

DEGAS 
Hierarchical locality control  
(1) Remote put/get and atomics 
(2) Remote invocation 
(3) Distributed load balance 

PGAS 
- Asynchronous remote put/get for 

random access 
- Good locality control and scaling          
         E.g. *p = … or   … = a[i]; 

DAGs 
- Asynchronous invocation 
- Good for dynamic load balancing 

and event-driven execution 
finish {  … async f (x)…}  



UPC++ Generic Programming for PGAS 

• Enable “modern” language features with PGAS 
- Interoperable with MPI, OpenMP, CUDA,… 

• UPC++ uses templates to express shared data  
	
  shared_var<int>	
  s;	
  	
  //	
  shared	
  int	
  s	
  in	
  UPC	
  
	
  shared_array<int>	
  sa(8);	
  //	
  shared	
  int	
  sa[8]	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  in	
  UPC	
  

• UPC++ provides remote invocation 
//	
  Remote	
  Procedure	
  Call	
  

	
  	
  	
  upcxx::async(place)(Function	
  f,	
  T1	
  arg1,	
  T2	
  arg2,…);	
  
upcxx::wait();	
  
	
  
//	
  Explicit	
  task	
  synchronization	
  

	
  	
  	
  upcxx::event	
  e;	
  	
  
	
  	
  	
  upcxx::async(place,	
  &e)(Function	
  f,	
  T1	
  arg1,	
  …);	
  

e.wait();	
  
	
  



GUPS Performance on MIC and BlueGene/Q 

Difference between UPC++ and 
UPC is about 0.2 µs (~220 cycles) 
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One-Sided vs Two-Sided 

•  A one-sided put/get message can be handled directly by a network 
interface with RDMA support 
- Avoid interrupting the CPU or storing data from CPU (preposts) 

•  A two-sided messages needs to be matched with a receive to 
identify memory address to put data 
- Offloaded to Network Interface in networks like Quadrics 
- Need to download match tables to interface (from host) 
- Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 
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Cray XE6 Application Performance 
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Summary 

• UPC designed to be consistent with C 
- Ability to use pointers and arrays interchangeably 

• Designed for high performance 
- Memory consistency explicit; Small implementation 
- Transparent runtime  

•  gcc version of UPC: 
http://www.gccupc.org/ 

• Berkeley compiler 
http://upc.lbl.gov 

•  Language specification and other documents 
https://code.google.com/p/upc-specification 
https://upc-lang.org 

• Vendor compilers: Cray, IBM, HP, SGI,… 



UPC++ Asynchronous Remote Execution                       
Enables Scalable Data Fusion 

Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNL"
38"DEGAS 

PGAS before X-Stack 
•  Asynchronous remote put/get  
•  Good locality control and scaling          
         E.g. *p = … or   … = a[i];ç 

New: Asynchronous invocation 
•  Event-driven execution & load balancing 
•  Hierarchical synchronization and places 

finish {  … async f (x)…}  
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•  Seismic modeling for energy applications 
“fuses” observational data into simulation.   

•  PGAS illusion of scalable shared memory to 
construct matrix and measure data “fit”  

•  New UPC++ dialect supports PGAS libraries; 
future distributed data structure library 

Cores: 48       192      768        3K       12K          



Mini-GMG in UPC++ uses high level array library for 
Productivity and Performance 

Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNL"39"DEGAS 

Before X-Stack 
•  MPI’s explicit communication 

inhibits productivity and 
performance portability 

•  C/C++ lack of multidimensional 
arrays 

•  “Fine-grained” like OpenMP -- insufficient locality 
control 

•  “Bulk” like MPI with 1-sided communication; perfect 
match to scalability but no productivity advantage 

•  “Array” version uses multi-dimensional array 
constructs for productivity and ~MPI performance 

•  Future runtime optimizations should close Array/
Bulk gap 

 

“MG V-cycle” 

New: UPC++ Multidimensional 
Arrays  
•  Provides productivity via high-level 

array abstraction 
•  Encapsulates performance critical 

communication optimization in 
runtime 

Stride 
N2 

Stride 
N 

Stride N2 

Each process exchanges data with 26 neighbors. UPC++ 
multidimensional arrays give an easy interface to users 
and optimize strided data accesses automatically. 

Used	
  miniGMG	
  benchmark	
  which	
  proxies	
  MG	
  
solver	
  in	
  combus8on	
  codesign	
  center	
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GASNet Asynchronous One-Sided Communication Aids in 
Performance Portability and Scaling for NWChem 

• Production chemistry code 

- 60K downloads world wide 

- 200-250 scientific application 
publications per year 

- Over 6M LoC, 25K files 

40"

Performance Analysis and Optimizations of NWChem

• High-performance 
computational chemistry code 
✴ Flagship DOE chemistry software 
✴ Developed at PNNL, LBL 

• 60K downloads world wide 

• 200-250 scientific application 
publications per year 

• Over 6M LoC, 25K files 

• Internal tasking model, memory 
management, and application 
checkpoint/restart. 

• Execution on 100K+ processors

2

NWChem

credit:nwchem-sw.org

Software Stack

global arrays

NWChem

armci

MPI + {portals, ofa, dmapp}

gasnet

global arrays

NWChem

armci

vector strided

heaps

NWChem was written in the early 1990s, has 25k files and 6m

lines of fortran. It contains its own internal tasking model, memory

management, and application checkpoint/restart.
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•  New version on GASNet 
for  
–  Improved performance 
–  Portability with other 

PGAS  
 



LULESH - https://codesign.llnl.gov/lulesh.php 
 

Optimizations: 
• Blocked vs. cyclic (default) array layout 
• Use private pointer to the thread block in shared array 

 double* my_x = (double*)(x + MYTHREAD * BSIZE)!



Task Library API (under development) 

Dynamic load balancing in UPC (and UPC++) is an option 
 

taskq_put(…); !
taskq_execute(…); !
int taskq_all_isEmpty(taskq_t *taskq);!
Etc.!
!

Can be used optionally within a node, across nodes, on a 
certain subproblem, etc. 

 
Hierarchical Work Stealing on Manycore Clusters  

Min, Iancu,Yelick. PGAS 2011  !

Hierarchical Work Stealing on Manycore Clusters  
Min, Iancu,Yelick. PGAS 2011  !



Single Program Multiple Data 
(SPMD) is too restrictive 

Hierarchical machines and Applictions 

• Option 1: Dynamic parallelism creation (e.g., Chapel) 
- Recursively divide until… you run out of work (or hardware) 
- Runtime needs to match parallelism to hardware hierarchy 

• Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++) 
- Hardware threads can be grouped into units hierarchically 
- Add dynamic parallelism with voluntary tasking on a group 
- Add data parallelism with collectives on a group 
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•  Hierarchical memory 
model may be necessary 
(what to expose vs hide) 

•  Two approaches to 
supporting the 
hierarchical control 



One-sided communication works everywhere 

Support for one-sided communication (DMA) appears in: 
•  Fast one-sided network communication (RDMA, Remote 

DMA) 
•  Move data to/from accelerators 
•  Move data to/from I/O system (Flash, disks,..) 
•  Movement of data in/out of local-store (scratchpad) memory 

PGAS programming model 
 
   *p1 = *p2 + 1; 
   A[i] = B[i]; 
 
   upc_memput(A,B,64); 
 
It is implemented using one-sided 
communication: put/get 



Vertical PGAS 

x: 1 
y:  

x: 5 
y:  

x: 7 
y: 0 

Shared 
partitioned 
on-chip 

l:  m:  Private on-chip 

Shared 
off-chip 
DRAM or 
NVRAM 

• New type of wide pointer? 
-  Points to slow (offchip memory)  
- The type system could get unwieldy quickly 
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