A Performance Tuning Methodology: From the System
Down to the Hardware y Diving Deeper

Jackson Marusarz
Intel Corporation
ATPESC 2014

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice CI

*Other brands and names are the property of their respective owners

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Optimization: A Top -down Approach

H/W tuning: OS tuning:
BIOS (TB, HT) Page size

- Swap file
Memori / | RAM Disk
Leiel b Power settings
4 Disk I/O Network protocols
) 7 Y I
" Better application design

Parallelization

Fast algorithms / data bases
Programming language and RT libs
Performance libraries

Driver tuning

Tuning for Microarchitecture:
- Compiler settings/ Vectorization
. Memory/Cache usage

CPU pitfalls

Processor

Ei@ Software & Services Group, Developer Products Division

asiadxg walsAs ‘so -
(D

UoIvn /MS

Software Copyright © 2014, Intel Corporation. All rights reserved. ggi:;n;z%on
Products *Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Performance Tuning y Diving Dee
Perform System and Algorithm tuning first

(#) Elapsed Time: 26.530s

CPU Time: 262345
Instructions Retired: 121,888,182,832
CPI Rate: 0434
CPU Frequency Ratio: 1000 = .
Paused Time: 0 General Exploration Ho
Overhead Time: 0s <is Target el
Spin Time: 0s enl=TE e
@ Top Hotspots (®) Elapsed Time: 15.041s
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving CPU Time: 58.860s
Functien CPU Time Instructions Retired: 270,374,405,561
Atom::calc_force 17.014s CPIRate: 0.499
stduvector< double, std:allocator<double> > ioperator(] 47585 CPU Frequency Ratio: 1.000
round 36125 Paused Time: 0s
round 0603 Overhead Time: 0s
_printf_fp 0.091s e
Spin Time: 1.795s
() CPU Usage Histogram @ Top Hotspots

This histogram represents a breakdown of the Elapsed Time. It visuslizes what percentage of the wall time the specific number

R e 2t g ot oy P e g, This section lists the maost active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

355 : ¥ Functicn CPU Time

285 " gi Atomiicale_forceSompSparallel_for@116 HM.Elds
Eon g round 57155
3 & std:vector< double, stdzallocator<doubles >:operator(] 54225
& T __kmp_wait_yield_4 27665
2

I e __kmp_compare_and_stare32 22425

0 2 3 4 5

[o mmr Over
0

Simultaneously Utilized Logical CPUs

(A CPU Usage Histogram
This histogram represents a breakdown of the Elapsed Time, It visualizes what percentage of the wall time the specific number of CPUs were running simultaneously, CPU Usage may be
higher than the thread concurrency if a thread is executing code on a CPU while it is logically waiting.
155 T

125

Elapsed Time

[
Simultaneously Utilized Logical CPUs

This presentation uses screenshots from I

The concepts are widely applicable

Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved.

Products

Optimization

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Algorithm Tuning :intel’

A Few Words

g There IS no one-size fits all solution to algorithm tuning

a Algorithm changes are often incorporated into the fixes
for common issues

g Some considerations:
i Parallelizable and scalable over fastest serial implementations
I Compute a little more to save memory and communication
i Data locality -> vectorization

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
, Notice CIJ

*Other brands and names are the property of their respective owners

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Compiler Performance Considerations

Feature Flag

Optimization levels -00, 01, 02, 03
Vectorization -XHost, -xavx# a o [+
Multi -file inter -procedural optimization -ipo

Profile guided optimization (multi -step -prof-gen

build) -prof-use

Optimize for speed across the entire -fast

program | B g ahneo-
“*warning: -Aa YT 8 aadacCé RavYé@aai eoai oala
Automatic parallelization -parallel

A Compilers can provide considerable performance gains when used intelligently
A Consider compiling hot libraries and routines with more optimizations

A Always check documentation for accuracy effects

A This could be a day-long talk on its own

This is from the Intel compiler reference, but others are similar _J

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice CIJ

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

MPI Tuning :

A Find the MPI/OpenMP sweet spot
A Determine how much memory do your ranks/threads share
A Communication and synchronization overhead

B Intel® Trace Analyzer = &=

TR File Options Project Windows Help

Summary: vijacobic.single.stf

Total time: 0.056 sec. Resources: 4 processes, 1 node. Resource usage

Ratio

IS your his section represents a ratio of all MPI calls to the rest of your code in the application. IS your

lication o
v e k=g application
o CPU-bound?
: Top MPI functions

This section lists the most active MPI functions from all MPI calls in the application.

P _attrectuce NN 000459 sec (458 %)

wpi_isenc [0.00298 sec (2.91%)

Lar t MPI we_irecy 0.00294 sec (2.87 %)

UL EE wei_waitai [0.00176 sec (172 %]
consumers we_Finatize [£.000929 sec (0.806 %)

Where to start with analysis

For deep analysis of the MPI-bound application click "Continue >" To optimize node-level performance use the Intel® VTune™ Amplifier XE and
to open the tracefile View and leverage the Intel® Trace Analyzer - algorithmic level tuning with hotspots and threading efficiency analysis
functionality: - microarchitecture level tuning with general exploration and bandwidth analysis

- Performance Assistant - to identify possible performance problems
- Imbalance Diagram - for detailed imbalance overview
- Tagging/Filtering - for thorough customizable analysis

For more information about how to configure analysis for MPI applications,
see Intel® VTune™ Amplifier XE documentation:

Analyzing MP1 applications with Intel® VTune™ Amplifier XE

Show Summary Page when opening 2 tracefile

Intel® Trace Analyzer and Collector: http:// intel.ly/traceanalyzer -colle

[i/nteD' Software & Services Group, Developer Products Division

i) jon. All ri . Optimization
FSIOItware Copyright © 2014, Intel Corporation. All rights reserved
roducts L y

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://intel.ly/traceanalyzer-collector

Common Scaling Barriers :intel’

a Static Thread Scheduling
o Load Imbalance
o Lock Contention

(=) Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were running
simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the OS scheduler.
Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be higher than CPU usage
if threads are in the runnable state and not consuming CPU time.

4.55
g
" 3.65 E
E 27 & 3
A & g
E 1.85 %. S
= 0.9s | E’
i e

0s 0 8 9 10 11 12+

5II"|"|LI|tEmEUUS|‘_||' Running Threads

You paid for the nodes, so use them! J

[in/teb Software & Services Group, Developer Products Division

i i i 0 tlmlzatlon
§0’1:tware Copyright © 2014, Intel Corporation. All rights reserved. P
roducts

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Static Thread Scheduling

A Statically determining thread counts does not scale
A Core counts are trending higher
A Designs must consider future hardware
A Commonly found in legacy applications

A
NUM_THREADS = 4;
pthread t threads[NUM_THREADS];
int rc;
long t;
int chunk = limit/NUM_THREADS;
for (t=0;t< NUM_THREADS:+){
range *r= new range();
r - >begin = t*chunk;
r - >end = t*chunk+chunk -1;
rc = pthread create (&threads|t], NULL, FindPrimes , (void *)r);

—

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Static Thread Scheduling

A Statically determining thread counts does not scale
A Core counts are trending higher
A Designs must consider future hardware
A Commonly found in legacy applications

A
NUM_THREADS = 4;

for (t=0;t< NUM_THREADS:#){

rc = pthread create (&threads]t], NULL, FindPrimes , (void *)r);

}
A

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Static Thread Scheduling

A Statically determining thread counts does not scale
A Core counts are trending higher
A Designs must consider future hardware
A Commonly found in legacy applications

X

Create Threads Dynamically - NUM_THREADSget num_procs ();

for (t=0;t< NUM_THREADS:#){

rc = pthread create (&threads|t], NULL, FindPrimes , (void *)r);

—

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
*Other brands and names are the property of their respective owners. M

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Load Imbalance .

(lntel"

A E6éYéaRYeeod aaoai ecadéeaea oail avbdletRéenées aaei
A Workload distribution must be intelligent
A Threads should be kept busy
A Maximize hardware utilization

A
CQE-e 05 ‘ | Thread
FindPrimes (0 j &8 Running
FindPrimes (0 duk CPU Time
i:ﬁ::m:: :g — CPU Usage
FindPrimes (0 AT — duk CPU Time
- FindPrimes (0
@ FindPrimes (0
(£ |FindPrimes (0

start (0x534

CPU Usage
4 P

[i/nteD' Software & Services Group, Developer Products Division

ight © ion. Allri - Optimization
FSIOItware Copyright © 2014, Intel Corporation. All rights reserved
roducts L y

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Load Imbalance :intel’

A F6éYéanRYeeo aadaocoai édaeadeéea oail abvdletRenes aaei
A Workload distribution must be intelligent
A Threads should be kept busy

A Maximize hardware utilization

The key to balancing loads is to use a threading model that supports tasking
and work stealing

Some examples:
AOpenMP* dynamic scheduling
Alntel Threading® Building Blocks

AEedaeu Adece OenRi

Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved. !mizmn
Products *Other brands and names are the property of their respective owners. -

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Lock Contention

A A well balanced application can still suffer from shared -resource competition

Software

Products

A Synchronization is a necessary component
A Excessive overhead can destroy performance gains
A Numerous choices for where and how to synchronize

(= Elapsed Time: 17.943s

_ ald Lount: .
Wait Time: 103.741s

Wait Count: 251,343
CPU Time: 27.120s
Paused Time: 0s

(» Top Waiting Objects
This section lists the objects that spent the most time waiting in your application. Objects can wait on specific calls, such as sleep() or /O, or on
contended synchronizations. A significant amount of Wait time associated with a synchronization object reflects high contention for that object and,

thus, red

Wait Time Wait CoU

103.639s

TBB Scheduler 0.002s 22
Stream /proc/meminfo Oxecfb3332 0.000s 1
Stream /procfself/maps 0x898a1749 0.000s 1 x

= Thread Concurrency Histogram
This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were running
simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05 scheduler.
Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be higher than CPU usage
if threads are in the runnable state and not consuming CPU time.
10s

gi
w 8s -
£
E 6 a3
3
T as O
- g
o 25 E‘:
0s 5 6 7 8 9 10 ¥ 12+
[ok] Ideal over

W 0
Simultaneously Running Threads

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Lock Contention (intel

A A well balanced application can still suffer from shared -resource competition
A Synchronization is a necessary component
A Excessive overhead can destroy performance gains
A Numerous choices for where and how to synchronize

™ Concurrency Locks and Waits viewpoint (change) @

@ Analysis Target Analysis Type |B Collection Log| | M Summary | |+% Bottom-up| % Caller/callee |+% Top-down Tree| | B Tasks and Fra

Source Assemhlyl DD D H @

Sou.. Source Wait Time by Utilization WB ywait | spin

Line Count | Time
Dlidle @ Poor [JOk [Ideal [Over

34

36 % pthread mutex lock(&lock); 103.639 ([N 251294 0.180s

37 primes++;

'38 all primes.push back(i);

139 pthread mutex unlock(&lock);
a0}

|41

|42 bool IsPrime(int p) {

|43 for (int i = 2; i*i <= p; i++) {
| 44 if (p/i*1 == p) return false;
45 }

'46 return true;

47}

[in/teb Software & Services Group, Developer Products Division

§0’1:tware Copyright © 2014, Intel Corporation. All rights reserved. i
roducts

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Lock Contention

A A well balanced application can still suffer from shared -resource competition
A Synchronization is a necessary component
A Excessive overhead can destroy performance gains
A Numerous choices for where and how to synchronize

Some solutions to consider :
A Lock granularity
A Accessoverhead vs. wait time

A Using lock free or thread safe data structures

tob ::atomic< Int > primes;
tbb :: concurrent_vector <int > all primes ;

A Local storage and reductions

Software & Services Group, Developer Products Division

igh 2 ion. All i . Optimization
Software Copyright © 014, Intel Corporation. All rights reserved Y " T
Products *Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Microarchitectural Tuning (intel’

a |[ntel uArch specific tuning

a After high -level changes look at PMUs for more tuning

I Find tuning guide for your hardware at www.intel.com/vtune -
tuning -quides

a Every architecture has different events and metrics
a We try to keep things as consistent as possible
a Start with the Top-Down Methodology

I Integrated with the tuning guides

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
, Notice CIJ

*Other brands and names are the property of their respective owners

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/vtune-tuning-guides

Introduction to Performance Monitoring Unit - *
(inte
(PMU)

o Registers on Intel CPUs to count architectural events
I E.g. Instructions, Cache Misses, BranchMispredict

a Events can be counted or sampled
I Sampled events include Instruction Pointer

g Raw event counts are difficult to interpret
I Use atool like VTune or Perf with predefined metrics

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization

*Other brands and names are the property of their respective owners

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Background

Hardware Definitions
a Front-end:

Fetches the program code

Decodes them into low -level hardware operations -
micro-ops (uops)

uops are fed to the Back-end in a process called
allocation

Can allocate 4 uops per cycle

o Back-end:

Monitors when a fi € i datia operands are available
Executes the uop in an available execution unit

The completion of a fi & i eXécution is called
retirement, and is where results of the uop are
committed to the architectural state

Can retire 4 uops per cycle

g Pipeline Slot:

Software

Products

Represents the hardware resources needed to
process one uop

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Front-End

| 32K L1 Instruction Cache b= |Pre-decode | Instr Queue
Decoders

\ Branch Predictor \
[1.5K uOP Cache |
™ - f\
Load Store Reorder —
Buffers || Buffers [| Buffers 3‘ Allocatgfﬁenamelnetire
In-order

out-of-order

[Scheduler
[PortO | [Port1 | [Port5 | [Port2 | [Port3 | [Port4
ALU | ALU | ALU Load || Load | STD

V-Shuffld \/-Shufflg 256- FP Shuf

Fdiv 256- FP Add | [256- FP Bool
256- EP MUL 256- FP Blend
256- FP Blend l | Memory Control |
‘ 48 bytesicycle
Line Fill
==| 256K L2 Cache (Unified) Butfers
32K L1 Data Cache

Back-End

V-Mul VAdd | [MP StAddr || StAddr | l

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Background

Hardware Definitions Front-End
a Front-end: | 32K L1 Instruction Cache b»|Pre-decode p=| Instr Queue|-.[EDecoders
A B h Predi
i Fetches the program code | e — | T5Ku0P Cache |]
. . . LE [| store [] Reorder — A
i Decodes them into low -level hardware operations - auts || avs || Guws B | Allocatd/Mename/Retire
micro-ops (uwops) |- e =t
, . [Scheduler
I uops are fed to the Back-end in a process called [Port0 | |Pc;rt1 | Ipotrts [[Portz | [Port3 | [Port4
allocation ALU | ALU | ALU Toad |[losd | [STD
v V-Mul VA | [JMP | StAddr | [StAddr |
I Can allocate 4 uops per cycle VShuffid | V-Shuffie | 256-FP Shuf
Fdiv 256- FP Add ggg- EE Eloold *
- b N = en
o Back-end: . 2255%6_ Fﬁjpé‘:eﬁj | | I Memory Control |
I Monitors when a i & i data operands are available ‘ -
I Executes the uop in an available execution unit | 256K L2 Cache (Unified) Butiers
. 32K L1 Data Cache

i The completion of a fi & i eXdcution is called
retirement, and is where results of the uop are
committed to the architectural state

i Can retire 4 uops per cycle
g Pipeline Slot:

I Represents the hardware resources needed to
process one uop

Back-End

Oaadjl aael a# éeéaalé CAAAa Aél ac AGHE

[in/teb Software & Services Group, Developer Products Division

§0’1:tware Copyright © 2014, Intel Corporation. All rights reserved.
roducts

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

The Top-Down Characterization (intel’

a Each pipeline slot on each cycle is classified into 1 of 4
categories.

a For each slot on each cycle:

Top Level breakdown

BackEnd
stall?

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
N lll - .

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

The Top-Down Characterization (intel’

A Determines the hardware bottleneck in an application

A Sumto 1.0

Axéeao a4ai COaiRaéedyvYaa ea oedYe Oai
A This is the core of the new Top -Down characterization

A Each category is further broken down depending on available
events
A Top-Down Characterization White Paper

A http ://software.intel.com/en_-us/articles/how -to-tune-applications -using-a-top -down -characterization -of-
microarchitectural -issues

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
*Other brands and names are the property of their respective owners. .NQHEEE__

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

Tuning Guide Recommendations (intel’

Expected Range of Pipeline Slots in this Category, for a
Hotspot in a Well -tuned:
Client/ Server/ Database/ High Performance
Category Desktop Distributed Computing (HPC)
application application application
Retiring 20-50% 10-30% 30-70%
e £nd 20-40% 20-60% 20-40%
Bound
oL -End 5-10% 10-25% 5-10%
Bound
= 5-10% 5-10% 1-5%
Speculation

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
N l|| - s

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Efficiency Method: % Retiring Pipeline Slots (i’ntel*)

a\Why: Helps you understand how efficiently your app is using
the processors

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
N lll - .

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

