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The MPI Part of ATPESC

§ We assume everyone already has some MPI experience

§ We will focus more on understanding MPI concepts than on 
coding details

§ Emphasis will be on issues affecting scalability and 
performance

§ There will be code walkthroughs and hands-on exercises
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Outline

§ Morning
– Introduction to MPI and this tutorial

– Performance issues in MPI programs

– Avoiding unnecessary 
synchronization

– Minimizing data motion
• using MPI datatypes

– Topics in collective communication

– One-sided communication (or 
remote memory access)

– Hands-on exercises

§ Afternoon
– One-sided communication contd.

– Hybrid programming

– MPI + threads/shared-
memory/accelerators

– Process topologies and 
neighborhood collectives

– Hands-on exercises

§ After dinner

– Hands-on exercises contd.
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What is MPI?

§ MPI is a message-passing library interface standard.
– Specification, not implementation
– Library, not a language
– Classical message-passing programming model

§ MPI-1 was defined (1994) by a broadly-based group of 
parallel computer vendors, computer scientists, and 
applications developers.

– 2-year intensive process
§ Implementations appeared quickly and now MPI is taken for 

granted as vendor-supported software on any parallel 
machine.

§ Free, portable implementations exist for clusters and other 
environments (MPICH, Open MPI)
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Timeline of the MPI Standard
§ MPI-1 (1994), presented at SC’93

– Basic point-to-point communication, collectives, datatypes, etc

§ MPI-2 (1997)
– Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, 

thread support, C++ bindings, …

§ ---- Unchanged for 10 years ----

§ MPI-2.1 (2008)
– Minor clarifications and bug fixes to MPI-2

§ MPI-2.2 (2009)
– Small updates and additions to MPI 2.1

§ MPI-3.0 (2012)
– Major new features and additions to MPI (nonblocking collectives, neighborhood 

collectives, improved RMA, tools interface, Fortran 2008 bindings, etc.)

§ MPI-3.1 (2015)
– Small updates to MPI 3.0





Important considerations while using MPI

§ All parallelism is explicit: the programmer is responsible for 
correctly identifying parallelism and implementing parallel 
algorithms using MPI constructs
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Basic MPI Communication

OR

MPI_Recv

MPI_Isend

MPI_Send

MPI_Irecv

MPI_Wait MPI_Wait
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Web Pointers

§ MPI Standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

§ Several MPI tutorials can be found on the web
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Tutorial Books on MPI  (November 2014)

Basic MPI Advanced MPI, including MPI-2 and MPI-3
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Costs of Unintended Synchronization
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Unexpected Hot Spots

§ Even simple operations can give surprising performance 
behavior.

§ Examples arise even in common grid exchange patterns

§ Message passing illustrates problems present even in shared 
memory

– Blocking operations may cause unavoidable stalls
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Mesh Exchange

§ Exchange data on a mesh
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Sample Code

§ Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&

nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)

Enddo
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Deadlocks!

§ All of the sends may block, waiting for a matching receive (will 
for large enough messages)

§ The variation of
if (has down nbr) then

Call MPI_Send( … down … )
endif
if (has up nbr) then

Call MPI_Recv( … up … )
endif
…
sequentializes (all except the bottom process blocks)
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Sequentialization

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv
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Fix 1: Use Irecv

§ Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&

comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)

Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

§ Does not perform well in practice.  Why?
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Understanding the Behavior: Timing Model

§ Sends interleave

§ Sends block (data larger than buffering will allow)

§ Sends control timing

§ Receives do not interfere with Sends

§ Exchange can be done in 4 steps (down, right, up, left)
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Mesh Exchange - Step 1

§ Exchange data on a mesh
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Mesh Exchange - Step 2

§ Exchange data on a mesh
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Mesh Exchange - Step 3

§ Exchange data on a mesh

21



Mesh Exchange - Step 4

§ Exchange data on a mesh
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Mesh Exchange - Step 5

§ Exchange data on a mesh
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Mesh Exchange - Step 6

§ Exchange data on a mesh
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Timeline

• Note that process 1 finishes last, as predicted
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Distribution of Sends
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Why Six Steps?

§ Ordering of Sends introduces delays when there is contention 
at the receiver

§ Takes roughly twice as long as it should

§ Bandwidth is being wasted

§ Same thing would happen if using memcpy and shared 
memory
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Fix 2: Use Isend and Irecv

§ Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,& 
comm, requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)
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Mesh Exchange - Steps 1-4

§ Four interleaved steps
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Timeline with Isend-Irecv

Note processes 5 and 6 are the only interior processes; these 
perform more communication than the other processes
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Lesson: Defer Synchronization

§ Send-receive accomplishes two things:
– Data transfer

– Synchronization

§ In many cases, there is more synchronization than required

§ Consider the use of nonblocking operations and MPI_Waitall
to defer synchronization

– Effectiveness depends on how data is moved by the MPI 
implementation

– E.g., If large messages are moved by blocking RMA operations “under 
the covers,” the implementation can’t adapt to contention at the 
target processes, and you may see no benefit.

– This is more likely with larger messages 
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Datatypes
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Introduction to Datatypes in MPI

§ Datatypes allow users to serialize arbitrary data layouts into a 
message stream

– Networks provide serial channels

– Same for block devices and I/O

§ Several constructors allow arbitrary layouts
– Recursive specification possible

– Declarative specification of data-layout
• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple
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Derived Datatype Example
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MPI’s Intrinsic Datatypes

§ Why intrinsic types?
– Heterogeneity, nice to send a Boolean from C to Fortran

– Conversion rules are complex, not discussed here 

– Length matches to language types 
• No sizeof(int) mess

§ Users should generally use intrinsic types as basic types for 
communication and type construction!

– MPI_BYTE should only be used for data that are raw bytes

§ MPI-2.2 added some missing C types
– E.g., unsigned long long 
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MPI_Type_contiguous

§ Contiguous array of oldtype

§ Should not be used as last type (can be replaced by count)

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)
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MPI_Type_vector

§ Specify strided blocks of data of oldtype

§ Very useful for Cartesian arrays

MPI_Type_vector(int count, int blocklength, int stride, 
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_hvector

§ Create non-unit strided vectors

§ Useful for composition, e.g., vector of structs

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_indexed_block

§ Like MPI_Type_indexed but blocklength is the same

– blen=2

– displs={0,5,9,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_indexed

§ Pulling irregular subsets of data from a single array (cf. vector 
collectives)

– Dynamic codes with index lists, expensive though!

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_create_hindexed

§ Indexed with non-unit displacements, e.g., pulling types out 
of different arrays

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths, 
MPI_Aint *arr_of_displacements, MPI_Datatype oldtype, 
MPI_Datatype *newtype)
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MPI_Type_create_struct

§ Most general constructor, allows different types and arbitrary 
arrays (also most costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)
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MPI_Type_create_subarray

§ Specify subarray of n-dimensional array (sizes) by start (starts) 
and size (subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_darray

§ Create distributed array, supports block, cyclic and no 
distribution for each dimension

– Very useful for I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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Commit, Free, and Dup

§ Types must be committed before use
– Only the ones that are used explicitly in a call!

– MPI_Type_commit may perform time-consuming optimizations (but 
few implementations currently exploit this feature)

§ MPI_Type_free
– Free MPI resources of datatypes

– Does not affect types built from it

§ MPI_Type_dup
– Duplicates a type

– Library abstraction (composability)
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Datatype Performance in Practice

§ Datatypes can provide performance benefits, particularly for 
certain regular patterns

– However, many implementations do not optimize datatype operations

– If performance is critical, you will need to test
• Even manual packing/unpacking can be slow if not properly optimized by 

the compiler – make sure to check optimization reports or if the compiler 
doesn’t provide good reports, inspect the assembly code

§ For parallel I/O, datatypes do provide large performance 
benefits in many cases
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Example Code: Regular Mesh Algorithms

§ Many scientific applications involve the solution of partial 
differential equations (PDEs)

§ Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations

– Finite difference, finite elements, finite volume

§ The exact form of the differential equations depends on 
the particular method

– From the point of view of parallel programming for these 
algorithms, the operations are the same

§ Five-point stencil is a popular approximation solution
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The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at 
each point involves the four 
neighbors

§ The red “plus” is called the 
method’s stencil

§ Good numerical algorithms form a 
matrix equation Au=f; solving this 
requires computing Bv, where B is 
a matrix derived from A. These 
evaluations involve computations 
with the neighbors on the mesh.
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The Global Data Structure

§ Each circle is a mesh point

§ Difference equation evaluated at 
each point involves the four 
neighbors

§ The red “plus” is called the 
method’s stencil

§ Good numerical algorithms form a 
matrix equation Au=f; solving this 
requires computing Bv, where B is 
a matrix derived from A. These 
evaluations involve computations 
with the neighbors on the mesh.

§ Decompose mesh into equal sized 
(work) pieces

49



Step 1: Domain Decompositioin

50

Parameters for domain decomposition:
N = Size of the edge of the global problem domain (assuming square)
PX, PY = Number of processes in X and Y dimension
N % PX == 0, N % PY == 0

Where am I? (Global offset)
Who (which ranks) are my neigbhors?
Use MPI_PROC_NULL for boundary



Necessary Data Transfers
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Step 2: The Local Data Structure

§ Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

§ Each process also have send/recv buffers for each neighbor

bx

by

52

Check the alloc_bufs function to see how buffers are allocated



Calculation

53
Check the update_grid function to see how it is done

§ Two buffers alternating
– aold for current value

– anew for newly value in this iteration (will become aold in next iter)



Step 3: Data Transfers with MPI_Isend/MPI_Irecv

§ Provide access to remote data through a halo exchange     
(5 point stencil)
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Note the differences in send/recv buffers, the requirement of data packing.



Step 3: Data Transfers with MPI_Isend/MPI_Irecv
(cont’d)
§ Data exchange with neighbors using corresponding

send/recv buffers

§ How to complete the communication? (MPI_Wait?
MPI_Waitall?)

§ Does order matters?
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Step 4: Calculating Total Heat

§ Using MPI_Allreduce to calculate total heat
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Exercise: Stencil with Derived Datatypes (1)

§ In the basic version of the stencil code
– Used nonblocking communication !

– Used manual packing/unpacking of data "

§ Let’s try to use derived datatypes
– Specify the locations of the data instead of manually packing/unpacking

57

bx

by

What datatype do 
we need here?

What datatype do 
we need here?



Exercise: Stencil with Derived Datatypes (2)

§ Nonblocking sends and receives

§ Data location specified by MPI datatypes

§ Manual packing of data no longer required

§ Start from nonblocking_p2p/stencil.c

§ Solution in derived_datatype/stencil.c
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Collectives and Nonblocking Collectives

59



Introduction to Collective Operations in MPI

§ Collective operations are called by all processes in a 
communicator.

§ MPI_BCAST distributes data from one process (the root) to all 
others in a communicator.

§ MPI_REDUCE combines data from all processes in the 
communicator and returns it to one process.

§ In many numerical algorithms, SEND/RECV can be replaced by 
BCAST/REDUCE, improving both simplicity and efficiency.
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MPI Collective Communication

§ Communication and computation is coordinated among a 
group of processes in a communicator

§ Tags are not used; different communicators deliver similar 
functionality

§ Non-blocking collective operations in MPI-3

§ Three classes of operations: synchronization, data movement, 
collective computation
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Synchronization

§ MPI_BARRIER(comm)

– Blocks until all processes in the group of communicator comm call it
– A process cannot get out of the barrier until all other processes have 

reached barrier

§ Note that a barrier is rarely, if ever, necessary in an MPI program
§ Adding barriers “just to be sure” is a bad practice and causes unnecessary 

synchronization. Remove unnecessary barriers from your code.

§ One legitimate use of a barrier is before the first call to MPI_Wtime to 
start a timing measurement. This causes each process to start at 
approximately the same time.

§ Avoid using barriers other than for this.
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Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3
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More Collective Data Movement

A
B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3
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Collective Computation

P0
P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan
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MPI Collective Routines

§ Many Routines, including:  MPI_ALLGATHER, MPI_ALLGATHERV, 
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV, 
MPI_BCAST, MPI_EXSCAN, MPI_GATHER, MPI_GATHERV, 
MPI_REDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, 
MPI_SCATTER, MPI_SCATTERV

§ “All” versions deliver results to all participating processes

§ “V” versions (stands for vector) allow the chunks to have different 
sizes

§ “W” versions for ALLTOALL allow the chunks to have different sizes 
in bytes, rather than units of datatypes

§ MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCE_SCATTER, 

MPI_REDUCE_SCATTER_BLOCK, MPI_EXSCAN, and MPI_SCAN
take both built-in and user-defined combiner functions

66



MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC
§ MPI_REPLACE, 

MPI_NO_OP

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location
Replace and no operation (RMA)
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Defining your own Collective Operations

§ Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The user function should perform:
inoutvec[i]  =  invec[i]  op  inoutvec[i];
for i from 0 to len-1

§ The user function can be non-commutative, but must be 
associative

68



Nonblocking Collectives
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Nonblocking Collective Communication

§ Nonblocking communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized routines

§ Nonblocking collective communication
– Combines both advantages

– System noise/imbalance resiliency

– Semantic advantages
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Nonblocking Communication

§ Semantics are simple:
– Function returns no matter what

– No progress guarantee!

§ E.g., MPI_Isend(<send-args>, MPI_Request *req);

§ Nonblocking tests:
– Test, Testany, Testall, Testsome

§ Blocking wait:
– Wait, Waitany, Waitall, Waitsome
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Nonblocking Collective Communication

§ Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

§ Semantics:
– Function returns no matter what
– No guaranteed progress (quality of implementation)
– Usual completion calls (wait, test) + mixing
– Out-of order completion

§ Restrictions:
– No tags, in-order matching
– Send and vector buffers may not be touched  during operation
– MPI_Cancel not supported
– No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collective Communication

§ Semantic advantages:
– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization
• Noise resiliency!

– Allow overlapping communicators
• See also neighborhood collectives

– Multiple outstanding operations at any time
• Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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A Non-Blocking Barrier?

§ What can that be good for? Well, quite a bit!

§ Semantics:
– MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses: 
– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but 
synchronize collectively!
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Nonblocking And Collective Summary

§ Nonblocking communication
– Overlap and relax synchronization

§ Collective communication
– Specialized pre-optimized routines 

– Performance portability

– Hopefully transparent performance

§ They can be composed
– E.g., software pipelining
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Exercise: Stencil using Alltoallv

§ In the basic version of the stencil code
– Used nonblocking send/receive for each direction

§ Let’s try to use single alltoallv collective call
§ Start from nonblocking_p2p/stencil.c

§ Solution available in blocking_coll/stencil_alltoallv.c
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count = bx

count = by

count = 0



Exercise: Stencil with Derived Datatypes and 
Collectives
§ Simplify collective version of stencil

– Alltoallv: defines a set of counts and displacements with the same 
datatype (see blocking_coll/stencil_alltoallv.c)

– Alltoallw: defines a set of counts, displacements, and datatypes

§ Data location specified by MPI datatypes
§ Manual packing of data no longer required

§ Start from blocking_coll/stencil_alltoallv.c

§ Solution in derived_datatype/stencil_alltoallw.c
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Advanced Topics: One-sided Communication
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One-sided Communication

§ The basic idea of one-sided communication models is to 
decouple data movement with process synchronization

– Should be able to move data without requiring that the remote 
process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible 

Memory

Remotely
Accessible 

Memory

Global 
Address 

Space
Private
Memory

Private
Memory

Private
Memory

Private
Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in 
process 1 
does not 

affect 
process 0

GET(data)
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What we need to know in MPI RMA

§ How to create remote accessible memory?

§ Reading, Writing and Updating remote memory

§ Data Synchronization

§ Memory Model
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Creating Public Memory

§ Any memory used by a process is, by default, only locally 
accessible

– X = malloc(100);

§ Once the memory is allocated, the user has to make an 
explicit MPI call to declare a memory region as remotely 
accessible

– MPI terminology for remotely accessible memory is a “window”

– A group of processes collectively create a “window”

§ Once a memory region is declared as remotely accessible, all 
processes in the window can read/write data to this memory 
without explicitly synchronizing with the target process
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Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window



Window creation models

§ Four models exist
– MPI_WIN_ALLOCATE

• You want to create a buffer and directly make it remotely 
accessible

– MPI_WIN_CREATE

• You already have an allocated buffer that you would like to 
make remotely accessible

– MPI_WIN_CREATE_DYNAMIC

• You don’t have a buffer yet, but will have one in the future

• You may want to dynamically add/remove buffers to/from 
the window

– MPI_WIN_ALLOCATE_SHARED

• You want multiple processes on the same node share a buffer
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MPI_WIN_ALLOCATE

§ Create a remotely accessible memory region in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)
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MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_CREATE

§ Expose a region of memory in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

§ Arguments:
– base - pointer to local data to expose
– size - size of local data in bytes (nonnegative integer)
– disp_unit - local unit size for displacements, in bytes (positive integer)
– info - info argument (handle)
– comm - communicator (handle)
– win             - window (handle)
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MPI_Win_create(void *base, MPI_Aint size, 
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)



Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
MPI_Free_mem(a);
MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

§ Create an RMA window, to which data can later be attached
– Only data exposed in a window can be accessed with RMA ops

§ Initially “empty”
– Application can dynamically attach/detach memory to this window by 

calling MPI_Win_attach/detach
– Application can access data on this window only after a memory 

region has been attached

§ Window origin is MPI_BOTTOM
– Displacements are segment addresses relative to MPI_BOTTOM
– Must tell others the displacement after calling attach
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MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,
MPI_Win *win)



Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a);  free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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Data movement

§ MPI provides ability to read, write and atomically modify data 
in remotely accessible memory regions

– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)
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Data movement: Put

§ Move data from origin, to target

§ Separate data description triples for origin and target
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Origin

MPI_Put(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 

Accessible 

Memory

Private 

Memory



Data movement: Get

§ Move data to origin, from target

§ Separate data description triples for origin and target
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Origin

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 

Accessible 

Memory

Private 

Memory



Atomic Data Aggregation: Accumulate

§ Atomic update operation, similar to a put
– Reduces origin and target data into target buffer using op argument as combiner

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

– Predefined ops only, no user-defined operations

§ Different data layouts between
target/origin OK

– Basic type elements must match

§ Op = MPI_REPLACE
– Implements f(a,b)=b

– Atomic PUT
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MPI_Accumulate(const void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Origin Target

Remotely 

Accessible 

Memory

Private 

Memory
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Atomic Data Aggregation: Get Accumulate

§ Atomic read-modify-write
– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
– Predefined ops only

§ Result stored in target buffer
§ Original data stored in result buf
§ Different data layouts between

target/origin OK
– Basic type elements must match

§ Atomic get with MPI_NO_OP
§ Atomic swap with MPI_REPLACE
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MPI_Get_accumulate(const void *origin_addr,
int origin_count, MPI_Datatype origin_dtype, 
void *result_addr,int result_count,
MPI_Datatype result_dtype, int target_rank, 
MPI_Aint target_disp,int target_count, 
MPI_Datatype target_dype, MPI_Op op, MPI_Win win)

+=

Origin Target
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Memory
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Atomic Data Aggregation: CAS and FOP

§ FOP: Simpler version of MPI_Get_accumulate
– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

§ CAS: Atomic swap if target value is equal to compare value
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MPI_Compare_and_swap(const void *origin_addr,
const void *compare_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)



Ordering of Operations in MPI RMA

§ No guaranteed ordering for Put/Get operations
§ Result of concurrent Puts to the same location undefined
§ Result of Get concurrent Put/Accumulate undefined

– Can be garbage in both cases

§ Result of concurrent accumulate operations to the same location 
are defined according to the order in which the occurred

– Atomic put: Accumulate with op = MPI_REPLACE
– Atomic get: Get_accumulate with op = MPI_NO_OP

§ Accumulate operations from a given process are ordered by default
– User can tell the MPI implementation that (s)he does not require ordering 

as optimization hint
– You can ask for only the needed orderings: RAW (read-after-write), WAR, 

RAR, or WAW
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Examples with operation ordering
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Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2
x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and 
Put/Accumulates: undefined

3. Concurrent Accumulate operations 
to the same location : ordering is 
guaranteed



RMA Synchronization Models

§ RMA data access model
– When is a process allowed to read/write remotely accessible memory?
– When is data written by process X is available for process Y to read?
– RMA synchronization models define these semantics

§ Three synchronization models provided by MPI:
– Fence (active target)
– Post-start-complete-wait (generalized active target; rarely used now)
– Lock/Unlock (passive target)

§ Data accesses occur within “epochs”
– Access epochs: contain a set of operations issued by an origin process
– Exposure epochs: enable remote processes to update a target’s window
– Epochs define ordering and completion semantics
– Synchronization models provide mechanisms for establishing epochs

• E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

§ Collective synchronization model

§ Starts and ends access and exposure 
epochs on all processes in the window

§ All processes in group of “win” do an 
MPI_WIN_FENCE to open an epoch

§ Everyone can issue PUT/GET operations 
to read/write data

§ Everyone does an MPI_WIN_FENCE to 
close the epoch

§ All operations complete at the second 
fence synchronization
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Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2



Implementing Stencil Computation with RMA Fence
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Origin buffers

Target buffers

RMA window

PUT

PUT

PUT

PU
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Exercise: Stencil with RMA Fence

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with PUT instead of send/recv

§ Start from derived_datatype/stencil.c

§ Solution available in rma/stencil_fence_put.c
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Exercise: Stencil with RMA Fence (GET model)

§ In the derived datatype version of the stencil code
– Used nonblocking communication

– Used derived datatypes

§ Let’s try to use RMA fence
– Move data with GET instead of send/recv

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_fence_get.c
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Lock/Unlock: Passive Target Synchronization

§ Passive mode: One-sided, asynchronous communication

– Target does not participate in communication operation

§ Shared memory-like model

106

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait



Passive Target Synchronization

§ Lock/Unlock: Begin/end passive mode epoch
– Target process does not make a corresponding MPI call
– Can initiate multiple passive target epochs to different processes
– Concurrent epochs to same process not allowed (affects threads)

§ Lock type
– SHARED: Other processes using shared can access concurrently
– EXCLUSIVE: No other processes can access concurrently

§ Flush: Remotely complete RMA operations to the target process
– After completion, data can be read by target process or a different process

§ Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)
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MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)



Advanced Passive Target Synchronization

§ Lock_all: Shared lock, passive target epoch to all other 
processes

– Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

§ Flush_all – remotely complete RMA operations to all 
processes

§ Flush_local_all – locally complete RMA operations to all 
processes
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MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)



NWChem [1]

§ High performance computational chemistry 
application suite

§ Quantum level simulation of molecular 
systems

– Very expensive in computation and data 
movement, so is used for small systems

– Larger systems use molecular level simulations
§ Composed of many simulation capabilities

– Molecular Electronic Structure
– Quantum Mechanics/Molecular Mechanics
– Pseudo potential Plane-Wave Electronic Structure
– Molecular Dynamics

§ Very large code base
– 4M LOC; Total investment of ~200M $ to date

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, 
"NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations" Comput. Phys. Commun. 181, 
1477 (2010)

Water (H2O)21

Carbon C20
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NWChem Communication Runtime

ARMCI  : Communication interface for RMA[3]

Global Arrays [2]

[2] http://hpc.pnl.gov/globalarrays
[3] http://hpc.pnl.gov/armci

ARMCI native ports

IB DMMAP …

MPI RMA

ARMCI-MPI

Abstractions for distributed arrays
Global Address Space

Physically distributed to different processes 

Hidden from user

Applications

Irregularly  access large amount of remote 
memory regions
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Get-Compute-Update

§ Typical Get-Compute-Update mode in GA programming

Perform DGEMM in local buffer 

for i in I blocks:
for j in J blocks:

for k in K blocks:
GET block a from A
GET block b from B
c += a * b   /*computing*/

end do 
ACC block c to C
NXTASK

end do
end do

Pseudo code

ACCUMULATE
block c

GET
block b

GET 
block a

All of the blocks are non-contiguous data

Mock figure showing 2D DGEMM with block-sparse 

computations.  In reality, NWChem uses 6D tensors.
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Which synchronization mode should I use, when?

§ RMA communication often has low overheads versus send/recv
– Two-sided: Matching, queuing, buffering, unexpected receives, etc…
– One-sided: No matching, no buffering, always ready to receive (but must 

separately sync the communication)
– Direct use of RDMA provided by high-speed interconnects (e.g. InfiniBand)

• Good two-sided implementations will also use RDMA, but must first match messages

§ Active mode: bulk synchronization
– E.g. ghost cell exchange

§ Passive mode: asynchronous data movement
– Useful when dataset is large, requiring memory of multiple nodes
– Also, when data access and synchronization pattern is dynamic
– Common use case: distributed, shared arrays

§ Passive target locking mode
– Lock/unlock – Useful when exclusive epochs are needed
– Lock_all/unlock_all – Useful when only shared epochs are needed
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Exercise: Stencil with RMA Lock_all/Unlock_all (PUT 
model)
§ In the fence and PSCW versions of the stencil code, RMA 

synchronization involves the target processes

§ Let’s try to use RMA Lock_all/Flush_all/Unlock_all
– Only the origin processes call RMA synchronization

– Still need Barrier for process synchronization (e.g., ensure neighbors 
have completed data update to my local window)

– Need Win_sync for memory synchronization 

§ Start from rma/stencil_fence_put.c

§ Solution available in rma/stencil_lock_put.c
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Advanced Topics: Hybrid Programming with 
Threads, Shared Memory, and Accelerators

https://anl.box.com/v/2019-ATPESC-MPI

https://anl.box.com/v/2019-ATPESC-MPI


Hybrid MPI + X : Most Popular Forms
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MPI + Threads
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Why Hybrid MPI+X? Towards Strong Scaling (1/3)

§ Strong scaling applications is 
increasing in importance

– Hardware limitations: not all 
resources scale at the same 
rate as cores (e.g., memory 
capacity, network resources)

– Desire to solve the same 
problem faster on a bigger 
machine

• Nek5000, HACC, LAMMPS
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Evolution of the memory capacity per core in the 
Top500 list (Peter Kogge. PIM & memory: The need for a 
revolution in architecture.)

Sunway
TaihuLight

§ Strong scaling pure MPI applications is getting harder
– On-node communication is costly compared to load/stores

– O(Px) communication patterns (e.g., All-to-all)  costly



Why Hybrid MPI+X? Towards Strong Scaling (2/3)
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§ MPI+X benefits (X= {threads,MPI shared-memory, etc.})
– Less memory hungry (MPI runtime consumption, O(P) data 

structures, etc.)

– Load/stores to access memory instead of message passing

– P is reduced by constant C (#cores/process) for O(Px) 
communication patterns

§ Example 1: the Nek5000 team is working at the strong 
scaling limit

Nek5000



Why Hybrid MPI+X? Towards Strong Scaling (3/3)

§ Example 2: Quantum Monte Carlo 
Simulation (QCMPACK)

– Size of the physical system to 
simulate is bound by memory 
capacity [1]

– Memory space dominated by large 
interpolation tables (typically several 
GB of storage)

– Threads are used to share those 
tables

– Memory for communication buffers 
must be kept low to be allow 
simulation of larger and highly 
detailed simulations.
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Shared large B-spline table

W W W W W W

Thread 0 Thread 1 Thread 2

MPI Process

Core Core Core

Communicate 
Walker 

information

W
Walker data

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.
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MPI + Threads: How To? (1/3)



§ MPI describes parallelism between 
processes (with separate address spaces)

§ Thread parallelism provides a shared-
memory model within a process

§ OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-

level parallelism. Threads are created and 
managed by the compiler, based on user 
directives.

– Pthreads provide more complex and dynamic 
approaches. Threads are created and managed 
explicitly by the user.
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MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI + Threads: How To? (2/3)



§ MPI_THREAD_SINGLE

– No additional threads

§ MPI_THREAD_FUNNELED

– Master thread communication only

§ MPI_THREAD_SERIALIZED

– Threaded communication serialized

§ MPI_THREAD_MULTIPLE

– No restrictions

•Restriction

•Low 
Thread-

Safety Costs

•Flexibility

•High 
Thread-

Safety Costs
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MPI   + Threads

Interoperability

Interoperation or thread levels:

MPI + Threads: How To? (3/3)



MPI’s Four Levels of Thread Safety

§ MPI defines four levels of thread safety -- these are 
commitments the application makes to the MPI

§ Thread levels are in increasing order
– If an application works in FUNNELED mode, it can work in SERIALIZED

§ MPI defines an alternative to MPI_Init
– MPI_Init_thread(int argc, char **argv, int requested, int *provided): 

Application specifies level it needs; MPI implementation returns level it 
supports

126



MPI_THREAD_SINGLE

§ There are no additional user threads in the system
– E.g., there are no OpenMP parallel regions

int buf[100];
int main(int argc, char ** argv)
{

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}
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MPI_THREAD_FUNNELED

§ All MPI calls are made by the master thread
– Outside the OpenMP parallel regions
– In OpenMP master regions

int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv,
MPI_THREAD_FUNNELED, &provided);

if (provided < MPI_THREAD_FUNNELED)
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join(…);

/* Do MPI stuff */

MPI_Finalize();
return 0;
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MPI Process

COMP.

COMP.

MPI COMM.

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);
return 0;

}



int buf[100];
int main(int argc, char ** argv)
{

int provided;
pthread_mutex_t mutex;

MPI_Init_thread(&argc, &argv,
MPI_THREAD_SERIALIZED, &provided);

if (provided < MPI_THREAD_SERIALIZED)
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

for (i = 0; i < 100; i++)
pthread_join(…);

MPI_Finalize();
return 0;

}

MPI_THREAD_SERIALIZED

§ Only one thread can make MPI calls at a time
– Protected by OpenMP critical regions
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COMP.
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void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);
pthread_mutex_lock(&mutex);
/* Do MPI stuff */
pthread_mutex_unlock(&mutex);
return 0;

}



int buf[100];
int main(int argc, char ** argv)
{

int provided;

MPI_Init_thread(&argc, &argv, 
MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_SERIALIZED) 
MPI_Abort(MPI_COMM_WORLD,1);

for (i = 0; i < 100; i++)
pthread_create(…,func,(void*)i);

MPI_Finalize();
return 0;

}

void* func(void* arg) {
int i = (int)arg;
compute(buf[i]);

/* Do MPI stuff */
…
return 0;

}

MPI_THREAD_MULTIPLE

§ Any thread can make MPI calls any time (restrictions apply)
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Threads and MPI

§ An implementation is not required to support levels higher 
than MPI_THREAD_SINGLE; that is, an implementation is not 
required to be thread safe

§ A fully thread-safe implementation will support 
MPI_THREAD_MULTIPLE

§ A program that calls MPI_Init (instead of MPI_Init_thread) 
should assume that only MPI_THREAD_SINGLE is supported

§ A threaded MPI program that does not call MPI_Init_thread is 

an incorrect program (common user error we see)

– But rarely causes problems except for when MPI_THREAD_MULTIPLE 
required
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MPI Semantics and MPI_THREAD_MULTIPLE

§ Ordering: When multiple threads make MPI calls concurrently, 
the outcome will be as if the calls executed sequentially in some 
(any) order

– Ordering is maintained within each thread
– User must ensure that collective operations on the same communicator, 

window, or file handle are correctly ordered among threads
• E.g., cannot call a broadcast on one thread and a reduce on another thread on 

the same communicator

– It is the user's responsibility to prevent races when threads in the same 
application post conflicting MPI calls 

• E.g., accessing an info object from one thread and freeing it from another 
thread

§ Progress: Blocking MPI calls will block only the calling thread and 
will not prevent other threads from running or executing MPI 
functions
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)
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Thread 0

Thread 1



Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

§ P0 and P1 can have different orderings of Bcast and Barrier
§ Here the user must use some kind of synchronization to 

ensure that either thread 1 or thread 2 gets scheduled first on 
both processes 

§ Otherwise a broadcast may get matched with a barrier on the 
same communicator, which is not allowed in MPI

Process 0
Thread 1                        Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)
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Process 1
Thread 1 Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)



Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Object Management

§ The user has to make sure that one thread is not using an 
object while another thread is freeing it

– This is essentially an ordering issue; the object might get freed before 
it is used
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Process 0
Thread 1 Thread 2

MPI_Comm_free(comm)

MPI_Bcast(comm)



Blocking Calls in MPI_THREAD_MULTIPLE: Correct 
Example

§ An implementation must ensure that the above example 
never deadlocks for any ordering of thread execution

§ That means the implementation cannot simply acquire a 
thread lock and block within an MPI function. It must 
release the lock to allow other threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

136



The Current Situation

§ All MPI implementations support MPI_THREAD_SINGLE

§ They probably support MPI_THREAD_FUNNELED even if they 
don’t admit it.

– Does require thread-safety for some system routines (e.g. malloc)

– On most systems -pthread will guarantee it (OpenMP implies

-pthread )

§ Many (but not all) implementations support THREAD_MULTIPLE
– Hard to implement efficiently though (thread synchronization issues)

§ Bulk-synchronous OpenMP programs (loops parallelized with 
OpenMP, communication between loops) only need FUNNELED

– So don’t need “fully thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!
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Hybrid Programming: Correctness Requirements

§ Hybrid programming with MPI+threads does not do much to 
reduce the complexity of thread programming

– Your application still has to be a correct multi-threaded application

– On top of that, you also need to make sure you are correctly following 
MPI semantics

§ Many commercial debuggers offer support for debugging 
hybrid MPI+threads applications (mostly for MPI+Pthreads
and MPI+OpenMP)
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An Example we encountered

§ We received a bug report about a very simple 
multithreaded MPI program that hangs

§ Run with 2 processes

§ Each process has 2 threads

§ Both threads communicate with threads on the other 
process as shown in the next slide

§ We spent several hours trying to debug MPICH before 
discovering that the bug is actually in the user’s program L
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2 Proceses, 2 Threads (Each Thread Executes this Code)
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if (rank == 1) {
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

} else {  /* rank == 0 */
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

}



Intended Ordering of Operations

§ Every send matches a receive on the other rank

2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1
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Possible Ordering of Operations in Practice

§ Because the MPI operations can be issued in an arbitrary 
order across threads, all threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1
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MPI+OpenMP correctness semantics

§ MPI only specifies interoperability with 
threads, not with OpenMP (or any other high-
level programming model using threads)

– OpenMP iterations need to be carefully 
mapped to which thread executes them 
(some schedules in OpenMP make this 
harder)

§ For OpenMP tasks, the general model to use 
is that an OpenMP thread can execute one or 
more OpenMP tasks

– An MPI blocking call should be assumed to 
block the entire OpenMP thread, so other 
tasks might not get executed
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Applications

OpenMP, Cilk, 
TBB 

MPI
Pthreads or 

other threads
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OpenMP threads: MPI blocking Calls (1/2)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}

MPI_Finalize();

return 0;
}

Iteration to OpenMP thread mapping needs to explicitly be handled by the user; 

otherwise, OpenMP threads might all issue the same operation and deadlock



OpenMP threads: MPI blocking Calls (2/2)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

assert(omp_get_num_threads() > 1)
#pragma omp for schedule(static, 1)
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

MPI_Finalize();

return 0;
}

Either explicit/careful mapping of iterations to threads, or using nonblocking

versions of send/recv would solve this problem



OpenMP tasks: MPI blocking Calls (1/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < 100; i++) {

#pragma omp task
{
if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..);

}
}

}
MPI_Finalize();
return 0;

}

This can lead to deadlocks. No ordering or progress guarantees in OpenMP task 

scheduling should be assumed; a blocked task blocks it’s thread and tasks can be 

executed in any order.



OpenMP tasks: MPI blocking Calls (2/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Send(.., to_myself, ..);

else
MPI_Recv(.., from_myself, ..)

}
}

MPI_Finalize();
return 0;

}

Same problem as before. 



OpenMP tasks: MPI blocking Calls (3/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);
else

MPI_Irecv(.., from_myself, .., &req);
MPI_Wait(&req, ..);

}
}

MPI_Finalize();
return 0;

}

Using nonblocking operations but with MPI_Wait inside the task region does not 

solve the problem



OpenMP tasks: MPI blocking Calls (4/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

MPI_Request req; int done = 0;
if (i % 2 == 0)

MPI_Isend(.., to_myself, .., &req);
else

MPI_Irecv(.., from_myself, .., &req);
While (!done) {

#pragma omp taskyield
MPI_Test(&req, &done, ..);

}
}

}
}

MPI_Finalize();
return 0;

}

Still incorrect; taskyield does not guarantee a task switch



OpenMP tasks: MPI blocking Calls (5/5)
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int main(int argc, char ** argv)
{

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);
MPI_Request req[100];

#pragma omp parallel
{

#pragma omp taskloop
for (i = 0; i < 100; i++) {

if (i % 2 == 0)
MPI_Isend(.., to_myself, .., &req[i]);

else
MPI_Irecv(.., from_myself, .., &req[i]);

}
}

MPI_Waitall(100, req, ..);
MPI_Finalize();
return 0;

}

Correct example. Each task is nonblocking.



Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with RMA
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int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different threads can lock the same process causing multiple locks to the 

same target before the first lock is unlocked



Exercise 1: Stencil in Funneled mode (1/2)
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Exercise 1: Stencil in Funneled mode (2/2)

§ Parallelize computation (OpenMP parallel for)

§ Main thread does all communication

§ Start from derived_datatype/stencil.c

§ Solution available in threads/stencil_funneled.c
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Exercise 2: Stencil in Multiple mode (1/2)
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Exercise 2: Stencil in Multiple mode (2/2)

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Start from threads/stencil_funneled.c

§ Solution available in threads/stencil_multiple.c
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Recommendation: Maximize independence 
between threads with communicators
§ Each thread accesses a different communicator

– Each communicator may be associated with isolated resource in an 
MPI implementation
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MPI_Comm *comms;
int nthreads = omp_get_num_threads();
comms = malloc(sizeof(MPI_Comm) * nthreads);

for (i = 0; i < nthreads; i++)
MPI_Comm_dup(MPI_COMM_WORLD, &comms[i]);

#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., comm[tid], &req[i]);}
}
MPI_Waitall(100, req, ..);

MPI

Comm[0]

T0

Comm[1]

T1

Comm[2]

T2

Comm[3]

T3

Hardware



Recommendation: Maximize independence 
between threads with ranks or tags (1/2)

§ Threads have to match all receive messages in 
sequential (e.g., a single receive-queue) if a 
wildcard receive may be posted

– Ensure ordering of message matching

§ Let MPI know if you do not use wildcard receive
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MPI
P0, 0

ANY_SRC
ANY_TAG

P2, 1
P0, 2
P2, 3

COMM

MPI_Info info;
info = MPI_Info_create();
MPI_Info_set(info, “no_any_source”,

“true”);
MPI_Comm_set_info(comm, info);
MPI_Info_free(&info);
/* Communicate without 

MPI_ANY_SOURCE */

– Info hints no_any_source, 
no_any_tag (accepted for 
inclusion in MPI-4)

– MPI can get rid of the single 
receive-queue for the 
communicator



Recommendation: Maximize independence 
between threads with ranks or tags (2/2)

§ Each thread communicates with different peer_rank or tag
– MPI may assign isolated resource for different set of [peer_rank + tag]
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#pragma omp parallel
{

int tid = omp_get_thread_num();
#pragma omp taskloop
for (i = 0; i < 100; i++)

MPI_Isend(.., peer_ranks[tid], tid,
comm, &req[i]);}

}
MPI_Waitall(100, req, ..);

MPI

Peer=P1

T0

Peer=P2

T1

Peer=P3

T2

Peer=P4

T3

Hardware

P0



Exercise 3: Stencil with Independent Communicators

§ Divide the process memory among OpenMP threads

§ Each thread responsible for communication and computation

§ Each thread uses a different communicator

§ Start from threads/stencil_multiple.c

§ Solution available in threads/stencil_multiple_ncomms.c
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MPI + Shared-Memory
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Hybrid Programming with Shared Memory

§ MPI-3 allows different processes to allocate shared memory 
through MPI

– MPI_Win_allocate_shared

§ Uses many of the concepts of one-sided communication

§ Applications can do hybrid programming using MPI or 
load/store accesses on the shared memory window

§ Other MPI functions can be used to synchronize access to 
shared memory regions

§ Can be simpler to program than threads
– Because memory locality is clear (needed for performance) and data 

sharing is explicit
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Creating Shared Memory Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type (MPI_COMM_TYPE_SHARED)

Shared memory 

communicator

MPI_Win_allocate_shared

Shared memory 

window

Shared memory 

window

Shared memory 

window

Shared memory 

communicator

Shared memory 

communicator
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Load/store

Regular RMA windows vs. Shared memory windows

§ Shared memory windows allow 
application processes to directly 
perform load/store accesses on 
all of the window memory

– E.g., x[100] = 10

§ All of the existing RMA functions 
can also be used on such 
memory for more advanced 
semantics such as atomic 
operations

§ Can be very useful when 
processes want to use threads 
only to get access to all of the 
memory on the node

– You can create a shared memory 
window and put your shared data

Local 
memory

P0

Local 
memory

P1

Load/store
PUT/GET

Traditional RMA windows

Load/store

Local memory

P0 P1

Load/store

Shared memory windows

Load/store
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MPI_COMM_SPLIT_TYPE

§ Create a communicator where processes “share a property”
– Properties are defined by the “split_type”

– In MPI 3.1, only split_type is MPI_COMM_TYPE_SHARED

§ Arguments:
– comm - input communicator (handle)

– Split_type - property of the partitioning (integer)

– Key - Rank assignment ordering (nonnegative integer)

– info - info argument (handle)

– newcomm- output communicator (handle)
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MPI_Comm_split_type(MPI_Comm comm, int split_type,
int key, MPI_Info info, MPI_Comm *newcomm)



MPI_WIN_ALLOCATE_SHARED

§ Create a remotely accessible memory region in an RMA window
– Data exposed in a window can be accessed with RMA ops or load/store

§ Arguments:
– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)
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MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)



Shared Arrays with Shared memory windows
int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}
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Memory allocation and placement

§ Shared memory allocation does not need to be uniform 
across processes

– Processes can allocate a different amount of memory (even zero)

§ The MPI standard does not specify where the memory would 
be placed (e.g., which physical memory it will be pinned to)

– Implementations can choose their own strategies, though it is 
expected that an implementation will try to place shared memory 
allocated by a process “close to it”

§ The total allocated shared memory on a communicator is 
contiguous by default

– Users can pass an info hint called “noncontig” that will allow the MPI 
implementation to align memory allocations from each process to 
appropriate boundaries to assist with placement
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Exercise: Stencil with Shared Memory

§ Message passing model requires ghost-cells to be explicitly 
communicated to neighbor processes

§ In the shared-memory model, there is no communication.  
Neighbors directly access your data.

§ Start from rma/stencil_lock_put.c

§ Solution available in shared_mem/stencil.c

load
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What should you use: Threads or Process Shared 
Memory
§ It depends on the application, target machine, and MPI 

implementation

§ When should I use process shared memory?
– The only resource that needs sharing is memory

– Few allocated objects need sharing (easy to place them in a public shared 
region)

§ When should I use threads?
– More than memory resources need sharing (e.g., TLB)

– Many application objects require sharing

– Application computation structure can be easily parallelized with high-
level OpenMP loops
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Shortcomings: Restricted Allocation Methods

§ In MPI-3 shared memory, memory allocation is restrictive
– Allocation has to be done using the MPI call

– Cannot use the plethora of other memory allocation libraries out 
there, e.g., cannot allocate aligned memory (important for 
vectorization)

§ With threads, most of those other memory allocation 
techniques are directly usable
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MPI + Accelerators
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Accelerators in Parallel Computing

§ General purpose, highly parallel processors
– High FLOPs/Watt
– Unit of execution Kernel

– Separate physical memory subsystems
– Programming Models: OpenAcc, CUDA, OpenCL, …

§ Clusters with accelerators are becoming 
common

§ New programmability and performance 
challenges for programming models and 
runtime systems
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MPI + Accelerator Programming Examples
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GPU

Memory

CPU

Memory

Network 
Card

GPU

Memory

CPU

Memory

Network 
Card

How to move data between GPUs with MPI?

Real answer: It depends on what GPU library, what hardware and what MPI 
implementation you are using

Simple answer: For modern GPUs, “just like you would with a non-GPU machine”



CUDA Awareness in MPI

§ The MPI standard does not explicitly require GPU support
– Each MPI implementation can choose whether or not it wants to 

support GPUs

§ Current status: Many, but not all, MPI implementations 
support CUDA

– Already supported by MVAPICH, Open MPI, Spectrum MPI

§ You can use GPUs even with MPI implementations that do not 
support CUDA, but data movement will need to be explicit

– MPI does not understand data residing on GPUs

§ With CUDA-aware MPI implementations, some things are 
automatically handled by the MPI library
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Non-CUDA-aware MPI implementations: 
Programmability Limitations (1/2)
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CU
DA

double *buf;
buf = (double*)malloc(size * sizeof(double));
#pragma acc enter data create(buf[0:size])

if(my_rank == sender) {
computation_on_GPU(buf);
#pragma acc update host (buf[0:size])
MPI_Isend(buf, size, …);

} else {
MPI_Recv(buf, size, …);
#pragma acc update device (buf[0:size])
computation_on_GPU(buf);

}

O
pe

nA
CC

double *dev_buf, *host_buf;
cudaMalloc(&dev_buf, size);
cudaMallocHost(&host_buf, size);

if(my_rank == sender) {
computation_on_GPU(dev_buf);
cudaMemcpy(host_buf, dev_buf, size, …);
MPI_Isend(host_buf, size, …);

} else {
MPI_Recv(host_buf, size, …);
cudaMemcpy(dev_buf, host_buf, size, …);
computation_on_GPU(dev_buf);

}



Non-CUDA-aware MPI implementations: 
Programmability Limitations (2/2)
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computation_on_GPU(dev_buf);
cudaMemcpy(host_buf, dev_buf, size, …);
MPI_Isend(host_buf, size, …);

MPI_Recv(host_buf, size, …);
cudaMemcpy(dev_buf, host_buf, size, …);
computation_on_GPU(dev_buf);

CUDA

computation_on_GPU(buf);
#pragma acc update host (buf[0:size])
MPI_Isend(buf, size, …);

MPI_Recv(buf, size, …);
#pragma acc update device (buf[0:size])
computation_on_GPU(buf);

OpenACC

1 532 4

MPI assumes host memory
The user ensures that host memory is synchronized

Using cudaMemcpyAsync before MPI_Isend would be incorrect



MPI Process 1 MPI Process 2

Non-CUDA-aware MPI implementations:
Performance Limitations
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GPU

Memory

CPU

Memory

1 532 4

GPU

Memory

Inefficient intra-node GPU data transfer

Host copy to network buffer

Device-Host data transfer Host processing

Network data transfer

GPU Idle

GPU Idle

Inefficient bulk-synchronous and GPU-wasteful data 
transfer model

§ Inefficient intranode GPU-GPU data 
transfer between MPI processes
– Several DMA and memory copies on 

the critical path

§ Inefficient bulk-synchronous transfer 
model
– The CPU cannot trigger the MPI data 

transfer until the GPU completed the 
device-host data transfer

§ Inefficient GPU resource utilization
– The GPU could potentially be idle 

while the host handles MPI 
communication



CUDA-aware MPI implementation requirements
§ CUDA-awareness in MPI requires the Unified 

Virtual Address (UVA) feature of GPUs, at the very 
least

– Introduced in CUDA-4.0
– Host memory and all GPUs share the same virtual 

address space
– The user can query the location of the data 

allocation given a pointer in the unified address 
space with cuPointerGetAttribute()

§ GPU Direct 1.0, GPU Direct 2.0 and GPU Direct 
RDMA are not required for correctness, but 
improve performance

– Needs to be supported by the GPU and the network
– This is the state-of-the-art for modern NVIDIA GPUs 

and Mellanox InfiniBand, but might not be 

supported by other GPUs or other networks
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CUDA-aware MPI implementations: Programmability
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CU
DA

computation_on_GPU(buf);
#pragma acc host_data use_device (buf)
MPI_Isend(buf, size, …);

#pragma acc host_data use_device (buf)
MPI_Recv(buf, size, …);
computation_on_GPU(buf);

O
pe

nA
CC

§ User can pass device pointer to MPI
§ MPI implementation can query for the 

owner (host or device) of the data 
§ If the data is on the device, the MPI 

implementation can handle data transfer 
from GPU to the network

computation_on_GPU(dev_buf);
MPI_Isend(dev_buf, size, …);

MPI_Recv(dev_buf, size, …);
computation_on_GPU(dev_buf);

MPI can transparently 
figure out the physical 

location of the data

Network pinned 
memory

GPU

GPU MemoryCPU

Host 
Memory

CPU copy to 
pinned memory 

Direct Memory 
Access (DMA)

void* d_data

Network 
Card

Example of MPI moving data from the 
GPU device to the network

GPU pinned  memory

void* h_data

RDMA

MPI moving data



CUDA-aware MPI implementations: Performance (2/3)
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§ GPUDirect 1.0 (Q2’ 2010)
– Avoid unnecessary system 

memory copies  copying data 
directly to/from pinned 
CUDA host memory

– RDMA can use directly the CUDA 
pinned memory

– Required kernel driver updates
§ GPUDirect 2.0 (Peer-to-Peer, 2011)

– GPU peer-to-peer data transfers 
are possible

– MPI can directly move data 
between GPU devices 

GPU

GPU MemoryCPU

Host 
Memory

Direct Memory 
Access (DMA)

void* d_data

Network 
Card

MPI with GPUDirect 1.0
RDMA

Pinned memory available to 
network and GPU devices

MPI Process 1 MPI Process 2

GPU

Memory

CPU

Memory

GPU

Memory

MPI with GPUDirect 2.0

Peer-to-Peer DMA transfer between GPUs



CUDA-aware MPI implementations: Performance (3/3)

181

§ GPUDirect RDMA
– CUDA >= 5, 2013
– Technology introduced in Kepler-class GPUs and CUDA-5
– GPU memory is directly accessible to third-party devices, 

including network interfaces
– RDMA operations to/from the device memory are possible and 

completely bypass the host memory

GPU

GPU Memory
CPU

Host 
Memory

void* d_data

Network 
Card

RDMA

MPI with GPUDirect RDMA



Section Summary

§ Programming with accelerators is becoming increasingly 
important

§ MPI is playing its role in enabling the usage of accelerators 
across distributed memory nodes

§ The situation with MPI + GPU support is improving in both 
MPI implementations and in GPU hardware/software 
capabilities
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Process Topologies and 
Neighborhood Collectives
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Topology Mapping Basics

§ First type: Allocation mapping (when job is submitted)
– Up-front specification of communication pattern

– Batch system picks good set of nodes for given topology

§ Properties:
– Not  widely supported by current batch systems

– Either predefined allocation (BG/P), random allocation, or “global 
bandwidth maximization”

– Also problematic to specify communication pattern upfront, not 
always possible (or static)
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Topology Mapping Basics contd.

§ Rank reordering 
– Change numbering in a given allocation to reduce congestion or 

dilation

– Sometimes automatic (early IBM SP machines)

§ Properties
– Always possible, but effect may be limited (e.g., in a bad allocation)

– Portable way: MPI process topologies
• Network topology is not exposed

– Manual data shuffling after remapping step
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On-Node Reordering

Naïve Mapping Optimized Mapping

Topomap

Gottschling and Hoefler: Productive Parallel Linear Algebra Programming with Unstructured Topology 
Adaption, 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2012 186



Off-Node (Network) Reordering

Application Topology Network Topology

Naïve Mapping Optimal Mapping

Topomap
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MPI Topology Intro

§ Convenience functions (in MPI-1)
– Create a graph and query it, nothing else

– Useful especially for Cartesian topologies
• Query neighbors in n-dimensional space

– Graph topology: each rank specifies full graph L

§ Scalable Graph topology (MPI-2.2)
– Graph topology: each rank specifies its neighbors or an arbitrary 

subset of the graph

§ Neighborhood collectives (MPI-3.0)
– Adding communication functions defined on graph topologies 

(neighborhood of distance one)
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MPI Topology Realities
§ Cartesian Topologies

– MPI_Dims_create is required to provide a “square” decomposition
• May not match underlying physical network

• Even if it did, hard to define unless physical network is mesh or torus

– MPI_Cart_create is supposed to provide a “good” remapping (if requested)
• But implementations are poor and may just return the original mapping

§ Graph Topologies
– The general process mapping problem is very hard

– Many implementations are poor

– Some research work has developed tools to create better mappings
• You can use them with MPI_Comm_dup to create a “well ordered” communicator 

§ Neighborhood collectives
– MPI-3 introduced these; permit collective communication with just the 

neighbors as defined by the MPI process topology

– Offers opportunities for the MPI implementation to optimize
189



MPI_Dims_create

§ Create dims array for Cart_create with nnodes and ndims
– Dimensions are as close as possible (well, in theory)

§ Non-zero entries in dims will not be changed
– nnodes must be multiple of all non-zeroes in dims

MPI_Dims_create(int nnodes, int ndims, int *dims)
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MPI_Dims_create Example

§ Makes life a little bit easier
– Some problems may be better with a non-square layout though

int p;
int dims[3] = {0,0,0};
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);
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MPI_Cart_create

§ Specify ndims-dimensional topology
– Optionally periodic in each dimension (Torus)

§ Some processes may return MPI_COMM_NULL
– Product of dims must be ≤ P

§ Reorder argument allows for topology mapping
– Each calling process may have a new rank in the created communicator

– Data has to be remapped manually

MPI_Cart_create(MPI_Comm comm_old, int ndims, 
const int *dims, const int *periods, int reorder, 
MPI_Comm *comm_cart)
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MPI_Cart_create Example

§ Creates logical 3-d Torus of size 5x5x5

§ But we’re starting MPI processes with a one-dimensional 
argument (-p X)

– User has to determine size of each dimension

– Often as “square” as possible, MPI can help!

int dims[3] = {5,5,5};
int periods[3] = {1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);
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Cartesian Query Functions

§ Library support and convenience!

§ MPI_Cartdim_get()
– Gets dimensions of a Cartesian communicator

§ MPI_Cart_get()
– Gets size of dimensions

§ MPI_Cart_rank()
– Translate coordinates to rank

§ MPI_Cart_coords()
– Translate rank to coordinates
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Cartesian Communication Helpers

§ Shift in one dimension
– Dimensions are numbered from 0 to ndims-1

– Displacement indicates neighbor distance (-1, 1, …)

– May return MPI_PROC_NULL

§ Very convenient, all you need for nearest neighbor 
communication

MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)
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Neighborhood Collectives

196



MPI_Neighbor_allgather

§ Sends the same message to all neighbors

§ Receives indegree distinct messages

§ Similar to MPI_Gather
– The all prefix expresses that each process is a “root” of his 

neighborhood

§ Also a vector “v” version for full flexibility

MPI_Neighbor_allgather(const void* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, MPI_Comm comm)
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MPI_Neighbor_alltoall

§ Sends outdegree distinct messages

§ Received indegree distinct messages

§ Similar to MPI_Alltoall
– Neighborhood specifies full communication relationship

§ Vector and w versions for full flexibility

MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, MPI_Comm comm)
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Nonblocking Neighborhood Collectives

§ Very similar to nonblocking collectives

§ Collective invocation

§ Matching in-order (no tags)
– No wild tricks with neighborhoods! In order matching per 

communicator!

MPI_Ineighbor_allgather(…, MPI_Request *req); 
MPI_Ineighbor_alltoall(…, MPI_Request *req);
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Section Summary

§ MPI does not expose information about the network topology 
(would be very complex)

§ Topology functions allow users to specify application 
communication patterns/topology

– Convenience functions (e.g., Cartesian)

– Storing neighborhood relations (Graph)

§ Neighborhood collectives allow user virtual topologies to be 
exploited in collective communication
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Concluding Remarks

§ Parallelism is critical today, given that that is the only way to 
achieve performance improvement with the modern hardware

§ MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and 

public domain)

– Virtually every system in the world supports MPI

§ Gives user explicit control on data management

§ Widely used by many scientific applications with great success
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Web Pointers
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§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, NEC MPI, Fujitsu MPI, …

§ Several MPI tutorials can be found on the web

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.open-mpi.org/


Tutorial Books on MPI
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Basic MPI Advanced MPI, including MPI-3


