
MPI for Scalable Computing

Yanfei Guo Ken Raffenetti Rajeev Thakur
Argonne National Laboratory

https://anl.box.com/v/2019-ATPESC-MPI

https://anl.box.com/v/2019-ATPESC-MPI

The MPI Part of ATPESC

§ We assume everyone already has some MPI experience

§ We will focus more on understanding MPI concepts than on
coding details

§ Emphasis will be on issues affecting scalability and
performance

§ There will be code walkthroughs and hands-on exercises

2

Outline

§ Morning
– Introduction to MPI and this tutorial

– Performance issues in MPI programs

– Avoiding unnecessary
synchronization

– Minimizing data motion
• using MPI datatypes

– Topics in collective communication

– One-sided communication (or
remote memory access)

– Hands-on exercises

§ Afternoon
– One-sided communication contd.

– Hybrid programming

– MPI + threads/shared-
memory/accelerators

– Process topologies and
neighborhood collectives

– Hands-on exercises

§ After dinner

– Hands-on exercises contd.

3

What is MPI?

§ MPI is a message-passing library interface standard.
– Specification, not implementation
– Library, not a language
– Classical message-passing programming model

§ MPI-1 was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.

– 2-year intensive process
§ Implementations appeared quickly and now MPI is taken for

granted as vendor-supported software on any parallel
machine.

§ Free, portable implementations exist for clusters and other
environments (MPICH, Open MPI)

4

5

Timeline of the MPI Standard
§ MPI-1 (1994), presented at SC’93

– Basic point-to-point communication, collectives, datatypes, etc

§ MPI-2 (1997)
– Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes,

thread support, C++ bindings, …

§ ---- Unchanged for 10 years ----

§ MPI-2.1 (2008)
– Minor clarifications and bug fixes to MPI-2

§ MPI-2.2 (2009)
– Small updates and additions to MPI 2.1

§ MPI-3.0 (2012)
– Major new features and additions to MPI (nonblocking collectives, neighborhood

collectives, improved RMA, tools interface, Fortran 2008 bindings, etc.)

§ MPI-3.1 (2015)
– Small updates to MPI 3.0

Important considerations while using MPI

§ All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs

7

Basic MPI Communication

OR

MPI_Recv

MPI_Isend

MPI_Send

MPI_Irecv

MPI_Wait MPI_Wait

8

Web Pointers

§ MPI Standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations:
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

§ Several MPI tutorials can be found on the web

9

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
http://www.open-mpi.org/

Tutorial Books on MPI (November 2014)

Basic MPI Advanced MPI, including MPI-2 and MPI-3

10

Costs of Unintended Synchronization

11

Unexpected Hot Spots

§ Even simple operations can give surprising performance
behavior.

§ Examples arise even in common grid exchange patterns

§ Message passing illustrates problems present even in shared
memory

– Blocking operations may cause unavoidable stalls

12

Mesh Exchange

§ Exchange data on a mesh

13

Sample Code

§ Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&

nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)

Enddo

14

Deadlocks!

§ All of the sends may block, waiting for a matching receive (will
for large enough messages)

§ The variation of
if (has down nbr) then

Call MPI_Send(… down …)
endif
if (has up nbr) then

Call MPI_Recv(… up …)
endif
…
sequentializes (all except the bottom process blocks)

15

Sequentialization

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

16

Fix 1: Use Irecv

§ Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&

comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)

Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

§ Does not perform well in practice. Why?

17

Understanding the Behavior: Timing Model

§ Sends interleave

§ Sends block (data larger than buffering will allow)

§ Sends control timing

§ Receives do not interfere with Sends

§ Exchange can be done in 4 steps (down, right, up, left)

18

Mesh Exchange - Step 1

§ Exchange data on a mesh

19

Mesh Exchange - Step 2

§ Exchange data on a mesh

20

Mesh Exchange - Step 3

§ Exchange data on a mesh

21

Mesh Exchange - Step 4

§ Exchange data on a mesh

22

Mesh Exchange - Step 5

§ Exchange data on a mesh

23

Mesh Exchange - Step 6

§ Exchange data on a mesh

24

Timeline

• Note that process 1 finishes last, as predicted

25

Distribution of Sends

26

Why Six Steps?

§ Ordering of Sends introduces delays when there is contention
at the receiver

§ Takes roughly twice as long as it should

§ Bandwidth is being wasted

§ Same thing would happen if using memcpy and shared
memory

27

Fix 2: Use Isend and Irecv

§ Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

28

Mesh Exchange - Steps 1-4

§ Four interleaved steps

29

Timeline with Isend-Irecv

Note processes 5 and 6 are the only interior processes; these
perform more communication than the other processes

30

Lesson: Defer Synchronization

§ Send-receive accomplishes two things:
– Data transfer

– Synchronization

§ In many cases, there is more synchronization than required

§ Consider the use of nonblocking operations and MPI_Waitall
to defer synchronization

– Effectiveness depends on how data is moved by the MPI
implementation

– E.g., If large messages are moved by blocking RMA operations “under
the covers,” the implementation can’t adapt to contention at the
target processes, and you may see no benefit.

– This is more likely with larger messages

31

Datatypes

32

Introduction to Datatypes in MPI

§ Datatypes allow users to serialize arbitrary data layouts into a
message stream

– Networks provide serial channels

– Same for block devices and I/O

§ Several constructors allow arbitrary layouts
– Recursive specification possible

– Declarative specification of data-layout
• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple

33

Derived Datatype Example

34

MPI’s Intrinsic Datatypes

§ Why intrinsic types?
– Heterogeneity, nice to send a Boolean from C to Fortran

– Conversion rules are complex, not discussed here

– Length matches to language types
• No sizeof(int) mess

§ Users should generally use intrinsic types as basic types for
communication and type construction!

– MPI_BYTE should only be used for data that are raw bytes

§ MPI-2.2 added some missing C types
– E.g., unsigned long long

35

MPI_Type_contiguous

§ Contiguous array of oldtype

§ Should not be used as last type (can be replaced by count)

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)

36

MPI_Type_vector

§ Specify strided blocks of data of oldtype

§ Very useful for Cartesian arrays

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

37

MPI_Type_create_hvector

§ Create non-unit strided vectors

§ Useful for composition, e.g., vector of structs

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

38

MPI_Type_create_indexed_block

§ Like MPI_Type_indexed but blocklength is the same

– blen=2

– displs={0,5,9,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

39

MPI_Type_indexed

§ Pulling irregular subsets of data from a single array (cf. vector
collectives)

– Dynamic codes with index lists, expensive though!

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

40

MPI_Type_create_hindexed

§ Indexed with non-unit displacements, e.g., pulling types out
of different arrays

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths,
MPI_Aint *arr_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

41

MPI_Type_create_struct

§ Most general constructor, allows different types and arbitrary
arrays (also most costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)

42

MPI_Type_create_subarray

§ Specify subarray of n-dimensional array (sizes) by start (starts)
and size (subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

43

MPI_Type_create_darray

§ Create distributed array, supports block, cyclic and no
distribution for each dimension

– Very useful for I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

44

Commit, Free, and Dup

§ Types must be committed before use
– Only the ones that are used explicitly in a call!

– MPI_Type_commit may perform time-consuming optimizations (but
few implementations currently exploit this feature)

§ MPI_Type_free
– Free MPI resources of datatypes

– Does not affect types built from it

§ MPI_Type_dup
– Duplicates a type

– Library abstraction (composability)

45

Datatype Performance in Practice

§ Datatypes can provide performance benefits, particularly for
certain regular patterns

– However, many implementations do not optimize datatype operations

– If performance is critical, you will need to test
• Even manual packing/unpacking can be slow if not properly optimized by

the compiler – make sure to check optimization reports or if the compiler
doesn’t provide good reports, inspect the assembly code

§ For parallel I/O, datatypes do provide large performance
benefits in many cases

46

Example Code: Regular Mesh Algorithms

§ Many scientific applications involve the solution of partial
differential equations (PDEs)

§ Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations

– Finite difference, finite elements, finite volume

§ The exact form of the differential equations depends on
the particular method

– From the point of view of parallel programming for these
algorithms, the operations are the same

§ Five-point stencil is a popular approximation solution

47

https://anl.app.box.com/v/2019-ATPESC-MPI
On ALCF: /projects/ATPESC2019/MPI_tutorial

https://anl.app.box.com/v/2019-ATPESC-MPI

The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at
each point involves the four
neighbors

§ The red “plus” is called the
method’s stencil

§ Good numerical algorithms form a
matrix equation Au=f; solving this
requires computing Bv, where B is
a matrix derived from A. These
evaluations involve computations
with the neighbors on the mesh.

48

The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at
each point involves the four
neighbors

§ The red “plus” is called the
method’s stencil

§ Good numerical algorithms form a
matrix equation Au=f; solving this
requires computing Bv, where B is
a matrix derived from A. These
evaluations involve computations
with the neighbors on the mesh.

§ Decompose mesh into equal sized
(work) pieces

49

Step 1: Domain Decompositioin

50

Parameters for domain decomposition:
N = Size of the edge of the global problem domain (assuming square)
PX, PY = Number of processes in X and Y dimension
N % PX == 0, N % PY == 0

Where am I? (Global offset)
Who (which ranks) are my neigbhors?
Use MPI_PROC_NULL for boundary

Necessary Data Transfers

51

Step 2: The Local Data Structure

§ Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

§ Each process also have send/recv buffers for each neighbor

bx

by

52

Check the alloc_bufs function to see how buffers are allocated

Calculation

53
Check the update_grid function to see how it is done

§ Two buffers alternating
– aold for current value

– anew for newly value in this iteration (will become aold in next iter)

Step 3: Data Transfers with MPI_Isend/MPI_Irecv

§ Provide access to remote data through a halo exchange
(5 point stencil)

54

Note the differences in send/recv buffers, the requirement of data packing.

Step 3: Data Transfers with MPI_Isend/MPI_Irecv
(cont’d)
§ Data exchange with neighbors using corresponding

send/recv buffers

§ How to complete the communication? (MPI_Wait?
MPI_Waitall?)

§ Does order matters?

55

Step 4: Calculating Total Heat

§ Using MPI_Allreduce to calculate total heat

56

Exercise: Stencil with Derived Datatypes (1)

§ In the basic version of the stencil code
– Used nonblocking communication !

– Used manual packing/unpacking of data "

§ Let’s try to use derived datatypes
– Specify the locations of the data instead of manually packing/unpacking

57

bx

by

What datatype do
we need here?

What datatype do
we need here?

Exercise: Stencil with Derived Datatypes (2)

§ Nonblocking sends and receives

§ Data location specified by MPI datatypes

§ Manual packing of data no longer required

§ Start from nonblocking_p2p/stencil.c

§ Solution in derived_datatype/stencil.c

58

Collectives and Nonblocking Collectives

59

Introduction to Collective Operations in MPI

§ Collective operations are called by all processes in a
communicator.

§ MPI_BCAST distributes data from one process (the root) to all
others in a communicator.

§ MPI_REDUCE combines data from all processes in the
communicator and returns it to one process.

§ In many numerical algorithms, SEND/RECV can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

60

MPI Collective Communication

§ Communication and computation is coordinated among a
group of processes in a communicator

§ Tags are not used; different communicators deliver similar
functionality

§ Non-blocking collective operations in MPI-3

§ Three classes of operations: synchronization, data movement,
collective computation

61

Synchronization

§ MPI_BARRIER(comm)

– Blocks until all processes in the group of communicator comm call it
– A process cannot get out of the barrier until all other processes have

reached barrier

§ Note that a barrier is rarely, if ever, necessary in an MPI program
§ Adding barriers “just to be sure” is a bad practice and causes unnecessary

synchronization. Remove unnecessary barriers from your code.

§ One legitimate use of a barrier is before the first call to MPI_Wtime to
start a timing measurement. This causes each process to start at
approximately the same time.

§ Avoid using barriers other than for this.

62

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

63

More Collective Data Movement

A
B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

64

Collective Computation

P0
P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

65

MPI Collective Routines

§ Many Routines, including: MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV,
MPI_BCAST, MPI_EXSCAN, MPI_GATHER, MPI_GATHERV,
MPI_REDUCE, MPI_REDUCE_SCATTER, MPI_SCAN,
MPI_SCATTER, MPI_SCATTERV

§ “All” versions deliver results to all participating processes

§ “V” versions (stands for vector) allow the chunks to have different
sizes

§ “W” versions for ALLTOALL allow the chunks to have different sizes
in bytes, rather than units of datatypes

§ MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCE_SCATTER,

MPI_REDUCE_SCATTER_BLOCK, MPI_EXSCAN, and MPI_SCAN
take both built-in and user-defined combiner functions

66

MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC
§ MPI_REPLACE,

MPI_NO_OP

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location
Replace and no operation (RMA)

67

Defining your own Collective Operations

§ Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The user function should perform:
inoutvec[i] = invec[i] op inoutvec[i];
for i from 0 to len-1

§ The user function can be non-commutative, but must be
associative

68

Nonblocking Collectives

69

Nonblocking Collective Communication

§ Nonblocking communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized routines

§ Nonblocking collective communication
– Combines both advantages

– System noise/imbalance resiliency

– Semantic advantages

70

Nonblocking Communication

§ Semantics are simple:
– Function returns no matter what

– No progress guarantee!

§ E.g., MPI_Isend(<send-args>, MPI_Request *req);

§ Nonblocking tests:
– Test, Testany, Testall, Testsome

§ Blocking wait:
– Wait, Waitany, Waitall, Waitsome

71

Nonblocking Collective Communication

§ Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

§ Semantics:
– Function returns no matter what
– No guaranteed progress (quality of implementation)
– Usual completion calls (wait, test) + mixing
– Out-of order completion

§ Restrictions:
– No tags, in-order matching
– Send and vector buffers may not be touched during operation
– MPI_Cancel not supported
– No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
72

Nonblocking Collective Communication

§ Semantic advantages:
– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization
• Noise resiliency!

– Allow overlapping communicators
• See also neighborhood collectives

– Multiple outstanding operations at any time
• Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
73

A Non-Blocking Barrier?

§ What can that be good for? Well, quite a bit!

§ Semantics:
– MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses:
– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but
synchronize collectively!

74

Nonblocking And Collective Summary

§ Nonblocking communication
– Overlap and relax synchronization

§ Collective communication
– Specialized pre-optimized routines

– Performance portability

– Hopefully transparent performance

§ They can be composed
– E.g., software pipelining

75

Exercise: Stencil using Alltoallv

§ In the basic version of the stencil code
– Used nonblocking send/receive for each direction

§ Let’s try to use single alltoallv collective call
§ Start from nonblocking_p2p/stencil.c

§ Solution available in blocking_coll/stencil_alltoallv.c

76

count = bx

count = by

count = 0

Exercise: Stencil with Derived Datatypes and
Collectives
§ Simplify collective version of stencil

– Alltoallv: defines a set of counts and displacements with the same
datatype (see blocking_coll/stencil_alltoallv.c)

– Alltoallw: defines a set of counts, displacements, and datatypes

§ Data location specified by MPI datatypes
§ Manual packing of data no longer required

§ Start from blocking_coll/stencil_alltoallv.c

§ Solution in derived_datatype/stencil_alltoallw.c

77

Advanced Topics: One-sided Communication

https://anl.box.com/v/2019-ATPESC-MPI

https://anl.box.com/v/2019-ATPESC-MPI

One-sided Communication

§ The basic idea of one-sided communication models is to
decouple data movement with process synchronization

– Should be able to move data without requiring that the remote
process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Global
Address

Space
Private
Memory

Private
Memory

Private
Memory

Private
Memory

79

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

80

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

81

Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending

process is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

82

What we need to know in MPI RMA

§ How to create remote accessible memory?

§ Reading, Writing and Updating remote memory

§ Data Synchronization

§ Memory Model

83

Creating Public Memory

§ Any memory used by a process is, by default, only locally
accessible

– X = malloc(100);

§ Once the memory is allocated, the user has to make an
explicit MPI call to declare a memory region as remotely
accessible

– MPI terminology for remotely accessible memory is a “window”

– A group of processes collectively create a “window”

§ Once a memory region is declared as remotely accessible, all
processes in the window can read/write data to this memory
without explicitly synchronizing with the target process

84

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window

Window creation models

§ Four models exist
– MPI_WIN_ALLOCATE

• You want to create a buffer and directly make it remotely
accessible

– MPI_WIN_CREATE

• You already have an allocated buffer that you would like to
make remotely accessible

– MPI_WIN_CREATE_DYNAMIC

• You don’t have a buffer yet, but will have one in the future

• You may want to dynamically add/remove buffers to/from
the window

– MPI_WIN_ALLOCATE_SHARED

• You want multiple processes on the same node share a buffer

85

flexibility

performance

MPI_WIN_ALLOCATE

§ Create a remotely accessible memory region in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win - window (handle)

86

MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

87

MPI_WIN_CREATE

§ Expose a region of memory in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– base - pointer to local data to expose
– size - size of local data in bytes (nonnegative integer)
– disp_unit - local unit size for displacements, in bytes (positive integer)
– info - info argument (handle)
– comm - communicator (handle)
– win - window (handle)

88

MPI_Win_create(void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
MPI_Free_mem(a);
MPI_Finalize(); return 0;

}

89

MPI_WIN_CREATE_DYNAMIC

§ Create an RMA window, to which data can later be attached
– Only data exposed in a window can be accessed with RMA ops

§ Initially “empty”
– Application can dynamically attach/detach memory to this window by

calling MPI_Win_attach/detach
– Application can access data on this window only after a memory

region has been attached

§ Window origin is MPI_BOTTOM
– Displacements are segment addresses relative to MPI_BOTTOM
– Must tell others the displacement after calling attach

90

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,
MPI_Win *win)

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a); free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

91

Data movement

§ MPI provides ability to read, write and atomically modify data
in remotely accessible memory regions

– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)

92

Data movement: Put

§ Move data from origin, to target

§ Separate data description triples for origin and target

93

Origin

MPI_Put(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

Data movement: Get

§ Move data to origin, from target

§ Separate data description triples for origin and target

94

Origin

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely

Accessible

Memory

Private

Memory

Atomic Data Aggregation: Accumulate

§ Atomic update operation, similar to a put
– Reduces origin and target data into target buffer using op argument as combiner

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

– Predefined ops only, no user-defined operations

§ Different data layouts between
target/origin OK

– Basic type elements must match

§ Op = MPI_REPLACE
– Implements f(a,b)=b

– Atomic PUT

95

MPI_Accumulate(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Origin Target

Remotely

Accessible

Memory

Private

Memory

+=

Atomic Data Aggregation: Get Accumulate

§ Atomic read-modify-write
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only

§ Result stored in target buffer
§ Original data stored in result buf
§ Different data layouts between

target/origin OK
– Basic type elements must match

§ Atomic get with MPI_NO_OP
§ Atomic swap with MPI_REPLACE

96

MPI_Get_accumulate(const void *origin_addr,
int origin_count, MPI_Datatype origin_dtype,
void *result_addr,int result_count,
MPI_Datatype result_dtype, int target_rank,
MPI_Aint target_disp,int target_count,
MPI_Datatype target_dype, MPI_Op op, MPI_Win win)

+=

Origin Target

Remotely

Accessible

Memory

Private

Memory

Atomic Data Aggregation: CAS and FOP

§ FOP: Simpler version of MPI_Get_accumulate
– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

§ CAS: Atomic swap if target value is equal to compare value

97

MPI_Compare_and_swap(const void *origin_addr,
const void *compare_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)

Ordering of Operations in MPI RMA

§ No guaranteed ordering for Put/Get operations
§ Result of concurrent Puts to the same location undefined
§ Result of Get concurrent Put/Accumulate undefined

– Can be garbage in both cases

§ Result of concurrent accumulate operations to the same location
are defined according to the order in which the occurred

– Atomic put: Accumulate with op = MPI_REPLACE
– Atomic get: Get_accumulate with op = MPI_NO_OP

§ Accumulate operations from a given process are ordered by default
– User can tell the MPI implementation that (s)he does not require ordering

as optimization hint
– You can ask for only the needed orderings: RAW (read-after-write), WAR,

RAR, or WAW

98

Examples with operation ordering

99

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2
x += 1y=2

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and
Put/Accumulates: undefined

3. Concurrent Accumulate operations
to the same location : ordering is
guaranteed

RMA Synchronization Models

§ RMA data access model
– When is a process allowed to read/write remotely accessible memory?
– When is data written by process X is available for process Y to read?
– RMA synchronization models define these semantics

§ Three synchronization models provided by MPI:
– Fence (active target)
– Post-start-complete-wait (generalized active target; rarely used now)
– Lock/Unlock (passive target)

§ Data accesses occur within “epochs”
– Access epochs: contain a set of operations issued by an origin process
– Exposure epochs: enable remote processes to update a target’s window
– Epochs define ordering and completion semantics
– Synchronization models provide mechanisms for establishing epochs

• E.g., starting, ending, and synchronizing epochs

100

Fence: Active Target Synchronization

§ Collective synchronization model

§ Starts and ends access and exposure
epochs on all processes in the window

§ All processes in group of “win” do an
MPI_WIN_FENCE to open an epoch

§ Everyone can issue PUT/GET operations
to read/write data

§ Everyone does an MPI_WIN_FENCE to
close the epoch

§ All operations complete at the second
fence synchronization

101

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2

Implementing Stencil Computation with RMA Fence

102

Origin buffers

Target buffers

RMA window

PUT

PUT

PUT

PU
T

Exercise: Stencil with RMA Fence

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with PUT instead of send/recv

§ Start from derived_datatype/stencil.c

§ Solution available in rma/stencil_fence_put.c

103

Exercise: Stencil with RMA Fence (GET model)

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with GET instead of send/recv

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_fence_get.c

104

Lock/Unlock: Passive Target Synchronization

§ Passive mode: One-sided, asynchronous communication

– Target does not participate in communication operation

§ Shared memory-like model

106

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait

Passive Target Synchronization

§ Lock/Unlock: Begin/end passive mode epoch
– Target process does not make a corresponding MPI call
– Can initiate multiple passive target epochs to different processes
– Concurrent epochs to same process not allowed (affects threads)

§ Lock type
– SHARED: Other processes using shared can access concurrently
– EXCLUSIVE: No other processes can access concurrently

§ Flush: Remotely complete RMA operations to the target process
– After completion, data can be read by target process or a different process

§ Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

107

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

Advanced Passive Target Synchronization

§ Lock_all: Shared lock, passive target epoch to all other
processes

– Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

§ Flush_all – remotely complete RMA operations to all
processes

§ Flush_local_all – locally complete RMA operations to all
processes

108

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

NWChem [1]

§ High performance computational chemistry
application suite

§ Quantum level simulation of molecular
systems

– Very expensive in computation and data
movement, so is used for small systems

– Larger systems use molecular level simulations
§ Composed of many simulation capabilities

– Molecular Electronic Structure
– Quantum Mechanics/Molecular Mechanics
– Pseudo potential Plane-Wave Electronic Structure
– Molecular Dynamics

§ Very large code base
– 4M LOC; Total investment of ~200M $ to date

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong,
"NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations" Comput. Phys. Commun. 181,
1477 (2010)

Water (H2O)21

Carbon C20

109

NWChem Communication Runtime

ARMCI : Communication interface for RMA[3]

Global Arrays [2]

[2] http://hpc.pnl.gov/globalarrays
[3] http://hpc.pnl.gov/armci

ARMCI native ports

IB DMMAP …

MPI RMA

ARMCI-MPI

Abstractions for distributed arrays
Global Address Space

Physically distributed to different processes

Hidden from user

Applications

Irregularly access large amount of remote
memory regions

110

Get-Compute-Update

§ Typical Get-Compute-Update mode in GA programming

Perform DGEMM in local buffer

for i in I blocks:
for j in J blocks:

for k in K blocks:
GET block a from A
GET block b from B
c += a * b /*computing*/

end do
ACC block c to C
NXTASK

end do
end do

Pseudo code

ACCUMULATE
block c

GET
block b

GET
block a

All of the blocks are non-contiguous data

Mock figure showing 2D DGEMM with block-sparse

computations. In reality, NWChem uses 6D tensors.

111

Which synchronization mode should I use, when?

§ RMA communication often has low overheads versus send/recv
– Two-sided: Matching, queuing, buffering, unexpected receives, etc…
– One-sided: No matching, no buffering, always ready to receive (but must

separately sync the communication)
– Direct use of RDMA provided by high-speed interconnects (e.g. InfiniBand)

• Good two-sided implementations will also use RDMA, but must first match messages

§ Active mode: bulk synchronization
– E.g. ghost cell exchange

§ Passive mode: asynchronous data movement
– Useful when dataset is large, requiring memory of multiple nodes
– Also, when data access and synchronization pattern is dynamic
– Common use case: distributed, shared arrays

§ Passive target locking mode
– Lock/unlock – Useful when exclusive epochs are needed
– Lock_all/unlock_all – Useful when only shared epochs are needed

112

Exercise: Stencil with RMA Lock_all/Unlock_all (PUT
model)
§ In the fence and PSCW versions of the stencil code, RMA

synchronization involves the target processes

§ Let’s try to use RMA Lock_all/Flush_all/Unlock_all
– Only the origin processes call RMA synchronization

– Still need Barrier for process synchronization (e.g., ensure neighbors
have completed data update to my local window)

– Need Win_sync for memory synchronization

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_lock_put.c

116

Advanced Topics: Hybrid Programming with
Threads, Shared Memory, and Accelerators

https://anl.box.com/v/2019-ATPESC-MPI

https://anl.box.com/v/2019-ATPESC-MPI

Hybrid MPI + X : Most Popular Forms

118

GPU

Memory

CPU

Memory

Network
Card

MPI + X

CPU

Memory

Network
Card

CPU

Memory

Network
Card

CPU

Memory

Network
Card

CoreCore

MPI + 0 MPI + Threads MPI +
Shared Memory

MPI + ACC

CoreCore CoreCore

P0 P1P0 P1

MPI Process

T0 T1

MPI + Threads

119

Why Hybrid MPI+X? Towards Strong Scaling (1/3)

§ Strong scaling applications is
increasing in importance

– Hardware limitations: not all
resources scale at the same
rate as cores (e.g., memory
capacity, network resources)

– Desire to solve the same
problem faster on a bigger
machine

• Nek5000, HACC, LAMMPS

120

Evolution of the memory capacity per core in the
Top500 list (Peter Kogge. PIM & memory: The need for a
revolution in architecture.)

Sunway
TaihuLight

§ Strong scaling pure MPI applications is getting harder
– On-node communication is costly compared to load/stores

– O(Px) communication patterns (e.g., All-to-all) costly

Why Hybrid MPI+X? Towards Strong Scaling (2/3)

121

§ MPI+X benefits (X= {threads,MPI shared-memory, etc.})
– Less memory hungry (MPI runtime consumption, O(P) data

structures, etc.)

– Load/stores to access memory instead of message passing

– P is reduced by constant C (#cores/process) for O(Px)
communication patterns

§ Example 1: the Nek5000 team is working at the strong
scaling limit

Nek5000

Why Hybrid MPI+X? Towards Strong Scaling (3/3)

§ Example 2: Quantum Monte Carlo
Simulation (QCMPACK)

– Size of the physical system to
simulate is bound by memory
capacity [1]

– Memory space dominated by large
interpolation tables (typically several
GB of storage)

– Threads are used to share those
tables

– Memory for communication buffers
must be kept low to be allow
simulation of larger and highly
detailed simulations.

122

Shared large B-spline table

W W W W W W

Thread 0 Thread 1 Thread 2

MPI Process

Core Core Core

Communicate
Walker

information

W
Walker data

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.

Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

MPI Process MPI Process

MPI + ThreadsMPI only

Threads

Multi- or Many-
core Nodes

123

MPI + Threads: How To? (1/3)

§ MPI describes parallelism between
processes (with separate address spaces)

§ Thread parallelism provides a shared-
memory model within a process

§ OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-

level parallelism. Threads are created and
managed by the compiler, based on user
directives.

– Pthreads provide more complex and dynamic
approaches. Threads are created and managed
explicitly by the user.

124

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI + Threads: How To? (2/3)

§ MPI_THREAD_SINGLE

– No additional threads

§ MPI_THREAD_FUNNELED

– Master thread communication only

§ MPI_THREAD_SERIALIZED

– Threaded communication serialized

§ MPI_THREAD_MULTIPLE

– No restrictions

•Restriction

•Low
Thread-

Safety Costs

•Flexibility

•High
Thread-

Safety Costs

125

MPI + Threads

Interoperability

Interoperation or thread levels:

MPI + Threads: How To? (3/3)

MPI’s Four Levels of Thread Safety

§ MPI defines four levels of thread safety -- these are
commitments the application makes to the MPI

§ Thread levels are in increasing order
– If an application works in FUNNELED mode, it can work in SERIALIZED

§ MPI defines an alternative to MPI_Init
– MPI_Init_thread(int argc, char **argv, int requested, int *provided):

Application specifies level it needs; MPI implementation returns level it
supports

126

MPI_THREAD_SINGLE

§ There are no additional user threads in the system
– E.g., there are no OpenMP parallel regions

int buf[100];
int main(int argc, char ** argv)
{

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}

127

MPI Process

COMP.

COMP.

MPI COMM.

MPI_THREAD_FUNNELED

§ All MPI calls are made by the master thread
– Outside the OpenMP parallel regions
– In OpenMP master regions

int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv,
MPI_THREAD_FUNNELED, &provided);

if (provided < MPI_THREAD_FUNNELED)
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join(…);

/* Do MPI stuff */

MPI_Finalize();
return 0;

} 128

MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);
return 0;

}

int buf[100];
int main(int argc, char ** argv)
{

int provided;
pthread_mutex_t mutex;

MPI_Init_thread(&argc, &argv,
MPI_THREAD_SERIALIZED, &provided);

if (provided < MPI_THREAD_SERIALIZED)
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join(…);

MPI_Finalize();
return 0;

}

MPI_THREAD_SERIALIZED

§ Only one thread can make MPI calls at a time
– Protected by OpenMP critical regions

129

MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);
pthread_mutex_lock(&mutex);
/* Do MPI stuff */
pthread_mutex_unlock(&mutex);
return 0;

}

int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv,
MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_SERIALIZED)
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

MPI_Finalize();
return 0;

}

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);

/* Do MPI stuff */
…
return 0;

}

MPI_THREAD_MULTIPLE

§ Any thread can make MPI calls any time (restrictions apply)

130

MPI Process

COMP.

COMP.

MPI COMM.

Threads and MPI

§ An implementation is not required to support levels higher
than MPI_THREAD_SINGLE; that is, an implementation is not
required to be thread safe

§ A fully thread-safe implementation will support
MPI_THREAD_MULTIPLE

§ A program that calls MPI_Init (instead of MPI_Init_thread)
should assume that only MPI_THREAD_SINGLE is supported

§ A threaded MPI program that does not call MPI_Init_thread is

an incorrect program (common user error we see)

– But rarely causes problems except for when MPI_THREAD_MULTIPLE
required

131

MPI Semantics and MPI_THREAD_MULTIPLE

§ Ordering: When multiple threads make MPI calls concurrently,
the outcome will be as if the calls executed sequentially in some
(any) order

– Ordering is maintained within each thread
– User must ensure that collective operations on the same communicator,

window, or file handle are correctly ordered among threads
• E.g., cannot call a broadcast on one thread and a reduce on another thread on

the same communicator

– It is the user's responsibility to prevent races when threads in the same
application post conflicting MPI calls

• E.g., accessing an info object from one thread and freeing it from another
thread

§ Progress: Blocking MPI calls will block only the calling thread and
will not prevent other threads from running or executing MPI
functions

132

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

133

Thread 0

Thread 1

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Collectives

§ P0 and P1 can have different orderings of Bcast and Barrier
§ Here the user must use some kind of synchronization to

ensure that either thread 1 or thread 2 gets scheduled first on
both processes

§ Otherwise a broadcast may get matched with a barrier on the
same communicator, which is not allowed in MPI

Process 0
Thread 1 Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)

134

Process 1
Thread 1 Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Object Management

§ The user has to make sure that one thread is not using an
object while another thread is freeing it

– This is essentially an ordering issue; the object might get freed before
it is used

135

Process 0
Thread 1 Thread 2

MPI_Comm_free(comm)

MPI_Bcast(comm)

Blocking Calls in MPI_THREAD_MULTIPLE: Correct
Example

§ An implementation must ensure that the above example
never deadlocks for any ordering of thread execution

§ That means the implementation cannot simply acquire a
thread lock and block within an MPI function. It must
release the lock to allow other threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

136

The Current Situation

§ All MPI implementations support MPI_THREAD_SINGLE

§ They probably support MPI_THREAD_FUNNELED even if they
don’t admit it.

– Does require thread-safety for some system routines (e.g. malloc)

– On most systems -pthread will guarantee it (OpenMP implies

-pthread)

§ Many (but not all) implementations support THREAD_MULTIPLE
– Hard to implement efficiently though (thread synchronization issues)

§ Bulk-synchronous OpenMP programs (loops parallelized with
OpenMP, communication between loops) only need FUNNELED

– So don’t need “fully thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!

137

Hybrid Programming: Correctness Requirements

§ Hybrid programming with MPI+threads does not do much to
reduce the complexity of thread programming

– Your application still has to be a correct multi-threaded application

– On top of that, you also need to make sure you are correctly following
MPI semantics

§ Many commercial debuggers offer support for debugging
hybrid MPI+threads applications (mostly for MPI+Pthreads
and MPI+OpenMP)

138

An Example we encountered

§ We received a bug report about a very simple
multithreaded MPI program that hangs

§ Run with 2 processes

§ Each process has 2 threads

§ Both threads communicate with threads on the other
process as shown in the next slide

§ We spent several hours trying to debug MPICH before
discovering that the bug is actually in the user’s program L

139

2 Proceses, 2 Threads (Each Thread Executes this Code)

140

if (rank == 1) {
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

} else { /* rank == 0 */
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

}

Intended Ordering of Operations

§ Every send matches a receive on the other rank

2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1

141

Parallel Programming with MPI (06/2019)

Possible Ordering of Operations in Practice

§ Because the MPI operations can be issued in an arbitrary
order across threads, all threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1

142

Parallel Programming with MPI (06/2019)

MPI+OpenMP correctness semantics

§ MPI only specifies interoperability with
threads, not with OpenMP (or any other high-
level programming model using threads)

– OpenMP iterations need to be carefully
mapped to which thread executes them
(some schedules in OpenMP make this
harder)

§ For OpenMP tasks, the general model to use
is that an OpenMP thread can execute one or
more OpenMP tasks

– An MPI blocking call should be assumed to
block the entire OpenMP thread, so other
tasks might not get executed

143

Applications

OpenMP, Cilk,
TBB

MPI
Pthreads or

other threads

Parallel Programming with MPI (06/2019)

OpenMP threads: MPI blocking Calls (1/2)

144

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}

MPI_Finalize();

return 0;
}

Iteration to OpenMP thread mapping needs to explicitly be handled by the user;

otherwise, OpenMP threads might all issue the same operation and deadlock

OpenMP threads: MPI blocking Calls (2/2)

145

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

assert(omp_get_num_threads() > 1)
#pragma omp for schedule(static, 1)
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

MPI_Finalize();

return 0;
}

Either explicit/careful mapping of iterations to threads, or using nonblocking

versions of send/recv would solve this problem

OpenMP tasks: MPI blocking Calls (1/5)

146

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < 100; i++) {

#pragma omp task
{
if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

}
MPI_Finalize();
return 0;

}

This can lead to deadlocks. No ordering or progress guarantees in OpenMP task

scheduling should be assumed; a blocked task blocks it’s thread and tasks can be

executed in any order.

OpenMP tasks: MPI blocking Calls (2/5)

147

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..)

}
}

MPI_Finalize();
return 0;

}

Same problem as before.

OpenMP tasks: MPI blocking Calls (3/5)

148

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);
else

MPI_Irecv(.., from_myself, .., &req);
MPI_Wait(&req, ..);

}
}

MPI_Finalize();
return 0;

}

Using nonblocking operations but with MPI_Wait inside the task region does not

solve the problem

OpenMP tasks: MPI blocking Calls (4/5)

149

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req; int done = 0;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);
else

MPI_Irecv(.., from_myself, .., &req);
While (!done) {

#pragma omp taskyield
MPI_Test(&req, &done, ..);

}
}

}
}

MPI_Finalize();
return 0;

}

Still incorrect; taskyield does not guarantee a task switch

OpenMP tasks: MPI blocking Calls (5/5)

150

int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);
MPI_Request req[100];

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Isend(.., to_myself, .., &req[i]);

else
MPI_Irecv(.., from_myself, .., &req[i]);

}
}

MPI_Waitall(100, req, ..);
MPI_Finalize();
return 0;

}

Correct example. Each task is nonblocking.

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with RMA

151

int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different threads can lock the same process causing multiple locks to the

same target before the first lock is unlocked

Exercise 1: Stencil in Funneled mode (1/2)

152

Exercise 1: Stencil in Funneled mode (2/2)

§ Parallelize computation (OpenMP parallel for)

§ Main thread does all communication

§ Start from derived_datatype/stencil.c

§ Solution available in threads/stencil_funneled.c

153

Exercise 2: Stencil in Multiple mode (1/2)

154

Exercise 2: Stencil in Multiple mode (2/2)

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Start from threads/stencil_funneled.c

§ Solution available in threads/stencil_multiple.c

155

Recommendation: Maximize independence
between threads with communicators
§ Each thread accesses a different communicator

– Each communicator may be associated with isolated resource in an
MPI implementation

156

MPI_Comm *comms;
int nthreads = omp_get_num_threads();
comms = malloc(sizeof(MPI_Comm) * nthreads);

for (i = 0; i < nthreads; i++)
MPI_Comm_dup(MPI_COMM_WORLD, &comms[i]);

#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., comm[tid], &req[i]);}
}
MPI_Waitall(100, req, ..);

MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware

Recommendation: Maximize independence
between threads with ranks or tags (1/2)

§ Threads have to match all receive messages in
sequential (e.g., a single receive-queue) if a
wildcard receive may be posted

– Ensure ordering of message matching

§ Let MPI know if you do not use wildcard receive

157

MPI
P0, 0

ANY_SRC
ANY_TAG

P2, 1
P0, 2
P2, 3

COMM

MPI_Info info;
info = MPI_Info_create();
MPI_Info_set(info, “no_any_source”,

“true”);
MPI_Comm_set_info(comm, info);
MPI_Info_free(&info);
/* Communicate without

MPI_ANY_SOURCE */

– Info hints no_any_source,
no_any_tag (accepted for
inclusion in MPI-4)

– MPI can get rid of the single
receive-queue for the
communicator

Recommendation: Maximize independence
between threads with ranks or tags (2/2)

§ Each thread communicates with different peer_rank or tag
– MPI may assign isolated resource for different set of [peer_rank + tag]

158

#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., peer_ranks[tid], tid,
comm, &req[i]);}

}
MPI_Waitall(100, req, ..);

MPI

Peer=P1

T0

Peer=P2

T1

Peer=P3

T2

Peer=P4

T3

Hardware

P0

Exercise 3: Stencil with Independent Communicators

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Each thread uses a different communicator

§ Start from threads/stencil_multiple.c

§ Solution available in threads/stencil_multiple_ncomms.c

159

MPI + Shared-Memory

160

Hybrid Programming with Shared Memory

§ MPI-3 allows different processes to allocate shared memory
through MPI

– MPI_Win_allocate_shared

§ Uses many of the concepts of one-sided communication

§ Applications can do hybrid programming using MPI or
load/store accesses on the shared memory window

§ Other MPI functions can be used to synchronize access to
shared memory regions

§ Can be simpler to program than threads
– Because memory locality is clear (needed for performance) and data

sharing is explicit

161

Creating Shared Memory Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type (MPI_COMM_TYPE_SHARED)

Shared memory

communicator

MPI_Win_allocate_shared

Shared memory

window

Shared memory

window

Shared memory

window

Shared memory

communicator

Shared memory

communicator

162

Load/store

Regular RMA windows vs. Shared memory windows

§ Shared memory windows allow
application processes to directly
perform load/store accesses on
all of the window memory

– E.g., x[100] = 10

§ All of the existing RMA functions
can also be used on such
memory for more advanced
semantics such as atomic
operations

§ Can be very useful when
processes want to use threads
only to get access to all of the
memory on the node

– You can create a shared memory
window and put your shared data

Local
memory

P0

Local
memory

P1

Load/store
PUT/GET

Traditional RMA windows

Load/store

Local memory

P0 P1

Load/store

Shared memory windows

Load/store

163

MPI_COMM_SPLIT_TYPE

§ Create a communicator where processes “share a property”
– Properties are defined by the “split_type”

– In MPI 3.1, only split_type is MPI_COMM_TYPE_SHARED

§ Arguments:
– comm - input communicator (handle)

– Split_type - property of the partitioning (integer)

– Key - Rank assignment ordering (nonnegative integer)

– info - info argument (handle)

– newcomm- output communicator (handle)

164

MPI_Comm_split_type(MPI_Comm comm, int split_type,
int key, MPI_Info info, MPI_Comm *newcomm)

MPI_WIN_ALLOCATE_SHARED

§ Create a remotely accessible memory region in an RMA window
– Data exposed in a window can be accessed with RMA ops or load/store

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win - window (handle)

165

MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)

Shared Arrays with Shared memory windows
int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}

166

Memory allocation and placement

§ Shared memory allocation does not need to be uniform
across processes

– Processes can allocate a different amount of memory (even zero)

§ The MPI standard does not specify where the memory would
be placed (e.g., which physical memory it will be pinned to)

– Implementations can choose their own strategies, though it is
expected that an implementation will try to place shared memory
allocated by a process “close to it”

§ The total allocated shared memory on a communicator is
contiguous by default

– Users can pass an info hint called “noncontig” that will allow the MPI
implementation to align memory allocations from each process to
appropriate boundaries to assist with placement

167

Exercise: Stencil with Shared Memory

§ Message passing model requires ghost-cells to be explicitly
communicated to neighbor processes

§ In the shared-memory model, there is no communication.
Neighbors directly access your data.

§ Start from rma/stencil_lock_put.c

§ Solution available in shared_mem/stencil.c

load

Advanced MPI, ISC19 (06/16/2019) 168

What should you use: Threads or Process Shared
Memory
§ It depends on the application, target machine, and MPI

implementation

§ When should I use process shared memory?
– The only resource that needs sharing is memory

– Few allocated objects need sharing (easy to place them in a public shared
region)

§ When should I use threads?
– More than memory resources need sharing (e.g., TLB)

– Many application objects require sharing

– Application computation structure can be easily parallelized with high-
level OpenMP loops

169

Shortcomings: Restricted Allocation Methods

§ In MPI-3 shared memory, memory allocation is restrictive
– Allocation has to be done using the MPI call

– Cannot use the plethora of other memory allocation libraries out
there, e.g., cannot allocate aligned memory (important for
vectorization)

§ With threads, most of those other memory allocation
techniques are directly usable

170

MPI + Accelerators

171

Accelerators in Parallel Computing

§ General purpose, highly parallel processors
– High FLOPs/Watt
– Unit of execution Kernel

– Separate physical memory subsystems
– Programming Models: OpenAcc, CUDA, OpenCL, …

§ Clusters with accelerators are becoming
common

§ New programmability and performance
challenges for programming models and
runtime systems

172

GPU

Memory

CPU

Memory

Network
Card

MPI + Accelerator Programming Examples

173

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

How to move data between GPUs with MPI?

Real answer: It depends on what GPU library, what hardware and what MPI
implementation you are using

Simple answer: For modern GPUs, “just like you would with a non-GPU machine”

CUDA Awareness in MPI

§ The MPI standard does not explicitly require GPU support
– Each MPI implementation can choose whether or not it wants to

support GPUs

§ Current status: Many, but not all, MPI implementations
support CUDA

– Already supported by MVAPICH, Open MPI, Spectrum MPI

§ You can use GPUs even with MPI implementations that do not
support CUDA, but data movement will need to be explicit

– MPI does not understand data residing on GPUs

§ With CUDA-aware MPI implementations, some things are
automatically handled by the MPI library

174

Non-CUDA-aware MPI implementations:
Programmability Limitations (1/2)

175

CU
DA

double *buf;
buf = (double*)malloc(size * sizeof(double));
#pragma acc enter data create(buf[0:size])

if(my_rank == sender) {
computation_on_GPU(buf);
#pragma acc update host (buf[0:size])
MPI_Isend(buf, size, …);

} else {
MPI_Recv(buf, size, …);
#pragma acc update device (buf[0:size])
computation_on_GPU(buf);

}

O
pe

nA
CC

double *dev_buf, *host_buf;
cudaMalloc(&dev_buf, size);
cudaMallocHost(&host_buf, size);

if(my_rank == sender) {
computation_on_GPU(dev_buf);
cudaMemcpy(host_buf, dev_buf, size, …);
MPI_Isend(host_buf, size, …);

} else {
MPI_Recv(host_buf, size, …);
cudaMemcpy(dev_buf, host_buf, size, …);
computation_on_GPU(dev_buf);

}

Non-CUDA-aware MPI implementations:
Programmability Limitations (2/2)

176

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

computation_on_GPU(dev_buf);
cudaMemcpy(host_buf, dev_buf, size, …);
MPI_Isend(host_buf, size, …);

MPI_Recv(host_buf, size, …);
cudaMemcpy(dev_buf, host_buf, size, …);
computation_on_GPU(dev_buf);

CUDA

computation_on_GPU(buf);
#pragma acc update host (buf[0:size])
MPI_Isend(buf, size, …);

MPI_Recv(buf, size, …);
#pragma acc update device (buf[0:size])
computation_on_GPU(buf);

OpenACC

1 532 4

MPI assumes host memory
The user ensures that host memory is synchronized

Using cudaMemcpyAsync before MPI_Isend would be incorrect

MPI Process 1 MPI Process 2

Non-CUDA-aware MPI implementations:
Performance Limitations

177

GPU

Memory

CPU

Memory

1 532 4

GPU

Memory

Inefficient intra-node GPU data transfer

Host copy to network buffer

Device-Host data transfer Host processing

Network data transfer

GPU Idle

GPU Idle

Inefficient bulk-synchronous and GPU-wasteful data
transfer model

§ Inefficient intranode GPU-GPU data
transfer between MPI processes
– Several DMA and memory copies on

the critical path

§ Inefficient bulk-synchronous transfer
model
– The CPU cannot trigger the MPI data

transfer until the GPU completed the
device-host data transfer

§ Inefficient GPU resource utilization
– The GPU could potentially be idle

while the host handles MPI
communication

CUDA-aware MPI implementation requirements
§ CUDA-awareness in MPI requires the Unified

Virtual Address (UVA) feature of GPUs, at the very
least

– Introduced in CUDA-4.0
– Host memory and all GPUs share the same virtual

address space
– The user can query the location of the data

allocation given a pointer in the unified address
space with cuPointerGetAttribute()

§ GPU Direct 1.0, GPU Direct 2.0 and GPU Direct
RDMA are not required for correctness, but
improve performance

– Needs to be supported by the GPU and the network
– This is the state-of-the-art for modern NVIDIA GPUs

and Mellanox InfiniBand, but might not be

supported by other GPUs or other networks

178

GPU

0x000 ..
.. 0xFFF

CPU GPU

0x000 ..
.. 0xFFF

0x000 ..
.. 0xFFF

Non-UVA: Separate virtual
address spaces for the host and

devices

GPU

0x000 ..

CPU GPU

.. 0xFFF

UVA: Single virtual address
space for the host and all

devices

CUDA-aware MPI implementations: Programmability

179

CU
DA

computation_on_GPU(buf);
#pragma acc host_data use_device (buf)
MPI_Isend(buf, size, …);

#pragma acc host_data use_device (buf)
MPI_Recv(buf, size, …);
computation_on_GPU(buf);

O
pe

nA
CC

§ User can pass device pointer to MPI
§ MPI implementation can query for the

owner (host or device) of the data
§ If the data is on the device, the MPI

implementation can handle data transfer
from GPU to the network

computation_on_GPU(dev_buf);
MPI_Isend(dev_buf, size, …);

MPI_Recv(dev_buf, size, …);
computation_on_GPU(dev_buf);

MPI can transparently
figure out the physical

location of the data

Network pinned
memory

GPU

GPU MemoryCPU

Host
Memory

CPU copy to
pinned memory

Direct Memory
Access (DMA)

void* d_data

Network
Card

Example of MPI moving data from the
GPU device to the network

GPU pinned memory

void* h_data

RDMA

MPI moving data

CUDA-aware MPI implementations: Performance (2/3)

180

§ GPUDirect 1.0 (Q2’ 2010)
– Avoid unnecessary system

memory copies copying data
directly to/from pinned
CUDA host memory

– RDMA can use directly the CUDA
pinned memory

– Required kernel driver updates
§ GPUDirect 2.0 (Peer-to-Peer, 2011)

– GPU peer-to-peer data transfers
are possible

– MPI can directly move data
between GPU devices

GPU

GPU MemoryCPU

Host
Memory

Direct Memory
Access (DMA)

void* d_data

Network
Card

MPI with GPUDirect 1.0
RDMA

Pinned memory available to
network and GPU devices

MPI Process 1 MPI Process 2

GPU

Memory

CPU

Memory

GPU

Memory

MPI with GPUDirect 2.0

Peer-to-Peer DMA transfer between GPUs

CUDA-aware MPI implementations: Performance (3/3)

181

§ GPUDirect RDMA
– CUDA >= 5, 2013
– Technology introduced in Kepler-class GPUs and CUDA-5
– GPU memory is directly accessible to third-party devices,

including network interfaces
– RDMA operations to/from the device memory are possible and

completely bypass the host memory

GPU

GPU Memory
CPU

Host
Memory

void* d_data

Network
Card

RDMA

MPI with GPUDirect RDMA

Section Summary

§ Programming with accelerators is becoming increasingly
important

§ MPI is playing its role in enabling the usage of accelerators
across distributed memory nodes

§ The situation with MPI + GPU support is improving in both
MPI implementations and in GPU hardware/software
capabilities

182

Process Topologies and
Neighborhood Collectives

183

Topology Mapping Basics

§ First type: Allocation mapping (when job is submitted)
– Up-front specification of communication pattern

– Batch system picks good set of nodes for given topology

§ Properties:
– Not widely supported by current batch systems

– Either predefined allocation (BG/P), random allocation, or “global
bandwidth maximization”

– Also problematic to specify communication pattern upfront, not
always possible (or static)

184

Topology Mapping Basics contd.

§ Rank reordering
– Change numbering in a given allocation to reduce congestion or

dilation

– Sometimes automatic (early IBM SP machines)

§ Properties
– Always possible, but effect may be limited (e.g., in a bad allocation)

– Portable way: MPI process topologies
• Network topology is not exposed

– Manual data shuffling after remapping step

185

On-Node Reordering

Naïve Mapping Optimized Mapping

Topomap

Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology
Adaption, 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2012 186

Off-Node (Network) Reordering

Application Topology Network Topology

Naïve Mapping Optimal Mapping

Topomap

187

MPI Topology Intro

§ Convenience functions (in MPI-1)
– Create a graph and query it, nothing else

– Useful especially for Cartesian topologies
• Query neighbors in n-dimensional space

– Graph topology: each rank specifies full graph L

§ Scalable Graph topology (MPI-2.2)
– Graph topology: each rank specifies its neighbors or an arbitrary

subset of the graph

§ Neighborhood collectives (MPI-3.0)
– Adding communication functions defined on graph topologies

(neighborhood of distance one)

188

MPI Topology Realities
§ Cartesian Topologies

– MPI_Dims_create is required to provide a “square” decomposition
• May not match underlying physical network

• Even if it did, hard to define unless physical network is mesh or torus

– MPI_Cart_create is supposed to provide a “good” remapping (if requested)
• But implementations are poor and may just return the original mapping

§ Graph Topologies
– The general process mapping problem is very hard

– Many implementations are poor

– Some research work has developed tools to create better mappings
• You can use them with MPI_Comm_dup to create a “well ordered” communicator

§ Neighborhood collectives
– MPI-3 introduced these; permit collective communication with just the

neighbors as defined by the MPI process topology

– Offers opportunities for the MPI implementation to optimize
189

MPI_Dims_create

§ Create dims array for Cart_create with nnodes and ndims
– Dimensions are as close as possible (well, in theory)

§ Non-zero entries in dims will not be changed
– nnodes must be multiple of all non-zeroes in dims

MPI_Dims_create(int nnodes, int ndims, int *dims)

190

MPI_Dims_create Example

§ Makes life a little bit easier
– Some problems may be better with a non-square layout though

int p;
int dims[3] = {0,0,0};
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

191

MPI_Cart_create

§ Specify ndims-dimensional topology
– Optionally periodic in each dimension (Torus)

§ Some processes may return MPI_COMM_NULL
– Product of dims must be ≤ P

§ Reorder argument allows for topology mapping
– Each calling process may have a new rank in the created communicator

– Data has to be remapped manually

MPI_Cart_create(MPI_Comm comm_old, int ndims,
const int *dims, const int *periods, int reorder,
MPI_Comm *comm_cart)

192

MPI_Cart_create Example

§ Creates logical 3-d Torus of size 5x5x5

§ But we’re starting MPI processes with a one-dimensional
argument (-p X)

– User has to determine size of each dimension

– Often as “square” as possible, MPI can help!

int dims[3] = {5,5,5};
int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

193

Cartesian Query Functions

§ Library support and convenience!

§ MPI_Cartdim_get()
– Gets dimensions of a Cartesian communicator

§ MPI_Cart_get()
– Gets size of dimensions

§ MPI_Cart_rank()
– Translate coordinates to rank

§ MPI_Cart_coords()
– Translate rank to coordinates

194

Cartesian Communication Helpers

§ Shift in one dimension
– Dimensions are numbered from 0 to ndims-1

– Displacement indicates neighbor distance (-1, 1, …)

– May return MPI_PROC_NULL

§ Very convenient, all you need for nearest neighbor
communication

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

195

Neighborhood Collectives

196

MPI_Neighbor_allgather

§ Sends the same message to all neighbors

§ Receives indegree distinct messages

§ Similar to MPI_Gather
– The all prefix expresses that each process is a “root” of his

neighborhood

§ Also a vector “v” version for full flexibility

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

197

MPI_Neighbor_alltoall

§ Sends outdegree distinct messages

§ Received indegree distinct messages

§ Similar to MPI_Alltoall
– Neighborhood specifies full communication relationship

§ Vector and w versions for full flexibility

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

198

Nonblocking Neighborhood Collectives

§ Very similar to nonblocking collectives

§ Collective invocation

§ Matching in-order (no tags)
– No wild tricks with neighborhoods! In order matching per

communicator!

MPI_Ineighbor_allgather(…, MPI_Request *req);
MPI_Ineighbor_alltoall(…, MPI_Request *req);

199

Section Summary

§ MPI does not expose information about the network topology
(would be very complex)

§ Topology functions allow users to specify application
communication patterns/topology

– Convenience functions (e.g., Cartesian)

– Storing neighborhood relations (Graph)

§ Neighborhood collectives allow user virtual topologies to be
exploited in collective communication

200

Concluding Remarks

§ Parallelism is critical today, given that that is the only way to
achieve performance improvement with the modern hardware

§ MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and

public domain)

– Virtually every system in the world supports MPI

§ Gives user explicit control on data management

§ Widely used by many scientific applications with great success

201

Web Pointers

202

§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations:
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, NEC MPI, Fujitsu MPI, …

§ Several MPI tutorials can be found on the web

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.open-mpi.org/

Tutorial Books on MPI

203

Basic MPI Advanced MPI, including MPI-3

