
Supporting Irregular Applications
with Partitioned Global Address
Space Languages: UPC and UPC++

Kathy Yelick
Lawrence Berkeley National Laboratory

With results from the DEGAS and UPC groups

Petaflop and Petabyte systems for science

NERSC Celebrates 40th Birthday

5000 users, 1900+
publications per year

George Smoot Warren
Washington

John Kuriyan for
Martin Karplus

Saul Perlmutter

Lectures available at www.nersc.gov

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries
 ~10% of NERSC apps use some kind of PGAS-like model

Shared Memory vs. Message Passing

Shared Memory
• Advantage: Convenience

- Can share data structures
- Just annotate loops
- Closer to serial code

• Disadvantages
- No locality control
- Does not scale
- Race conditions

Message Passing
• Advantage: Scalability

- Locality control
- Communication is all

explicit in code (cost
transparency)

• Disadvantage
- Need to rethink data

structures
- Tedious pack/unpack code
- When to say “receive”

PGAS Languages

• Global address space: thread may directly read/write remote data
•  Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
•  Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce
!

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"

Science Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

Data analysis and simulation

Hello World in UPC

• Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
• Compute ratio:

- # points inside / # points total
-  π = 4*ratio

r =1

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

Shared vs. Private
Variables!

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private
memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

UPC Synchronization

•  UPC has two basic forms of barriers:
-  Barrier: block until all other threads arrive

 upc_barrier
-  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  UPC also has locks for protecting shared data:
-  Locks are an opaque type (details hidden):

upc_lock_t *upc_global_lock_alloc(void);

-  Critical region protected by lock/unlock:
void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region

Pi in UPC: Shared Memory Style

• Like pthreads, but use shared accesses judiciously
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

other private variables

one shared scalar variable

Pi in UPC: Data Parallel Style with Collectives

• The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
- Blue elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

Global Memory Allocation
shared void *upc_alloc(size_t nbytes);

 nbytes : size of memory in bytes
•  Non-collective: called by one thread
•  The calling thread allocates a contiguous memory space in the shared

space with affinity to itself.
 shared [] double [n] p2 = upc_alloc(n&sizeof(double);

void upc_free(shared void *ptr);
•  Non-collective function; frees the dynamically allocated shared

memory pointed to by ptr

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private

Thread0 Thread1 Threadn

p2:

 n doubles

p2:

 n doubles

p2:

 n doubles

Distributed Arrays Directory Style

• Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

Arrays in a Global Address Space

• Key features of Titanium arrays
- Generality: indices may start/end and any point
- Domain calculus allow for slicing, subarray,

transpose and other operations without data copies
• Use domain calculus to identify ghosts and iterate:

 foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-
ghost) cells

ghost
cells

intersection (copied
area)

Joint work with Titanium group!

Useful in grid
computations
including AMR

UPC Compiler Implementation

UPC-to-C translator

•  Pros: portable, can use any
backend C compiler

•  Cons: may lose program
information between the two
compilation phases

•  Example: Berkeley UPC

UPC-to-object-code compiler

•  Pros: better for implementing
UPC specific optimizations

•  Cons: less portable
•  Example: GCC UPC and

most vendor UPC compilers

UPC code

UPC source-to-source
translator

C code

UPC code

UPC source-to-object-
code complier

Machine Instr.

New in UPC 1.3 Non-blocking Bulk Operations

#include<upc_nb.h>	
 	

	

upc_handle_t	
 h	
 =	
 	

upc_memcpy_nb(shared	
 void	
 *	
 restrict	
 dst,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 shared	
 const	
 void	
 *	
 restrict	
 src,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 size_t	
 n);	

void	
 upc_sync(upc_handle_t	
 h);	
 	
 	
 	
 	
 	
 	
 	
 //	
 blocking	
 wait	

int	
 upc_sync_attempt(upc_handle_t	
 h);	
 //	
 non-­‐blocking	
 	

	

	

	

Important for performance:
•  Communication overlap with computation
•  Communication overlap with communication (pipelining)
•  Low overhead communication

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea!

chunk = all rows with same destination

pencil = 1 row

•  Three approaches:
• Chunk:

•  Wait for 2nd dim FFTs to finish
•  Minimize # messages

• Slab:
•  Wait for chunk of rows destined for 1

proc to finish
•  Overlap with computation

• Pencil:
•  Send each row as it completes
•  Maximize overlap and
•  Match natural layout

slab = all rows in a single plane with
same destination

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

•  UPC implementation
consistently outperform
MPI

•  Uses highly optimized local
FFT library on each node

•  UPC version avoids send/
receive synchronization

•  Lower overhead
•  Better overlap
•  Better bisection

bandwidth
•  Numbers are getting close

to HPC record on BG/P

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

UPC 1.3 Atomic Operations

• More efficient than using locks when applicable

• Hardware support for atomic operations are available, but

upc_lock();	

update();	

upc_unlock();	

atomic_update();	
 vs

Memory

CPU

GPU

NIC

Memory

Atomic_CAS on uint64_t

Atomic_Add on double

Only support limited operations
on a subset of data types. e.g.,

Atomic ops from different
processors may not be
atomic to each other

UPC + Remote Invocation for Scalable Meraculous
Application used in Genomics Grand Challenge

k-mers

New analysis filters errors using
probabilistic “Bloom Filter”

Graph algorithm scales to 15K cores on
NERSC’s Edison using DEGAS language

rather than shared memory hardware

contigs

Future work: Scaffolds using Scalable Alignment

Human: 44 hours to 20 secs
Wheat: “doesn’t run” to 32 secs

x
x

New fast I/O using SeqDB over HDF5

reads
Meraculous Assembly Pipeline

Dynamic Exascale Global Address Space project, joint work JGI, Early Career and Mantissa"DEGAS

DEGAS X-Stack project
•  Gives tera- to petabtye “shared”

memory
•  Combines with new math/data

algorithm for mapping to anchor
92% of wheat chromosome

Meraculous assembler is use in
production at the Joint Genome Institute
•  Wheat assembly is a “grand

challenge”
•  Hardest part is contig generation

(large in-memory hash table)

Beyond Put/Get: Event-Driven Execution

• DAG Scheduling in a distributed (partitioned) memory context
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

- Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

- Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

Uses a Berkeley extension to
UPC to remotely synchronize

28"

DEGAS Programming System: UPC++

DEGAS is a DOE-funded X-Stack project led by Lawrence
Berkeley National Lab (PI: Kathy Yelick), in collaboration
with LLNL, Rice Univ., UC Berkeley, and UT Austin.

A template-based programming
system enabling PGAS features
for C++ applications

DEGAS: Dynamic Exascale Global Address Space

Hierarchical Programming
Models

Communication-Avoiding
Libraries and Compilers

Adaptive Interoperable
Runtimes

Lightweight One-Sided
Communication

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview"30"

Making PGAS more Dynamic;
DAG Programming more Locality-Aware

DEGAS Overview"31"

DEGAS
Hierarchical locality control
(1) Remote put/get and atomics
(2) Remote invocation
(3) Distributed load balance

PGAS
- Asynchronous remote put/get for

random access
- Good locality control and scaling
 E.g. *p = … or … = a[i];

DAGs
- Asynchronous invocation
- Good for dynamic load balancing

and event-driven execution
finish { … async f (x)…}

UPC++ Generic Programming for PGAS

• Enable “modern” language features with PGAS
- Interoperable with MPI, OpenMP, CUDA,…

• UPC++ uses templates to express shared data
	
 shared_var<int>	
 s;	
 	
 //	
 shared	
 int	
 s	
 in	
 UPC	

	
 shared_array<int>	
 sa(8);	
 //	
 shared	
 int	
 sa[8]	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 in	
 UPC	

• UPC++ provides remote invocation
//	
 Remote	
 Procedure	
 Call	

	
 	
 	
 upcxx::async(place)(Function	
 f,	
 T1	
 arg1,	
 T2	
 arg2,…);	

upcxx::wait();	

	

//	
 Explicit	
 task	
 synchronization	

	
 	
 	
 upcxx::event	
 e;	
 	

	
 	
 	
 upcxx::async(place,	
 &e)(Function	
 f,	
 T1	
 arg1,	
 …);	

e.wait();	

	

GUPS Performance on MIC and BlueGene/Q

Difference between UPC++ and
UPC is about 0.2 µs (~220 cycles)

0.00

0.01

0.10

1.00

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

Giga Updates Per Second

UPC++
UPC

0.00

0.00

0.01

0.10

1.00

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

G
U

PS

Num. of Processes

Giga Updates Per Second

UPC++
UPC

MIC BlueGene/Q

One-Sided vs Two-Sided

•  A one-sided put/get message can be handled directly by a network
interface with RDMA support
- Avoid interrupting the CPU or storing data from CPU (preposts)

•  A two-sided messages needs to be matched with a receive to
identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 32 128 512 2048 8192 32768 131072 524288 2097152

B
an

dw
id

th
 (M

B
/s

)

Msg. size

Berkeley UPC

Cray UPC

Cray MPI

Bandwidths on Cray XE6 (Hopper)

0

2

4

6

8

10

12

UPC/MPI

Cray XE6 Application Performance

ep ft is lu mg sp bt Harmonic mean
-10%

0%

10%

20%

30%

40%

200%

250%

Pe
rc

en
ta

ge
 U

PC
 o

ve
r M

PI
 s

pe
ed

up

 64 procs
 256 procs

Summary

• UPC designed to be consistent with C
- Ability to use pointers and arrays interchangeably

• Designed for high performance
- Memory consistency explicit; Small implementation
- Transparent runtime

•  gcc version of UPC:
http://www.gccupc.org/

• Berkeley compiler
http://upc.lbl.gov

•  Language specification and other documents
https://code.google.com/p/upc-specification
https://upc-lang.org

• Vendor compilers: Cray, IBM, HP, SGI,…

UPC++ Asynchronous Remote Execution
Enables Scalable Data Fusion

Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNL"
38"DEGAS

PGAS before X-Stack
•  Asynchronous remote put/get
•  Good locality control and scaling
 E.g. *p = … or … = a[i];ç

New: Asynchronous invocation
•  Event-driven execution & load balancing
•  Hierarchical synchronization and places

finish { … async f (x)…}

(A) (B) (C)

Re
la

tiv
e

Pa
ra

lle
l

E!
ci

en
cy

 (%
)

Nm = 1.1e5
Nm = 2.2e5
Nm = 8.2e5

4 16 64 254 1024
NUMA Domains

95

90

85

80

75

100

16 64 254 1024
NUMA Domains (64 updates each)

UPC++
MPI-3 RMA

Ti
m

e
to

 so
lu

tio
n

(s
)

4e3

3e3

2e3

1e3

0
16 64 254 1024

NUMA Domains (64 updates each)

other

binning
upcxx::allocate
upcxx::copy

250

200

150

100

50

0

Ti
m

e
in

 c
m

::u
pd

at
e

(s
)

1000 km

Deep
mantle

Ocean
!oor

North

low-velocity
"ngers

low-velocity
conduits

Hotspot volcanic islands

(A) Model SEMum2 (Central Paci!c view)

(B) Preliminary whole-mantle model

Hawaii
Samoa

+2%

+1%

0%

-1%

-2%

sh
ea

r-
ve

lo
ci

ty
an

om
al

y
(d

ln
Vs

)

2891 kmLower mantle

Transition zone
Upper mantle

Paci!c
LLSVP

Core-mantle
boundary Line of section, viewed

from the core-mantle
boundary

•  Seismic modeling for energy applications
“fuses” observational data into simulation.

•  PGAS illusion of scalable shared memory to
construct matrix and measure data “fit”

•  New UPC++ dialect supports PGAS libraries;
future distributed data structure library

Cores: 48 192 768 3K 12K

Mini-GMG in UPC++ uses high level array library for
Productivity and Performance

Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNL"39"DEGAS

Before X-Stack
•  MPI’s explicit communication

inhibits productivity and
performance portability

•  C/C++ lack of multidimensional
arrays

•  “Fine-grained” like OpenMP -- insufficient locality
control

•  “Bulk” like MPI with 1-sided communication; perfect
match to scalability but no productivity advantage

•  “Array” version uses multi-dimensional array
constructs for productivity and ~MPI performance

•  Future runtime optimizations should close Array/
Bulk gap

“MG V-cycle”

New: UPC++ Multidimensional
Arrays
•  Provides productivity via high-level

array abstraction
•  Encapsulates performance critical

communication optimization in
runtime

Stride
N2

Stride
N

Stride N2

Each process exchanges data with 26 neighbors. UPC++
multidimensional arrays give an easy interface to users
and optimize strided data accesses automatically.

Used	
 miniGMG	
 benchmark	
 which	
 proxies	
 MG	

solver	
 in	
 combus8on	
 codesign	
 center	

0

5

10

15

20

25

1 8 64 512 4096

So
lv

e
Ti

m
e

(s
)

cores

miniGMG Weak Scaling on Edison (Cray
XC30)

MPI
Bulk
Fine-grained
Array

Bulk
performance
matches MPI

6 48 384 3K
25K

GASNet Asynchronous One-Sided Communication Aids in
Performance Portability and Scaling for NWChem

• Production chemistry code

- 60K downloads world wide

- 200-250 scientific application
publications per year

- Over 6M LoC, 25K files

40"

Performance Analysis and Optimizations of NWChem

• High-performance
computational chemistry code
✴ Flagship DOE chemistry software
✴ Developed at PNNL, LBL

• 60K downloads world wide

• 200-250 scientific application
publications per year

• Over 6M LoC, 25K files

• Internal tasking model, memory
management, and application
checkpoint/restart.

• Execution on 100K+ processors

2

NWChem

credit:nwchem-sw.org

Software Stack

global arrays

NWChem

armci

MPI + {portals, ofa, dmapp}

gasnet

global arrays

NWChem

armci

vector strided

heaps

NWChem was written in the early 1990s, has 25k files and 6m

lines of fortran. It contains its own internal tasking model, memory

management, and application checkpoint/restart.

2

500

1000

1500

2000

2500

3000

0 512 1024 1536 2048

W
al

l c
lo

ck
 ti

m
e

(S
ec

)

Cores

GA over GASNET

GA base version

G
o
o
d

•  New version on GASNet
for
–  Improved performance
–  Portability with other

PGAS

LULESH - https://codesign.llnl.gov/lulesh.php

Optimizations:
• Blocked vs. cyclic (default) array layout
• Use private pointer to the thread block in shared array

 double* my_x = (double*)(x + MYTHREAD * BSIZE)!

Task Library API (under development)

Dynamic load balancing in UPC (and UPC++) is an option

taskq_put(…); !
taskq_execute(…); !
int taskq_all_isEmpty(taskq_t *taskq);!
Etc.!
!

Can be used optionally within a node, across nodes, on a
certain subproblem, etc.

Hierarchical Work Stealing on Manycore Clusters

Min, Iancu,Yelick. PGAS 2011 !

Hierarchical Work Stealing on Manycore Clusters
Min, Iancu,Yelick. PGAS 2011 !

Single Program Multiple Data
(SPMD) is too restrictive

Hierarchical machines and Applictions

• Option 1: Dynamic parallelism creation (e.g., Chapel)
- Recursively divide until… you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

• Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++)
- Hardware threads can be grouped into units hierarchically
- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

0	
 3	
 1	
 2	

4	

5	

6	

7	

0	

1	

2	

3	

•  Hierarchical memory
model may be necessary
(what to expose vs hide)

•  Two approaches to
supporting the
hierarchical control

One-sided communication works everywhere

Support for one-sided communication (DMA) appears in:
•  Fast one-sided network communication (RDMA, Remote

DMA)
•  Move data to/from accelerators
•  Move data to/from I/O system (Flash, disks,..)
•  Movement of data in/out of local-store (scratchpad) memory

PGAS programming model

 *p1 = *p2 + 1;
 A[i] = B[i];

 upc_memput(A,B,64);

It is implemented using one-sided
communication: put/get

Vertical PGAS

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM or
NVRAM

• New type of wide pointer?
-  Points to slow (offchip memory)
- The type system could get unwieldy quickly

LBNL / UCB Collaborators
•  Dan Bonachea
•  Paul Hargrove
•  Amir Kamil
•  Khaled Ibrahim
•  Costin Iancu
•  Yili Zheng
•  Michael Driscoll
•  Evangelos Georganas
•  Penporn Koanantakool
•  Steven Hofmeyr
•  Leonid Oliker
•  Eric Roman
•  John Shalf

External collaborators (& their teams!)
•  Vivek Sarkar, Rice
•  John Mellor-Crummey, Rice
•  Krste Asanoviç UCB
•  Mattan Erez, UT Austin
•  Dan Quinlan, LLNL

•  Erich Strohmaier
•  Samuel Williams
•  Cy Chan
•  Didem Unat
•  James Demmel, UCB
•  Scott French
•  Edgar Solomonik
•  Eric Hoffman
•  Wibe de Jong

Thanks!

