A Tutorial Introduction to RAJA

ATPESC19

August 1, 2019

Rich Hornung (hornung1@llnl.gov)
Arturo Vargas (vargas45@llnl.gov)
With contributions from the rest of the RAJA Team
Welcome to the RAJA tutorial

- Today, we will present RAJA, how to use it, and how it enables performance portability
- We will also present background material that will be help you think about key issues in parallel computing
- Our discussion will contain both lecture materials and hands-on exercises
- Our main objective is that you learn enough today to start using RAJA in your own code development

During the tutorial...

Please don’t hesitate to ask any question at any time
We value your feedback...

- If you have comments, questions, suggestions, etc., please let us know
 - Join our Google Group (linked on RAJA Github project home page)
 - Or send email to our project email list: raja-dev@llnl.gov

- We appreciate specific, concrete feedback that helps us improve this tutorial
RAJA and performance portability

- RAJA is a **library of C++ abstractions** that enable you to write **single-source** loop kernels that can be run on different platforms by re-compiling your code
 - Multicore CPUs, Xeon Phi, NVIDIA GPUs, …

- RAJA helps you **insulate your code** from hardware and programming model-specific implementation details
 - SIMD vectorization, OpenMP, CUDA, …

- RAJA supports a variety of **parallel patterns** and **performance tuning** options
 - Simple and complex loop kernels
 - Reductions, scans, atomic operations
 - Loop tiling, thread-local data, GPU shared memory, …

RAJA provides building blocks that extend the generally-accepted “**parallel for**” idiom.
RAJA design goals emphasize usability and developer productivity

- Applications should maintain **single-source kernels** (as much as possible)
- Easy to understand and use for app developers (most are not CS experts)
- Allow **incremental and selective adoption**
- Don’t force major disruption to application source code
- Promote flexible algorithm implementations via **clean encapsulation**
- Make it **easy to parameterize execution** via type aliases
- Enable **systematic performance tuning**

RAJA is developed collaboratively with production application teams.
RAJA features are supported for a variety of programming model back-ends

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & IndexSets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Green** = available
- **Yellow** = work in progress
- **Red** = not available (yet)
RAJA is an open source project on Github

https://github.com/LLNL/RAJA
Related projects and other materials...

- **RAJA User Guide**: getting started info, details about today’s topics, and more!
- **RAJA Performance Suite**: Collection of loop patterns used to assess compilers and RAJA performance. Used by vendors, DOE platform procurement benchmark, etc.
- **CHAI**: Array abstraction library that automatically migrates data as needed based on RAJA execution contexts

These are linked on the RAJA Github project.
You will need to do some simple preparation before attempting the tutorial exercises

- We’ve set up two options for you:
 - Docker container for your laptop (Mac only)
 - ALCF machines (Cooley and Theta)
 - Get the RAJA code, and put it someplace in your home directory on those machines:
 - `git clone --recursive https://github.com/LLNL/RAJA.git`
 - `cd RAJA`
 - `git checkout ATPESC2019` (a branch we have set up for this tutorial)

Please try to do this before we get to the exercises.
If you will use the Docker container...

- You will need to install Docker Desktop (or similar)
 - See https://docs.docker.com/install if you need to do this
 - Create account if needed. Login. Download image for your OS. Install on your machine.

- Get the RAJA tutorial Docker container
 - Run the following command:
    ```bash
docker run -it rajaorg/raja-tutorial:atpesc19
    ```
 - This puts you into a bash terminal inside the Docker container, which already has RAJA installed

Please try to do this before we get to the exercises.
Before we dig into RAJA, we will discuss some things that are helpful to keep in mind during the tutorial…
Why are we interested in parallel computing?

- We hope that when we can perform multiple operations simultaneously, our applications will run faster.
Parallel computing comes in various forms

- What are some forms of parallel computing?
Parallel computing comes in various forms

What are some forms of parallel computing?

- **Instruction-level Parallelism (ILP)** – multiple machine instructions run at the same time
 - Typically, the result of compiler optimizations for specific hardware
 - Instruction pipelining
 - Out-of-order execution
 - Branch prediction
 - Etc.

The amount of available parallelism depends on how many operations can be performed simultaneously.
Parallel computing comes in various forms

- **Instruction-level Parallelism (ILP)** – multiple machine instructions run at the same time
- **Task (functional) parallelism** – tasks run in parallel using same or different data

The amount of available parallelism depends on the number of independent tasks.
Parallel computing comes in various forms

- **Instruction-level Parallelism (ILP)** – multiple machine instructions run at the same time

- **Task (functional) parallelism** – tasks run in parallel using same or different data

- **Data Parallelism** – same operation is applied to different subsets of data; e.g., SIMD vectorization

The amount of available parallelism is proportional to size of input data

```c
for (int i = 0; i < N; ++i) {
    a[i] = b[i] + c[i];
}
```
Parallel computing comes in various forms

- **Instruction-level Parallelism (ILP)** – multiple machine instructions run at the same time
- **Task (functional) parallelism** – tasks run in parallel using same or different data
- **Data Parallelism** – same operation is applied to different subsets of data

```
for (int i = 0; i < N; ++i) {
    a[i] = b[i] + c[i];
}
```

If this loop runs in T time units on one process/thread, we hope it will run in T / M time units in parallel on M processors/threads ($M \leq N$)

This tutorial focuses on “fine-grained” (loop-level) data parallelism.
Data dependencies are a key inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could **write to the same memory location at the same time (race condition)**
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time (race condition)
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```java
double sum = 0.0;
for (int i = 0; i < N; ++i) {
    sum += a[i];
}
```
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time (race condition)
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```java
double sum = 0.0;
for (int i = 0; i < N; ++i) {
    sum += a[i];
}
```

Each loop iteration writes to ‘sum’

We’ll discuss RAJA reductions later in the tutorial.
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```c
for (int i = 0; i < N; ++i) {
    x[i] = x[i-1] + y[i];
}
```
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```java
for (int i = 0; i < N; ++i) {
    x[i] = x[i-1] + y[i];
}
```

`x[i-1]` must be computed before `x[i]` (loop-carried dependence)

Sometimes algorithms must be rewritten to enable parallelism.
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```c
for (int r = 0; r < N; ++r) {
    for (int c = 0; c < N; ++c) {
        A[r][c] = A[c][r];
    }
}
```
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```java
for (int r = 0; r < N; ++r) {
    for (int c = 0; c < N; ++c) {
        A[r][c] = A[c][r];
    }
}
```

A(c, r) and A(r, c) depend on each other
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```java
for (int i = 0; i < N; ++i) {
    x[i] = y[i+1] - y[i];
}
```
Data dependencies are a main inhibitor of parallelism

- A data dependence occurs when multiple threads or tasks could write to the same memory location at the same time
 - This can cause an algorithm to produce non-deterministic results (order-dependent)
 - Example: a for-loop where not all loop iterations are independent

What’s the issue?

```c
for (int i = 0; i < N; ++i) {
    x[i] = y[i+1] - y[i];
}
```

There is no issue. All loop iterations are independent.
Amdahl’s law tells us the maximum theoretical “speedup” we can achieve in a parallel program

- Amdahl’s law:

 \[S(n) = \frac{1}{(1 - p) + \frac{p}{n}} \]

 \(S(n) \) is the theoretical maximum speedup of a fixed workload run in parallel with \(n \) processors.

 \(p \) is the proportion of **sequential** run time (1 processor) of the parts of the program that can run in parallel.
Amdahl’s law tells us the maximum theoretical “speedup” we can achieve in a parallel program

- Amdahl’s law

 \[S(n) = \frac{1}{(1 - p) + \frac{p}{n}} \]

 \(S(n) \) is the theoretical maximum speedup of a fixed workload run in parallel with \(n \) processors

 \(p \) is the proportion of sequential run time (1 processor) of the parts of the program that can run in parallel

- Theoretical speedup can increase as we run on more processors. But, for a fixed workload, we cannot continue to add processors and expect additional speedup.
Amdahl’s law tells us the maximum theoretical “speedup” we can achieve in a parallel program

- Amdahl’s law
 \[S(n) = \frac{1}{(1 - p) + \frac{p}{n}} \]
 \(S(n) \) is the theoretical maximum speedup of a fixed workload run in parallel with \(n \) processors
 \(p \) is the proportion of sequential run time (1 processor) of the parts of the program that can run in parallel

- Theoretical speedup can increase as we run on more processors. But, for a fixed workload, we cannot continue to add processors and expect additional speedup.

If only 50% of an application can run in parallel (\(p = 0.5 \)), what does Amdahl’s law tell us the maximum speedup we could observe on any number of processors?
Amdahl’s law tells us the maximum theoretical “speedup” we can achieve in a parallel program

- Amdahl’s law

\[S(n) = \frac{1}{(1 - p) + \frac{p}{n}} \]

\(S(n) \) is the theoretical maximum speedup of a fixed workload run in parallel with \(n \) processors

\(p \) is the proportion of sequential run time (1 processor) of the parts of the program that can run in parallel

- Theoretical speedup can increase as we run on more processors. But, for a fixed workload, we cannot continue to add processors and expect additional speedup.

If only 50% of an application can run in parallel (\(p = 0.5 \)), what does Amdahl’s law tell us the maximum speedup we could observe on any number of processors? \(2x \)

Try plugging other values of \(p \), between 0 and 1, into the formula.
Theoretical speedup is always limited by sequential portions of your code

- Amdahl’s law

\[S(n) = \frac{1}{(1 - p) + \frac{p}{n}} \]

- Note the following:

\[S(n) \leq \frac{1}{(1 - p)} \]

\[\lim_{n \to \infty} S(n) = \frac{1}{1 - p} \]

\(S(n) \) is the theoretical maximum speedup of a fixed workload run in parallel with \(n \) processors.

\(p \) is the proportion of sequential run time (1 processor) of the parts of the program that can run in parallel.
How do we measure what we actually gain from parallelism?

- **Parallel Speedup**
 \[S_n = \frac{T_1}{T_n} \]

- **Parallel Efficiency**
 \[E_n = \frac{S_n}{n} \]

Good to know

\[S_n = n \ (E_n = 1) \]

“Perfect (ideal) scaling”

- \(T_1 \) is sequential run time
- \(T_n \) is run time using \(n \) processes or threads
How do we measure what we actually gain from parallelism?

- Compare sequential run time and parallel run time

\[S_n = n \ (E_n = 1) \]

“Perfect (Ideal) scaling”

In reality, \(S_n < n \ (E_n < 1) \) most of the time!
How do we measure how much we gain from parallelism?

- Compare sequential run time and parallel run time

\[S_n = n \quad (E_n = 1) \rightarrow \text{“Perfect (Ideal) scaling”} \]

In reality, why is \(S_n < n \quad (E_n < 1) \) most of the time?

- Synchronization overhead

Master process/thread

Parallel processes/threads

“fork”

“join”

How do we measure how much we gain from parallelism?

- "fork"
- "join"
How do we measure how much we gain from parallelism?

- Compare sequential run time and parallel run time

$$S_n = n \ (E_n = 1)$$

“Perfect (Ideal) scaling”

In reality, why is $S_n < n \ (E_n < 1)$ most of the time?
- Synchronization overhead
- Communication overhead

Parallel processes/threads

Data exchange

Parallel processes/threads

How do we measure how much we gain from parallelism?
How do we measure how much we gain from parallelism?

- Compare sequential run time and parallel run time

\[S_n = n \ (E_n = 1) \]

“Perfect (Ideal) scaling”

In reality, why is \(S_n < n \ (E_n < 1) \) most of the time?

- Synchronization overhead
- Communication overhead
- Load imbalance

Parallel processes/threads

- \(\text{sync} \) and \(\text{idle} \)

How do we measure how much we gain from parallelism?
How do we measure how much we gain from parallelism?

- Compare sequential run time and parallel run time

\[S_n = n \left(E_n = 1 \right) \]

“Perfect (Ideal) scaling”

In reality, why is \(S_n < n \) \((E_n < 1) \) most of the time?

- Synchronization overhead
- Communication overhead
- Load imbalance
- Many algorithms contain sections that do not benefit from parallelization; e.g., parts that are inherently serial (remember Amdahl’s law)
Something to ponder….

- Recall definition of parallel speedup
 \[S_n = \frac{T_1}{T_n} \]

 Theoretically, it is **not** possible for \(S_n > n \) because of Amdahl’s Law.

 In practice, it is possible to observe \(S_n > n \). This is called “superlinear speedup”.

 How can this happen?

- A useful reference on superlinear speedup:
Understanding basic architecture features helps to program for good performance

- Modern multi-core CPUs have a hierarchy of memory levels
 - Some are local to each core: registers, caches
 - Some memory is shared with other cores or CPUs: caches, node local memory

![Diagram of a multi-core CPU with levels of memory: Registers, L1 Cache, L2 Cache, L3 Cache (shared), Local Memory (DRAM).]
Modern multi-core CPUs have a hierarchy of memory levels
- Some are local to each core: registers, caches
- Some memory is shared with other cores or CPUs: caches, node local memory

Data move through the memory hierarchy to each processor core as they are used and migrate away when not used

Memory capacity and access times increase significantly as you get farther away from the processors

Levels closer to a core have higher **bandwidth** (speed) and lower **latency** (delay)
Understanding basic architecture features helps to program for good performance

- GPUs have multiple streaming multiprocessors (SMs) and a memory hierarchy
 - Some memory levels are local to each SM, some are shared by SMs
Understanding basic architecture features helps to program for good performance

- GPUs have multiple streaming multiprocessors (SMs) and a memory hierarchy
 - Some levels are local to each SM, some are shared by SMs

- Each SM has a "large" register file, an L1 cache and shared memory (accessible by all threads in each thread block)
 - These have high bandwidth and very low latency

- A unified cache (L2) is shared by all SMs
 - Supports fast atomic memory operations

- Main memory (DRAM) is accessible by GPU and host CPU (e.g., host-device copy)
Reducing memory motion is critical for good performance

- General “rules of thumb”
 - Place data that are used together close in memory: (cache) locality – spatial and temporal
 - Consider data access patterns when designing algorithms
Reducing memory motion is critical for good performance

- General “rules of thumb”
 - Place data that are used together close in memory (cache) **locality** – spatial and temporal
 - Consider data access patterns when designing algorithms

- Memory coalescing is **very** important for GPU performance
 - Multiple memory accesses are combined into a single memory transaction
 - With CUDA, you typically want all 32 threads in a warp to read operands & write results in as few transactions as possible and avoid serialized memory access
 - Avoid memory accesses that are non-sequential, sparse, or misaligned

- Useful references:
 - “Introduction to GPGPU and CUDA Programming” by Philip Nee (https://cvw.cac.cornell.edu/GPU/default)
Before we dig into RAJA…

...a few other things to mention
RAJA makes heavy use of C++ templates

- Templates enable one to write *generic* code and have the *compiler* generate a specific implementation for each set of template parameter types you specify.

- Here, “ExecPol”, “IdxType”, “LoopBody” are C++ types you specify at *compile-time*.

```cpp
template <typename ExecPol, typename IdxType, typename LoopBody>
forall(IdxType&& idx, LoopBody&& body) {
    ...
}
```
RAJA makes heavy use of C++ templates

RAJA makes heavy use of C++ templates

- Here, “ExecPol”, “IdxType”, “LoopBody” are C++ types you specify at compile-time.

- “IdxType” and “LoopBody” types are deduced by the compiler based on what you specify.

```cpp
template <typename ExecPol,
          typename IdxType,
          typename LoopBody>
forall(IdxType&& idx, LoopBody&& body) {
  ...  
}
```

```cpp
forall<seq_exec>( RangeSegment(0, N), ...  
// loop body  
);  
```
You pass a loop body to RAJA as a C++ lambda expression (C++11)

A C++ lambda expression is a closure that stores a function with a data environment

A lambda expression is like a functor, but much easier to use

```
forall<seq_exec>(RangeSegment(0, N),
    [=] (int i) {
        a[i] += b[i] * c;
    });
```

Like this…
A lambda expression has the following form

```
forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
    a[i] += b[i] * c;
});
```

[capture list] (parameter list) {function body}
Users pass loop bodies to RAJA as C++ lambda expressions (C++11)

A lambda expression has the following form

```
forall<seq_exec>(RangeSegment(0, N), [=] (int i) {
    a[i] += b[i] * c;
});
```

- The **capture list** specifies how variables (outer scope) are pulled into lambda data environment
 - Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.
 - **We recommend using capture by-value** in all cases, as shown above
Users pass loop bodies to RAJA as C++ lambda expressions (C++11)

- A lambda expression has the following form
 \[
 \text{[capture list]} \ (\text{parameter list}) \ \{\text{function body}\}
 \]

- The **capture list** specifies how variables (outer scope) are pulled into lambda data environment
 - Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.
 - **We recommend using capture by-value** in all cases, as shown above

- The **parameter list** are arguments passed to lambda function body; e.g., \((\text{int } i)\) is “loop variable”
Users pass loop bodies to RAJA as C++ lambda expressions (C++11)

- A lambda expression has the following form

 $$forall<seq_exec>(RangeSegment(0, N), [=] (int i) \{
 a[i] += b[i] * c;
 \});$$

- The **capture list** specifies how variables (outer scope) are pulled into lambda data environment
 - Value or reference ([=] vs. [=])? By-value is required for GPU execution, when using RAJA reductions, etc.
 - **We recommend using capture by-value** in all cases, as shown above

- The **parameter list** are arguments passed to lambda function body; e.g., `(int i)` is “loop variable”

- A lambda used in a CUDA kernel requires a **device annotation**: `__[device] (...) { ... }`
A lambda expression has the following form

\[
\text{[capture list]} \ (\text{parameter list}) \ \{\text{function body}\}
\]

- The capture list specifies how variables (outer scope) are pulled into lambda data environment
 - Value or reference ([=] vs. [&])? By-value is required for GPU execution, when using RAJA reductions, etc.
 - **We recommend using capture by-value** in all cases, as shown above

- The parameter list are arguments passed to lambda function body; e.g., \((\text{int } i)\) is “loop variable”

A lambda used in a CUDA kernel requires a device annotation: \([=] \text{_device_} (\ldots) \ {\ldots}\)
“Bring your own” memory management

- RAJA **does not** provide a memory model (by design)
 - Users must handle memory space allocations and transfers

```cpp
RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
  a[i] = b[i];
});
```

Are ‘a’ and ‘b’ accessible on GPU?
"Bring your own" memory management

- RAJA does not provide a memory model (by design)
 - Users must handle memory space allocations and transfers

```
RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
    a[i] = b[i];
});
```

- Some possibilities:
 - **Manual** – use `cudaMalloc()`, `cudaMemcpy()` to allocate, copy to/from device
 - **Unified Memory (UM)** – use `cudaMallocManaged()`, paging on demand
 - **CHAI** (https://github.com/LLNL/CHAI) – automatic data copies as needed

CHAI was developed to complement RAJA.
"Bring your own" memory management

- RAJA does not provide a memory model (by design)
 - Users must handle memory space allocations and transfers

```cpp
RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
    a[i] = b[i];
});
```

Are ‘a’ and ‘b’ accessible on GPU?

For simplicity, all tutorial exercises use unified memory
Let’s start simple...

Simple loop execution
A typical for-loop written in C/C++ exposes all aspects of execution explicitly

Daxpy operation: $x = a \times x + y$, where x, y are vectors of length N, a is a scalar

```c
for (int i = 0; i < N; ++i)
    x[i] = a * x[i] + y[i];
```

In the implementation, loop iteration order, data access, etc. are explicit in the source code.
RAJA encapsulates loop execution details

```
for (int i = 0; i < N; ++i)
{
    x[i] = a * x[i] + y[i];
}
```

C-style for-loop

RAJA-style loop

```
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);
RAJA::forall<EXEC_POL>(range, [=] (int i)
{   
    x[i] = a * x[i] + y[i];
});
```

By changing the “execution policy”, you change the way the loop runs.
RAJA encapsulates loop execution details

```cpp
for (int i = 0; i < N; ++i)
{
    x[i] = a * x[i] + y[i];
}
```

C-style for-loop

```cpp
using EXEC_POL = ...;
RAJA::RangeSegment range(0, N);
RAJA::forall<EXEC_POL>(range, [=] (int i) {
    x[i] = a * x[i] + y[i];
});
```

RAJA-syle loop

Learn to love using the C++ “using” directive.

Typically, these definitions go in a header file.
RAJA encapsulates loop execution details

C-style for-loop

```c
for (int i = 0; i < N; ++i)
{
    x[i] = a * x[i] + y[i];
}
```

RAJA-style loop

```c
using EXEC_POL = ...;

RAJA::RangeSegment range(0, N);
RAJA::forall<EXEC_POL>(range, [=] (int i) {
    x[i] = a * x[i] + y[i];
});
```

With RAJA, the loop header is different, but the loop body is the same (in most cases).
RAJA loop execution has four core concepts

using EXEC_POLICY = ...;
RAJA::RangeSegment range(0, N);

RAJA::forall< EXEC_POLICY >(range, [=] (int i) {
 // loop body...
});

1. Loop execution template (e.g., ‘forall’)
2. Loop execution policy (EXEC_POLICY)
3. Loop iteration space (e.g., ‘RangeSegment’)
4. Loop body (C++ lambda expression)
RAJA loop execution core concepts

```cpp
RAJA::forall< EXEC_POLICY > ( iteration_space,
    [=] (int i) {
      // loop body
    }
);
```

- RAJA::forall method runs loop based on:
 - **Execution policy type** (sequential, OpenMP, CUDA, etc.)
RAJA loop execution core concepts

```
RAJA::forall< EXEC_POLICY > ([=] (int i) {
    // loop body
}
);
```

- RAJA::forall template runs loop based on:
 - Execution policy type (sequential, OpenMP, CUDA, etc.)
 - **Iteration space object** (stride-1 range, list of indices, etc.)
These core concepts are common threads throughout our discussion

```cpp
RAJA::forall< EXEC_POLICY > ( iteration_space,
  [=] (int i) {
    // loop body
  }
);
```

- **RAJA::forall template runs loop based on:**
 - Execution policy type (sequential, OpenMP, CUDA, etc.)
 - Iteration space object (contiguous range, list of indices, etc.)

- **Loop body is passed as a C++ lambda expression**
 - Lambda argument is the loop variable

The programmer must ensure the loop body works with the execution policy; e.g., thread safe
By changing the execution policy, you can change the way the loop will run

```cpp
RAJA::forall<EXEC_POLICY>( range, [=](int i) {
    x[i] = a * x[i] + y[i];
});
```

Examples of RAJA loop execution policy types.

- `RAJA::simd_exec`
- `RAJA::omp_parallel_for_exec`
- `RAJA::cuda_exec<BLOCK_SIZE>`
- `RAJA::omp_target_parallel_for_exec<MAX_THREADS_PER_TEAM>`
- `RAJA::tbb_for_exec`
RAJA provides a variety of execution policy types...

- Sequential (forces strictly sequential execution)
- “Loop” (let compiler decide which optimizations to apply)
- SIMD (applies compiler vectorization pragmas)
- OpenMP multithreading (CPU)
- TBB** (Intel Threading Building Blocks)
- CUDA (NVIDIA GPUs)
- OpenMP target** (available target device; e.g., GPU)
- HIP** (AMD GPUs)

**Implementations for some policies are works-in-progress.
RAJA support for simple loops

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Green** = available
- **Yellow** = work in progress
- **Red** = not available (yet)
Reductions
Reduction is a common and important parallel pattern

The dot product: \(\text{dot} = (a, b) \), where \(a \) and \(b \) are vectors and \(\text{dot} \) is a scalar.

C-style

```c
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```
Reduction is a common and important parallel pattern

```c
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```

What might a parallel implementation look like?
Reduction is a common and important parallel pattern

C-style

```c
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```

What might a parallel implementation look like?

Suppose N = 8 and we have P = 4 processors
Reduction is a common and important parallel pattern

```c
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```

What might a parallel implementation look like?

Suppose N = 8 and we have P = 4 processors

```
+  +  +  +
0  1  2  3  4  5  6  7
```

“Tree-based” algorithm

- 4 adds in parallel
- 2 adds in parallel
- 1 add

\[\log_2(8) = 3 \text{ steps} \]
Reduction is a common and important parallel pattern

```c
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```

“Extra credit”: What does Brent’s Theorem tell us about this algorithm?
Reduction is a common and important parallel pattern

```c
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```

“Extra credit”: What does Brent’s Theorem tell us about this algorithm?

\[T_p \leq \frac{N}{p} + \log_2(N) \]

Reference:
“Distributed Algorithms and Optimization” by Reza Zadeh
(https://stanford.edu/~rezab/dao/notes/lecture01/cme323_lec1.pdf)
RAJA reduction objects hide the complexity of parallel reduction operations

C-style

```cpp
double dot = 0.0;
for (int i = 0; i < N; ++i) {
    dot += a[i] * b[i];
}
```

RAJA

```cpp
RAJA::ReduceSum< REDUCE_POLICY, double> dot(0.0);
RAJA::forall< EXEC_POLICY >( range, [=] (int i) {
    dot += a[i] * b[i];
} );
```
Elements of RAJA reductions...

RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
 sum += func(i);
});

DTYPE reduced_sum = sum.get();

- A reduction type requires:
 - A reduction policy
 - A reduction value type
 - An initial value
Elements of RAJA reductions...

RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
 sum += func(i);
});

DTYPE reduced_sum = sum.get();

- A reduction type requires:
 - A reduction policy
 - A reduction value type
 - An initial value

- Updating reduction value is what you expect (+=, min, max)
Elements of RAJA reductions...

RAJA::ReduceSum< REDUCE_POLICY, DTYPE > sum(init_val);

RAJA::forall< EXEC_POLICY >(... {
 sum += func(i);
});

DTYPE reduced_sum = sum.get();

- A reduction type requires:
 - A reduction policy
 - A reduction value type
 - An initial value

- Updating reduction value is what you expect (+, min, max)
- After loop runs, get reduced value via ‘get’ method

Note that you cannot access the reduced value inside a kernel. This may change in the future.
Elements of RAJA reductions...

```cpp
RAJA::ReduceSum<REDUCE_POLICY, DTYPE> sum(init_val);

RAJA::forall<EXEC_POLICY>(...
    {sum += func(i);});

type reduced_sum = sum.get();
```

The reduction policy and loop execution policy **must be compatible**.
RAJA provides reduction policies for all supported programming model back-ends

\[
\text{RAJA::ReduceSum< REDUCE_POLICY, int > sum(0);}
\]

RAJA::seq_reduce;

RAJA::omp_reduce;

RAJA::cuda_reduce;

RAJA::tbb_reduce;

RAJA::omp_target_reduce;

Note: SIMD, OpenMP target, and HIP are works-in-progress.
RAJA supports five common reductions types

RAJA::ReduceSum< REDUCE_POLICY, DTYPE > r(in_val);

RAJA::ReduceMin< REDUCE_POLICY, DTYPE > r(in_val);

RAJA::ReduceMax< REDUCE_POLICY, DTYPE > r(in_val);

RAJA::ReduceMinLoc< REDUCE_POLICY, DTYPE > r(in_val, in_loc);

RAJA::ReduceMaxLoc< REDUCE_POLICY, DTYPE > r(in_val, in_loc);

“Loc” reductions give index where reduced value was found.
Multiple RAJA reductions can be used in a kernel

```cpp
RAJA::ReduceSum< REDUCE_POL, int > sum(0);
RAJA::ReduceMin< REDUCE_POL, int > min(MAX_VAL);
RAJA::ReduceMax< REDUCE_POL, int > max(MIN_VAL);
RAJA::ReduceMinLoc< REDUCE_POL, int > minloc(MAX_VAL, -1);
RAJA::ReduceMaxLoc< REDUCE_POL, int > maxloc(MIN_VAL, -1);

RAJA::forall< EXEC_POL >( a_range, [=](int i) {
    seq_sum += a[i];
    seq_min.min(a[i]);
    seq_max.max(a[i]);
    seq_minloc.minloc(a[i], i);
    seq_maxloc.maxloc(a[i], i);
});
```
Suppose we run the code on the previous slide with this setup...

a' is an int vector of length 'N' (N / 2 is even) initialized as:

\[
a = \begin{bmatrix}
1 & -1 & 1 & -1 & 1 & \ldots & 1 & -10 & 10 & -10 & 1 & \ldots & -1 & 1 & -1 \\
\end{bmatrix}
\]

- What are the reduced values...
 - Sum?
 - Min?
 - Max?
 - Max-loc?
 - Min-loc?
Suppose we run the code on the previous slide with this setup...

‘a’ is an int vector of length ‘N’ (N / 2 is even) initialized as:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th></th>
<th>N/2</th>
<th>...</th>
<th></th>
<th>N-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-10</td>
<td>-10</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• What are the reduced values?
 — Sum = -9
 — Min = -10
 — Max = 10
 — Max-loc = N/2
 — Min-loc = N/2 − 1 or N/2 + 1 (order-dependent)

Generally, the result of a parallel reduction is order-dependent.
RAJA support for reductions

<table>
<thead>
<tr>
<th></th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Green = available
- Yellow = in progress
- Red = not available (yet)
Hands on Exercises
Preparation for the hands-on exercises

- We’ve set up two options for you:
 - Docker container for your laptop (Mac only)
 - ALCF machines (Cooley and Theta)
 - Get the RAJA code, and put it someplace in your home directory on those machines:
 - `git clone --recursive https://github.com/LLNL/RAJA.git`
 - `cd RAJA`
 - `git checkout ATPESC2019` (a branch we have set up for this tutorial)

Hands-on
If you will use the Docker container...

- You will need to install Docker Desktop (or similar)
 - See https://docs.docker.com/install if you need to do this
 - Create account if needed. Login. Download image for your OS. Install on your machine.

- Get the RAJA tutorial Docker container
 - Run the following command:

    ```bash
docker run -it rajaorg/raja-tutorial:atpesc19
    ```
 - This puts you into a bash terminal inside the Docker container, which already has RAJA installed
If you’re using ALCF machines...

- We’ve set up build scripts for you to configure and build the code
 - Scripts live in the directory RAJA/scripts/alcf-builds
 - Each script has instructions to get on a compute node and set up your basic environment
 - Before running a build script, run the commands specified in the build script first
 - Then, in the top-level RAJA directory, build the RAJA code:
 - Run script for machine and compiler you want to use; e.g.,
      ```bash
      ./scripts/alcf-builds/cooley_nvcc9.1_clang4.0.sh
      ```
 - cd into the build directory created by the script
 - Type `make -j` to build RAJA and `make test` to check if it works
How to work through the exercises...

- In either case, each exercise involves:
 - Editing the exercise source file to insert RAJA code
 - Recompiling the code (i.e., run make in the build directory)
 - Running the exercise executable file (i.e., enter executable name in ‘bin’ directory)
 - Checking the output to see if what you did passes or fails the checks

- Each exercise source file contains a description of the exercise and the RAJA features you will use to perform the exercise

- The locations to modify in the exercise source files are indicated by comments containing the text ‘TO DO…’ and ‘EXERCISE’
Exercise #1: vector addition

- See file: RAJA/exercises/tutorial_halfday/ex1_vector-addition.cpp

 It contains C-style sequential and OpenMP implementations of loops that add two vectors:

  ```
  for (int i = 0; i < N; ++i) {
    c[i] = a[i] + b[i];
  }
  ```

  ```
  #pragma omp parallel for
  for (int i = 0; i < N; ++i) {
    c[i] = a[i] + b[i];
  }
  ```

- Exercise: Implement sequential and OpenMP variants using RAJA::forall() methods and execution policies (also do the same for CUDA if you can). Run the code and check your results. The file has empty code sections indicated with comments for you to fill in and methods you can use to check your work and print results.

See https://raja.readthedocs.io/en/v0.9.0/feature/policies.html for a listing of RAJA loop execution policies.
Exercise #1 solution

- Your code should look something like this:

```cpp
RAJA::forall< EXEC_POL >((RAJA::RangeSegment(0, N), [=] (int i) {
    c[i] = a[i] + b[i];
});
```

Where the execution policy type is chosen for each case (seq, OpenMP, CUDA).

- The file `RAJA/exercises/tutorial_halfday/ex1_vector-addition_solution.cpp` contains complete implementations of the solution to exercise #1. It also shows multiple "sequential" variants using different execution policies.
Note that basic RAJA usage is conceptually the same as the C-style loops. The syntax is different.
Exercise #2: approximate pi

- Recall some basic calculus:
 \[
 \frac{\pi}{4} = \tan^{-1}(1) = \int_0^1 \frac{1}{1 + x^2} \, dx
 \]

- See file: RAJA/exercises/tutorial_halfday/ex2_approx-pi.cpp
 - It contains C-style sequential and OpenMP loops that use this formula to approximate pi using *Riemann integration*.

- Exercise: Implement RAJA sequential and OpenMP variants of the pi approximation using RAJA::forall() methods and RAJA reductions (also do the same for CUDA if you can). The file contains empty code sections indicated with comments for you to fill in and methods you can use to check your work and print results.

See https://raja.readthedocs.io/en/v0.9.0/feature/policies.html for a listing of RAJA loop execution and reduction policies.
Exercise #2 solution

- Your code should look something like this:

```cpp
RAJA::ReduceSum< REDUCE_POL, double > pi(0.0);

RAJA::forall< EXEC_POL >((RAJA::RangeSegment(0, N), [=] (int i) {
    double x = (double(i) + 0.5) * dx;
    pi += dx / (1.0 + x * x);
});
```

Where the execution policy type is provided in the file for each case and you have filled in a compatible reduction policy type.

- The file RAJA/exercises/tutorial_halfday/ex2approx-pi_solution.cpp contains complete implementations of the solution to exercise #2.
Iteration spaces:
Segments and IndexSets
A RAJA “Segment” is defines a loop iteration space

- A “Segment” defines a set of loop indices to run as a unit

 - Contiguous range \([\text{beg}, \text{end})\)
 - Strided range \([\text{beg}, \text{end}, \text{stride})\)
 - List of indices (indirection)
A RAJA “Segment” is the basic means to define a loop iteration space

- A “Segment” defines a set of loop indices to run as a unit

 Contiguous range \([\text{beg}, \text{end})\)

 Strided range \([\text{beg}, \text{end}, \text{stride})\)

 List of indices (indirection)

- An “Index Set” is a container of segments (of arbitrary types)

You can run all segments in an IndexSet in one RAJA loop execution template.
A RangeSegment defines a contiguous sequence of indices (stride-1)

```cpp
RAJA::RangeSegment range(0, N);

RAJA::forall< RAJA::seq_exec >( range, [=] (int i) {
    // ...

});
```

Runs loop indices: \(\{0, 1, 2, \ldots, N-1\} \)
A RangeStrideSegment defines a strided sequence of indices

```cpp
RAJA::RangeStrideSegment srange1(0, N, 2);

RAJA::forall< RAJA::seq_exec >(srange1, [=](int i) {
    // ...
});
```

Runs loop indices: \{0, 2, 4, \ldots\}
A RangeStrideSegment defines a strided sequence of indices

RAJA::RangeStrideSegment srange2(N-1, -1, -1);

RAJA::forall< RAJA::seq_exec >(srange2 , [=] (int i) {
 // ...
};

Runs loop in reverse: {N-1, N-2, … , 1, 0}

RAJA supports negative indices and strides.
Segments are templates on the index type

RangeSegment and RangeStrideSegment are **type aliases**

```cpp
using RAJA::RangeSegment = RAJA::TypedRangeSegment<RAJA::Index_type>;
using RAJA::RangeStrideSegment = RAJA::TypedRangeStrideSegment<RAJA::Index_type>;
```
Segments are templates on the index type

RangeSegment and RangeStrideSegment are **type aliases**

```
using RAJA::RangeSegment = RAJA::TypedRangeSegment<RAJA::Index_type>;

using RAJA::RangeStrideSegment = RAJA::TypedRangeStrideSegment<RAJA::Index_type>;
```

- RAJA::IndexType is a useful parametrization
 - It is an alias to std::ptrdiff_t
 - Appropriate for most compiler optimizations

Use the ‘Typed’ Segment types for other index value types.
A ListSegment can define any set of indices

```cpp
using IdxType = RAJA::Index_type;
using ListSegType = RAJA::TypedListSegment<IdxType>;

// array of indices
IdxType idx[ ] = {10, 11, 14, 20, 22};

// ListSegment object containing indices...
ListSegType idx_list( idx, 5 );
```

Think “indirection array”.
A ListSegment can define any set of indices

using IdxType = RAJA::Index_type;
using ListSegType = RAJA::TypedListSegment<IdxType>;

// array of indices
IdxType idx[] = {10, 11, 14, 20, 22};

// ListSegment object containing indices...
ListSegType idx_list(idx, 5);

RAJA::forall< RAJA::seq_exec >(idx_list, [=] (IdxType i) {
 a[i] = ...;
});

Runs loop indices: \{10, 11, 14, 20, 22\}

Note: indirection does not appear in loop body.
A RAJA IndexSet may contain multiple Segment types

```
using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);
RAJA::Index_type idx[ ] = {10, 11, 14, 20, 22};
ListSegType list2(idx, 5);
RangeSegType range3(24, 28);
```
A RAJA IndexSet is a container of Segments

```cpp
using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);
RAJA::Index_type idx[ ] = {10, 11, 14, 20, 22};
ListSegType list2( idx, 5 );

RangeSegType range3(24, 28);

RAJA::TypedIndexSet< RangeSegType, ListSegType > iset;
iset.push_back( range1 );
iset.push_back( list2 );
iset.push_back( range3 );
```
A RAJA IndexSet is a container of Segments

```cpp
using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);
RAJA::Index_type idx[] = {10, 11, 14, 20, 22};
ListSegType list2( idx, 5 );

RangeSegType range3(24, 28);

RAJA::TypedIndexSet< RangeSegType, ListSegType > iset;
iset.push_back( range1 );
iset.push_back( list2 );
iset.push_back( range3 );

Iteration space is partitioned into 3 Segments
{ 0, …, 7 } + {10, 11, 14, 20, 22 } + { 24, …, 27 }
range1                  list2                     range3
```
A RAJA IndexSet is a container of Segments

using RangeSegType = RAJA::TypedRangeSegment<RAJA::Index_type>;
using ListSegType = RAJA::TypedListSegment<RAJA::Index_type>;

RangeSegType range1(0, 8);
RAJA::Index_type idx[] = {10, 11, 14, 20, 22};
ListSegType list2(idx, 5);
RangeSegType range3(24, 28);

RAJA::TypedIndexSet< RangeSegType, ListSegType > iset;
iset.push_back(range1);
iset.push_back(list2);
iset.push_back(range3);

Iteration space is partitioned into 3 Segments
{ 0, …, 7 } + {10, 11, 14, 20, 22 } + { 24, …, 27 }
An IndexSet can be passed to a RAJA execution template to run all Segments

```
using ISET_EXECPOL = RAJA::ExecPolicy< RAJA::omp_parallel_segit, RAJA::seq_exec >;

RAJA::forall<ISET_EXECPOL>(iset, [=] (IdxType i) {
  // loop body
});
```

Index sets require a **two-level execution policy**:
- Outer iteration over segments ("..._segit")
- Inner segment execution
Why does RAJA provide Index Sets?

- **Multiphysics codes use indirection arrays** (a lot!)
 - Indirection inhibits performance: more instructions + memory traffic, impedes optimizations

- **Range Segments are better for performance**
 - When large stride-1 ranges are embedded in iteration space...
 - ...you can expose these as SIMD-izable ranges “in place” to compilers (no gather/scatters)

- **Partitioning and reordering iterations gives flexibility and performance**
 - Avoid fine-grained synchronization (atomics or critical sections), which are **contention heavy**
 - Avoid extra arrays and gather/scatter operations, which require **extra memory traffic**
 - Prefer coarse-grained synchronization, which has much **lighter memory contention**

With IndexSets, you can change a kernel iteration pattern without changing the way the kernel looks in source code.
RAJA Segments and IndexSets work with all back-ends

<table>
<thead>
<tr>
<th></th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Green = available
- Yellow = in progress
- Red = not available (yet)
IndexSets can help enable parallelism

- Consider an irregularly-spaced 2D Cartesian mesh
- At each mesh vertex, we want to compute the average area of the 4 surrounding elements
IndexSets can help enable parallelism

- Consider an irregularly-spaced 2D Cartesian mesh
- At each mesh vertex, we want to compute the average area of the 4 surrounding elements
 - For each element e, add $\frac{1}{4} \text{area}(e)$ to $\text{area}(v_i)$, $i = 0, ..., 3$
A C-style serial code for the vertex area

```c
for (int ie = 0 ; ie < N_elem ; ++ie) {
    int* iv = e2v_map(ie);
    areav[ iv[0] ] += areae[ie] / 4.0 ;
}
```

As written, will this code work in parallel?
A C-style serial code for the vertex area

```c
for (int ie = 0 ; ie < N_elem ; ++ie) {
    int* iv = e2v_map(ie);
    areav[ iv[0] ] += areae[ie] / 4.0 ;
}
```

As written, will this code work in parallel?
No. There is a data race at each vertex.
One approach: partition the elements into four subsets and run each in parallel

```c
for (int ie = 0 ; ie < N_elem ; ++ie) {
    int* iv = e2v_map(ie);

    areav[ iv[0] ] += areae[ie] / 4.0 ;
}
```

No two elements with same color share a vertex
One approach: partition the elements into four subsets and run each in parallel

```c++
for (int ie = 0 ; ie < N_elem ; ++ie) {
    int* iv = e2v_map(ie);
    areav[ iv[0] ] += areae[ie] / 4.0;
}
```

Will the results be reproducible?
One approach: partition the elements into four subsets and run each in parallel

Will the results be reproducible?
Yes. The computation for all elements with same color (number) is data parallel.

```cpp
for (int ie = 0 ; ie < N_elem ; ++ie) {
    int* iv = e2v_map(ie);
    areav[ iv[0] ] += areae[ie] / 4.0 ;
}
```
Exercise #3: Mesh vertex area using “colored” index set

- See file: RAJA/exercises /tutorial_halfday/ex3_colored-indexset.cpp
 - It contains C-style sequential and OpenMP variants of the vertex area calculation described on the previous slide. They use arrays that enumerate the elements of each color.

Exercise: Implement and run a RAJA OpenMP variant of the vertex area calculation that uses a RAJA IndexSet containing 4 ListSegments and one call to a RAJA::forall() method (do the same for CUDA if you can). The file contains the RAJA IndexSet execution policy types for each case and empty code sections for you to fill in. It also has methods you can use to check your work and print results.
Exercise #3 solution

- Your code should look like the following, where you have filled in the appropriate segment type and IndexSet execution policy:

```cpp
RAJA::TypedIndexSet<SegmentType> colorset;
colorset.push_back( SegmentType(&idx[0][0], idx[0].size()) );
colorset.push_back( SegmentType(&idx[1][0], idx[1].size()) );
colorset.push_back( SegmentType(&idx[2][0], idx[2].size()) );
colorset.push_back( SegmentType(&idx[3][0], idx[3].size()) );

RAJA::forall< EXEC_POL >(colorset, [=] (int ie) {
    int* iv = &(e2v_map[4*ie]);
    areav[ iv[0] ] += areae[ie] / 4.0 ;
});
```

- The file RAJA/exercises/tutorial_halfday/ex3_colored-indexset_solution.cpp contains a complete implementation of the solution to exercise #3.
Atomic operations
RAJA provides portable atomic operations

```
int* x = ...
int* y = ...

RAJA::forall< EXEC_POLICY >(RAJA::RangeSegment(0, N), [=] (int i) {
  RAJA::atomicAdd< ATOMIC_POLICY >(&x[i], 1);
  RAJA::atomicSub< ATOMIC_POLICY >(&y[i], 1);
});
```

Atomic operations perform updates at specific memory addresses (write or read-modify-write) where only one thread or process at a time can do the update.
Recall exercise #2

- We approximated π using Riemann integration and the following formula:

 $$\frac{\pi}{4} = \tan^{-1}(1) = \int_0^1 \frac{1}{1 + x^2} dx$$

- We used a RAJA reduction to accumulate the Riemann sum in parallel.

- We could also use an atomic operation to prevent multiple threads from attempting to write to the memory address of the sum variable at the same time.
RAJA OpenMP atomic approximation of pi

using EXEC_POL = RAJA::omp_parallel_for_exec;
using ATOMIC_POL = RAJA::omp_atomic

double* pi = new double[1]; *pi = 0.0;

RAJA::forall< EXEC_POL >(arange, [=] (int i) {
 double x = (double(i) + 0.5) * dx;
 RAJA::atomicAdd< ATOMIC_POL >(pi,
 dx / (1.0 + x * x));
});

*pi *= 4.0;

The atomic policy must be compatible with the loop execution policy.
The RAJA “builtin” atomic policy uses compiler built-in atomics

```cpp
using EXEC_POL = RAJA::omp_parallel_for_exec;

int *sum = ...;

RAJA::forall< EXEC_POL >(arange, [=] (int i) {
    RAJA::atomicAdd< RAJA::builtin_atomic >(sum, 1);
});
```
using EXEC_POL = RAJA::omp_parallel_for_exec;

int *sum = ...;

RAJA::forall< EXEC_POL >(arange, [=] (int i) {
 RAJA::atomicAdd< RAJA::auto_atomic >(sum, 1);
});

Some may prefer this option for easier portability.
RAJA also has an interface modeled after the C++20 std::atomic_ref

- “AtomicRef” supports:
 - Arbitrary memory locations
 - All RAJA atomic policies

For example:

```cpp
double val = 2.0;
RAJA::AtomicRef<double, RAJA::auto_atomic> sum(&val);
sum++;
++sum;
sum += 1.0;
```

Result: sum is 5 (= 2 + 1 + 1 + 1).
RAJA provides a variety of atomic operations

- Arithmetic: add, sub
- Min, max
- Increment/decrement: inc, dec, including conditional comparisons with other values
- Bitwise-logical: and, or, xor
- Replace: exchange, compare-and-swap (CAS)
- C++ std::atomic style interface (RAJA::AtomicRef)

The RAJA User Guide describes these atomic operations in detail.
RAJA support for atomics

<table>
<thead>
<tr>
<th></th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td>= available</td>
<td>= in progress</td>
<td>= not available (yet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise #4: atomic histogram

You have an integer array of length N, whose element values are in the set \{0, 1, 2, ..., M-1\}, where \(M < N\). You want to build a \textit{histogram} array of length M such that the i-th entry in the array is the number of occurrences of the value i in the original array.

See file: RAJA/exercises/tutorial_halfday/ex4_atomic-histogram.cpp

- It contains C-style sequential and OpenMP implementations of the histogram calculation.

Exercise: Implement and run RAJA sequential and OpenMP variants of loops to compute the histogram array using RAJA::for all methods and RAJA atomic operations (do the same for CUDA if you can). The file contains empty code sections for you to fill in and methods you can use to check your work and print results.

See https://raja.readthedocs.io/en/v0.9.0/feature/policies.html for a listing of RAJA loop execution and atomic policies.
Your code should look something like this:

```cpp
RAJA::forall< EXEC_POL > (RAJA::RangeSegment(0, N), [=] (int i) {
    RAJA::atomicAdd< ATOMIC_POL > (&hist[array[i]], 1);
});
```

Where the atomic policy type is compatible with the execution policy for each case (seq, OpenMP, CUDA).

The file `RAJA/exercises/tutorial_halfday/ex4_atomic-histogram_solution.cpp` contains complete implementations of the solution to exercise #4. It also shows variants that use the RAJA auto_atomic policy.
Scan operations
Scan is an important building block for parallel algorithms

- It is a key primitive to convert serial operations to parallel implementations
 - Based on reduction tree and reverse reduction tree
 - An example of a computation that looks inherently serial, but for which there exist efficient parallel implementations

- Many useful applications:
 - Sorting (radix, quicksort)
 - String comparison
 - Lexical analysis
 - Stream compaction
 - Polynomial evaluation
 - Solving recurrence relations
 - Tree operations
 - Histograms
 - Parallel work assignment

Useful reference:
“Prefix Sums and Their Applications” by Guy E. Blelloch
(https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf)
Parallel prefix sum is the most common scan

```cpp
int* in = ...; // input array of length N
int* out = ...; // output array of length N
RAJA::inclusive_scan< EXEC_POL >(in, in + N, out);
RAJA::exclusive_scan< EXEC_POL >(in, in + N, out);
```

Example:

<table>
<thead>
<tr>
<th>In : 8 -1 2 9 10 3 4 1 6 7 (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out (inclusive) : 8 7 9 18 28 31 35 36 42 49</td>
</tr>
<tr>
<td>Out (exclusive) : 0 8 7 9 18 28 31 35 36 42</td>
</tr>
</tbody>
</table>

Note: Exclusive scan shifts the result array one slot to the right. The first entry of an exclusive scan is the identity of the scan operator; here it is “+.”

Output array contains partial sums of input array.
RAJA also provides “in-place” scan operations

```cpp
int* arr = ...;  // in/out array of length N

RAJA::inclusive_scan_inplace< EXEC_POL >(arr, arr + N);

RAJA::exclusive_scan_inplace< EXEC_POL >(arr, arr + N);
```

“In-place” scans return result in input array.
RAJA provides different operators to use in scans

RAJA::exclusive_scan< exec_pol >(in, in + N, out, RAJA::operators::minimum<int>{})

In : 8 -1 2 9 10 -3 4 1 6 7
Out : 2147483648 8 -1 -1 -1 -3 -3 -3

What is the first value in the result of this scan?

If no operator is given, “plus” is the default (prefix-sum).
RAJA provides different operators to use in scans

RAJA::exclusive_scan< exec_pol >(in, in + N, out,
RAJA::operators::minimum<int>{})

In: 8 -1 2 9 10 -3 4 1 6 7
Out: 2147483648 8 -1 -1 -1 -3 -3 -3 -3

What is the first value in the result of this scan?

It is the “identity” of the minimum operator.

If no operator is given, “plus” is the default (prefix-sum).
RAJA support for scans

<table>
<thead>
<tr>
<th></th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Green** = available
- **Yellow** = in progress
- **Red** = not available (yet)
Exercise #5: the line-of-sight problem

- The *line-of-sight* problem: given an observation point at X on a terrain map, and a set of points along a ray starting at X, find which points on the terrain are visible from X.

- For example, the blue point at Y_1 is visible from the black point at X, but the red point at Y_2 is not
Exercise #5: the line-of-sight problem

- The line-of-sight problem: given an observation point at X on a terrain map, and a set of points along a ray starting at X, find which points on the terrain are visible from X.

- A point at Y on the ray is visible from the point at X if and only if no other point on the terrain between the points X and Y has a greater vertical angle from X than Y.

Point at Y_1 (blue) can be seen from the point at X and point at Y_2 (red) cannot. Although the point at Y_2 has a higher altitude than the point at Y_1, it has a smaller vertical angle.
Exercise #5: the line-of-sight problem

- A point at Y on the ray is visible from the point at X if and only if no other point on the terrain between the points X and Y has a greater vertical angle from X than Y.

- Let ‘altX’ be the altitude at point X and a vector ‘alt’ be defined so that alt[i] is the altitude at point Y_i.

- Let the vector ‘dist’ be defined so that dist[i] is the horizontal distance between point X and point Y_i.

- We compute an angle vector ‘ang’ that holds the vertical angle at each point computed as:
 - \(\text{ang}[i] = \tan^{-1}\left(\frac{\text{alt}[i] - \text{altX}}{\text{dist}[i]}\right) \)

- A max scan on the angle vector tells us if the point Y_i is visible from X:
 - If \(\text{ang}[i] \geq \text{ang}_{\text{max}}[i] \), then Y_i is visible, else Y_i is not visible.

Image reference:
“Prefix Sums and Their Applications” by Guy E. Blelloch (https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf)
Exercise #5: the line of sight problem

- See file: RAJA/exercises/ex5_line-of-sight.cpp
 - It contains a C-style sequential code that implements the line-of-sight algorithm on the previous slide.

- Exercise: Implement and run sequential and OpenMP variants of the algorithm using RAJA scan operations to compute the max angle scan vector and RAJA::forall loops to determine which points are visible (do the same for CUDA if you can). The file contains empty code sections for you to fill in and methods you can use to check your work and print results.

See https://raja.readthedocs.io/en/v0.9.0/feature/scan.html for a listing of RAJA scan execution policies and operators.
Exercise #5 solution

- Your code should look something like this (where you have filled in the execution policy):

```cpp
RAJA::inclusive_scan< EXEC_POL >(ang, ang+N, ang_max,
    RAJA::operators::maximum<double>{});

RAJA::forall< EXEC_POL >(RAJA::RangeSegment(0, N), [=] (int i) {
    if ( ang[i] >= ang_max[i] ) {
        visible[i] = 1;
    } else {
        visible[i] = 0;
    }
});
```

- The file `RAJA/exercises/tutorial_halfday/ex5_line-of-sight_solution.cpp` contains complete implementations of the solution to exercise #5.
Views and Layouts
Matrices and tensors are ubiquitous in scientific computing

- They are most naturally thought of as multi-dimensional arrays, but for efficiency in C/C++, they are usually allocated as 1-d arrays.

```c
for (int row = 0; row < N; ++row) {
    for (int col = 0; col < N; ++col) {

        for (int k = 0; k < N; ++k) {
        }
    }
}
```

- Here, we manually convert 2-d indices (row, col) to pointer offsets
RAJA Views and Layouts simplify multi-dimensional indexing patterns

- A RAJA View wraps a pointer to enable indexing following a Layout pattern

```cpp
double* A = new double[N * N];

const int DIM = 2;
RAJA::View< double, RAJA::Layout<DIM> > Aview(A, N, N);
```
RAJA Views and Layouts simplify multi-dimensional indexing patterns

- A RAJA View wraps a pointer to enable indexing that follows a Layout pattern

```
double* A = new double[ N * N ];

const int DIM = 2;
RAJA::View< double, RAJA::Layout<DIM> > Aview(A, N, N);
```

- This leads to data indexing that is more intuitive and less error-prone

```
for (int k = 0; k < N; ++k) {
    Cview(row, col) += Aview(row, k) * Bview(k, col);
}
```
RAJA Views and Layouts support any number of dimensions

double* A = new double[N0 * ... * Nn];

const int DIM = n + 1;
View< double, Layout<DIM> > Aview(A, N0, ..., Nn);

// iterate over nth index and hold others fixed
for (int i = 0; i < Nn; ++i) {
 Aview(i0, i1, ..., i) = ...;
}

// iterate over jth index and hold others fixed
for (int j = 0; j < Nj; ++j) {
 Aview(i0, i1, ..., j, ..., iN) = ...;
}

The right-most index is stride-1 using the default Layout<DIM>.

Stride-1 data access

Data access stride is Nn * ... * N(j+1)
RAJA provides methods to make layouts for other indexing patterns

- A “permuted layout” changes the striding order

```cpp
std::array<RAJA::idx_t, 3> perm {{1, 2, 0}};

RAJA::Layout< 3 > perm_layout = RAJA::make_permuted_layout( {{5, 7, 11}}, perm);
```

This gives a 3-d layout with indices permuted:

- Index ‘0’ has extent 5 and stride 1
- Index ‘2’ has extent 11 and stride 5
- Index ‘1’ has extent 7 and stride 55 (= 5 * 11)
A permuted layout changes the striding order

```cpp
std::array<RAJA::idx_t, 3> perm {{1, 2, 0}};

RAJA::Layout< 3 > perm_layout =
    RAJA::make_permuted_layout( {{5, 7, 11}}, perm);

RAJA::View< double, RAJA::Layout<3, int> > Bview(B, perm_layout);

// Equivalent to indexing as: B[i + j*5*11 + k*5]
Bview(i, j, k) = ...;
```

A default layout uses the “identity” permutation (i.e., {0, 1, 2}).
An offset layout applies offsets to indices

double* C = new double[11];

RAJA::OffsetLayout<1> offlayout =
 RAJA::make_offset_layout<1>({{-5}}, {{5}});

RAJA::View< double, RAJA::OffsetLayout<1> > Cview(C,
 offlayout);

for (int i = -5; i < 6; ++i) {
 CView(i) = ...;
}

A 1-d layout with index offset and extent 11 [-5, 5].
-5 is subtracted from each loop index to access data.

Offset layouts are useful for index space subset operations such as halo regions.
Important notes about RAJA Layout types

- All Layout objects have a permutation. So there is no `RAJA::PermutedLayout` type. For example,

\[
\text{RAJA::Layout< NDIMS > } \text{perm_layout} = \text{RAJA::make_permuted_layout(...)};
\]

- An offset layout has a ``RAJA::Layout`` and offset data. So ``RAJA::OffsetLayout`` is a distinct type. For example,

\[
\text{RAJA::OffsetLayout< NDIMS > } \text{offset_layout} = \text{RAJA::make_offset_layout(...)};
\]

\[
\text{RAJA::OffsetLayout< NDIMS > } \text{perm_offset_layout} = \text{RAJA::make_permuted_offset_layout(...)};
\]
Offset layout quiz...

RAJA::OffsetLayout<2> offset_layout =
RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

• What index space does this layout represent?
Offset layout quiz...

RAJA::OffsetLayout<2> offset_layout = RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

• What index space does this layout represent?

The 2-d index space [-1, 2] X [-5, 5].
Offset layout quiz...

RAJA::OffsetLayout<2> offset_layout = RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

- What index space does this layout represent?

 The 2-d index space [-1, 2] X [-5, 5].

- Which index is stride-1?
Offset layout quiz...

RAJA::OffsetLayout<2> offset_layout = RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

• What index space does this layout represent?

The 2-d index space [-1, 2] X [-5, 5].

• Which index is stride-1?

Index ‘1’ (right-most) is stride-1 (default permutation).
Offset layout quiz...

RAJA::OffsetLayout<2> offset_layout = RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

• *What index space does this layout represent?*

 The 2-d index space [-1, 2] X [-5, 5].

• *Which index is stride-1?*

 Index ‘1’ *(right-most)* is stride-1 (default permutation).

• *What is the stride of index ‘0’?*
Offset layout quiz...

RAJA::OffsetLayout<2> offset_layout = RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

- **What index space does this layout represent?**

 The 2-d index space \([-1, 2] \times [-5, 5]\).

- **Which index is stride-1?**

 Index ‘1’ (right-most) is stride-1 (default permutation).

- **What is the stride of index ‘0’?**

 Index ‘0’ has stride 11 (since index 1 has extent 11, \([-5, 5]\)).
Let’s try a permuted offset layout...

```cpp
std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = RAJA::make_permuted_offset_layout<2>({ {-1, -5} }, {{2, 5}}, perm );
```

- What index space does this layout represent?
Let’s try a permuted offset layout...

\[
\text{std::array<RAJA::idx_t, 2> perm \{\{1, 0\}\};} \\
\text{RAJA::OffsetLayout<2> permoffset_layout = RAJA::make_permuted_offset_layout<2>(\{-1, -5\}, \{\{2, 5\}\}, perm);}
\]

• **What index space does this layout represent?**

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).
Let’s try a permuted offset layout...

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = RAJA::make_permuted_offset_layout<2>({{-1, -5}}, {{2, 5}}, perm);

- **What index space does this layout represent?**
 The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

- **Which index is stride-1?**
Let’s try a permuted offset layout…

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout =
 RAJA::make_permuted_offset_layout<2>({{-1, -5}}, {{2, 5}}, perm);

• What index space does this layout represent?
 The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

• Which index is stride-1?
 Index ‘0’ has stride-1 (due to the permutation).
Let’s try a permuted offset layout...

std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout =
RAJA::make_permuted_offset_layout<2>({{-1, -5}}, {{2, 5}}, perm);

- **What index space does this layout represent?**

The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

- **Which index is stride-1?**

 Index ‘0’ has stride-1 (due to the permutation).

- **What is the stride of index ‘1’?**
Let’s try a permuted offset layout...

```cpp
std::array<RAJA::idx_t, 2> perm {{1, 0}};
RAJA::OffsetLayout<2> permoffset_layout = RAJA::make_permuted_offset_layout<2>( {{-1, -5}}, {{2, 5}}, perm );
```

- **What index space does this layout represent?**

 The 2-d index space [-1, 2] X [-5, 5] (same as previous example).

- **Which index is stride-1?**

 Index ‘0’ has stride-1 (due to the permutation).

- **What is the stride of index ‘1’?**

 Index ‘1’ has stride 4 (since index ‘0’ has extent 4, [-1, 2]).
RAJA layout methods convert between multi-dimensional indices and linear indices

RAJA::Layout<3> layout(5, 7, 11);

A 3-d layout with extents 5, 7, 11.
RAJA layout methods convert between multi-dimensional indices and linear indices

RAJA::Layout<3> layout(5, 7, 11);

// Convert i=2, j=3, k=1 to linear index
int lin = layout(2, 3, 1);

What is the value of “lin”?
RAJA layout methods convert between multi-dimensional indices and linear indices

RAJA::Layout<3> layout(5, 7, 11);

A 3-d layout with extents 5, 7, 11.

// Convert i=2, j=3, k=1 to linear index
int lin = layout(2, 3, 1);

What is the value of “lin”?

lin = 188 (= 1 + 3 * 11 + 2 * 11 * 7)
RAJA::Layout<3> layout(5, 7, 11);

A 3-d layout with extents 5, 7, 11.

// Convert linear index 191 to 3d (i,j,k) index
layout.toIndices(191, i, j, k);

What is the 3d index tuple (i, j, k)?
RAJA layout methods convert between multi-dimensional indices and linear indices

RAJA::Layout<3> layout(5, 7, 11);

A 3-d layout with extents 5, 7, 11.

// Convert linear index 191 to 3d (i,j,k) index
layout.toIndices(191, i, j, k);

What is the 3d index tuple (i, j, k)?

(i, j, k) = (2, 3, 4)

191 = 4 + 3 * 11 + 2 * 11 * 7
<table>
<thead>
<tr>
<th></th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments & Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts & Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Green** = available
- **Yellow** = in progress
- **Red** = not available (yet)
Exercise #6: 5-point stencil

- Consider a simple “five-point stencil” computation on a 2-dimensional cartesian mesh.

\[A_{i,j} = B_{i,j} + B_{i-1,j} + B_{i+1,j} + B_{i,j-1} + B_{i,j+1} \]

- Suppose the “A” matrix has an entry for each element on the mesh interior:
 \[(i, j) \in \{0, \ldots, N\} \times \{0, \ldots, M\} \]
 and the “B” matrix has an entry each element on the mesh interior plus a “halo” layer 1 element wide around the interior:
 \[(i, j) \in \{-1, \ldots, N+1\} \times \{-1, \ldots, M+1\} \]
Exercise #6: 5-point stencil

- That is, B has a value for each element on the mesh to the right and A has a value for each element in the grey interior region.

- We want to write the stencil computation as a nested loop \((i, j)\) and use RAJA Views to write the loop body “naturally” as:

\[
A_{i, j} = B_{i, j} + B_{i-1, j} + B_{i+1, j} + B_{i, j-1} + B_{i, j+1}
\]

- That is, so it looks like this:

\[
A_{i, j} = B_{i, j} + B_{i-1, j} + B_{i+1, j} + B_{i, j-1} + B_{i, j+1}
\]
Exercise #6: 5-point stencil

- The file `RAJA/exercises/ex6_stencil-offset-layout.cpp` contains C-style sequential implementations of the 5-point stencil computation.
 - Part A: Assumes that the column (j-loop) indexing is stride-1.
 - Part B: Assumes that the row (i-loop) indexing is stride-1.
 - Note that the manual index offset arithmetic in the inner loop bodies is different!

- Exercise: Implement and run sequential variants of parts A and B using RAJA Views. Note that you are to fill in empty code sections inside C-style for-loops. The goal of this exercise is for you to learn the mechanics of creating and using RAJA Layouts and Views. The file contains methods you can use to check your work and print results.

- Note: because you are using RAJA Views, the loop bodies look the same in each case; like this:

  ```c
  Aview(i, j) = Bview(i, j) + Bview(i-1, j) + Bview(i+1, j) + Bview(i, j-1) + Bview(i, j+1)
  ```
Exercise #6 solution

- For part B, your construction of RAJA Views should look like this:

```cpp
std::array<RAJA::idx_t, DIM> perm {{1, 0}}; // 'i' index (position zero)
    // is stride-1

RAJA::OffsetLayout<DIM> pB_layout =
    RAJA::make_permuted_offset_layout( {{-1, -1}}, {{Nc_tot-2, Nr_tot-2}},
             perm );

RAJA::Layout<DIM> pA_layout =
    RAJA::make_permuted_layout( {{Nc_int, Nr_int}}, perm );

RAJA::View<int, RAJA::OffsetLayout<DIM>> pBview(B, pB_layout);
RAJA::View<int, RAJA::Layout<DIM>> pAview(A, pA_layout);
```

- The file RAJA/exercises/ex6_stencil-offset-layout_solution.cpp contains complete implementations of the solution to parts A and B of exercise #6.
Complex Loops and Advanced RAJA Features
Nested Loops
Let’s look at matrix multiplication...

\[C = A \times B, \text{ where } A, B, C \text{ are } N \times N \text{ matrices} \]

```java
for (int row = 0; row < N; ++row) {
    for (int col = 0; col < N; ++col) {
        double dot = 0.0;
        for (int k = 0; k < N; ++k) {
            dot += A[k + N*row] * B[col + N*k];
        }
        C[col + N*row] = dot;
    }
}
```
For a RAJA implementation, we could use nested ‘forall’ statements...

```cpp
RAJA::forall< exec_policy_row >( row_range, [=](int row) {
    RAJA::forall< exec_policy_col >( col_range, [=](int col) {
        double dot = 0.0;
        for (int k = 0; k < N; ++k) {
            dot += A(row, k) * B(k, col);
        }
        C(row, col) = dot;
    });
};
```

Note: we use RAJA Views in this example to simplify multi-dimensional indexing.
Each loop level is treated as an independent entity
- So parallelizing the row and column loops together is hard

We can parallelize the outer row loop (OpenMP, CUDA, etc.)
- But then, each thread executes all code in the inner two loops sequentially

Parallelizing the inner column loop introduces unwanted synchronization
- Launch a new parallel computation for each row

Loop interchange and other transformations require changing the source code of the kernel (which breaks RAJA encapsulation)

...but, this doesn’t work well

We don’t recommend using RAJA::forall for nested loops!!
The RAJA::kernel API is designed for composing and transforming complex parallel kernels

```cpp
using namespace RAJA;
using KERNEL_POL = KernelPolicy<
    statement::For<1, exec_policy_row,
    statement::For<0, exec_policy_col,
    statement::Lambda<0>
    >
    >;

RAJA::kernel<KERNEL_POL>( RAJA::make_tuple(col_range, row_range),
    [=](int col, int row ) {
        double dot = 0.0;
        for (int k = 0; k < N; ++k) {
            dot += A(row, k) * B(k, col);
        }
        C(row, col) = dot;
    });
```

Note: lambda expression for inner loop body is same as before.
The RAJA::kernel interface has four basic concepts

- These are analogous to RAJA::forall

1. Kernel **execution template** (‘RAJA::kernel’)
2. Kernel **execution policies** (in ‘KERNEL_POL’)
3. Kernel **iteration spaces** (e.g., ‘RangeSegments’)
4. Kernel **body** (lambda expressions)
Each loop level has an iteration space and loop variable

```cpp
using namespace RAJA;
using KERNEL_POL = KernelPolicy<
    statement::For<1, exec_policy_row,
    statement::For<0, exec_policy_col,
    statement::Lambda<0>
    >
    >;

RAJA::kernel<KERNEL_POL>( RAJA::make_tuple(col_range, row_range),
    [=](int col, int row ) {
    // ...
    } );
```

The order (and types) of tuple items and lambda arguments must match.
Each loop level has an execution policy

using namespace RAJA;
using KERNEL_POL = KernelPolicy<
 statement::For<1, exec_policy_row,
 statement::For<0, exec_policy_col,
 statement::Lambda<0>
 >
 >;
 RAJA::kernel<KERNEL_POL>(RAJA::make_tuple(col_range, row_range),
 [=](int col, int row) {
 // ...
 });

Integer template parameter in each ‘For’ statement indicates the iteration space tuple item it applies to.
To reorder the loops, we change the execution policy, not the algorithm code

using KERNEL_POL = KernelPolicy<

// Original order
statement::For<1, exec_policy_row,
statement::For<0, exec_policy_col,
...

>;

// Reordered order
using KERNEL_POL = KernelPolicy<

statement::For<0, exec_policy_col,
statement::For<1, exec_policy_row,
...

>;

'For' statements are swapped.

This is analogous to swapping for-loop order in a C-style implementation.
RAJA::KernelPolicy constructs comprise a simple DSL that relies only on standard C++11 support

- A KernelPolicy is built from “Statements” and “StatementLists”
 - A Statement is an action: execute a loop, invoke a lambda, synchronize threads, etc.,
 - For<0, exec_pol, ...>
 - Lambda<0>
 - CudaSyncThreads
 - A StatementList is an ordered list of Statements processed as a sequence; e.g.,
 - For<0, exec_policy0, Lambda<0>,
 - For<2, exec_policy2, Lambda<1>}
 - >

A RAJA::KernelPolicy type is a StatementList.
We will describe how to use several of them in this tutorial.

See the RAJA User Guide for a complete listing of available statement types and what they do.
Loop Tiling
Loop tiling enables accessing data in chunks

- Helps ensure data used in a loop stays in a cache until it is reused
- Different levels of memory may be used, tile size is a performance tuning parameter
Loop tiling enables accessing data in chunks

Tile size is a performance tuning parameter.

```c
// standard loop
for (int id = 0; id < N; ++id) {
}

// outer loop over tiles
for (int i = 0; i < N_tile; ++i) {
  // inner loop inside a tile
  for (int ti = 0; ti < TILE_DIM; ++ti) {
    // global index
    int id = i * TILE_DIM + ti;
  }
}
```
Tiling can improve the performance of many algorithms

- Constructing a matrix transpose is an example

- Decompose a matrix into a collection of tiles, then transpose data within a tile
Tiling can improve the performance of many algorithms

- Loop tiling improves spatial and temporal locality of data access

\[
\begin{pmatrix}
a_{00} & a_{01} \\
a_{10} & a_{11} \\
a_{20} & a_{21} \\
a_{30} & a_{31}
\end{pmatrix}
\]

\[A\]

\[
\begin{pmatrix}
a_{02} & a_{03} \\
a_{12} & a_{13} \\
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{pmatrix}
\]

\[A^T\]

Tile data may be stored in CPU stack or GPU shared memory for improved performance.
C-style matrix transpose without storing local tile

\[A^T(c, r) = A(r, c), \text{ } A \text{ is } N_r \times N_c \text{ matrix, } A^T \text{ is } N_c \times N_r \text{ matrix} \]

for (int br = 0; br < Ntile_r; ++br) { // outer loops over tiles
 for (int bc = 0; bc < Ntile_c; ++bc) {

 for (int tr = 0; tr < TILE_SZ; ++tr) { // inner loops over a tile
 for (int tc = 0; tc < TILE_SZ; ++tc) {
 int col = bc * TILE_SZ + tc; // Matrix column index
 int row = br * TILE_SZ + tr; // Matrix row index

 if (row < N_r && col < N_c) { At(col, row) = A(row, col); }

 }
 }
 }
}

Note: in general, bounds check is needed to prevent indexing out of bounds.
RAJA tiling policies have analogous structure

```cpp
using namespace RAJA;

using KERNEL_POL = 
    KernelPolicy<
        statement::Tile<1, statement::tile_fixed<TILE_SZ>, seq_exec, // tile rows
        statement::Tile<0, statement::tile_fixed<TILE_SZ>, seq_exec, // tile cols
    >;
```

‘Tile’ statement types indicate tile structure for each for loop.
using namespace RAJA;

using KERNEL_POL =
 KernelPolicy<
 statement::Tile<1, statement::tile_fixed<TILE_SZ>, seq_exec, // tile rows
 statement::Tile<0, statement::tile_fixed<TILE_SZ>, seq_exec, // tile cols
 statement::For<1, seq_exec, // rows in tile
 statement::For<0, seq_exec, // cols in tile
 statement::Lambda<0> // At(col, row) = A(row, col)
 >;

Note that global indices are calculated automatically.
Exercise #7: Tiled matrix transpose

- See file: RAJA/exercises/tutorial_halfday/ex7_tiled-matrix-tranpose.cpp

 - It contains a C-style sequential implementation of a tiled matrix transpose. It also contains a RAJA tiling policy for a matrix transpose

- Exercise: Implement the matrix transpose kernel using the RAJA kernel API. Use the provided policy to execute the kernel. Try modifying the policy to use OpenMP threads (do the same for CUDA if you can). The file contains empty code sections indicated by comments for you to fill in and methods you can use to check your work and print results.

Notes:

- Bounds check not needed. RAJA tiling statements ‘mask’ out-of-bounds indices.
- Global indices are passed into a lambda. No need to compute manually.
Exercise #7 Solution

- Your code should look like the following, where you have provided a kernel using the RAJA kernel API:

```cpp
kernel<KERNEL_POL>( make_tuple(col_range, row_range), [=](int col, int row) {
    At(col, row) = A(row, col)
});
```

- The file `RAJA/exercises/tutorial_halfday/ex7_tiled-matrix-transpose_solution.cpp` contains complete implementations of the solution to exercise #7.
Local Data
Many algorithms require non-perfectly nested loops to improve performance

- To this point, we have considered perfectly nested loops; i.e., loop nests with no intervening code between loops.

Recall the matrix multiplication example:

```c
double dot = 0.0;
for (int k = 0; k < N; ++k) {
    dot += A(row, k) * B(k, col);
}
C(row, col) = dot;
```
Many algorithms require non-perfectly nested loops to improve performance

- To this point, we have considered perfectly nested loops; i.e., loop nests with no intervening code between loops

```
for (int row = 0; row < N; ++row) {
    for (int col = 0; col < N; ++col) {
        double dot = 0.0;
        for (int k = 0; k < N; ++k) {
            dot += A(row, k) * B(k, col);
        }
        C(row, col) = dot;
    }
}
```

How can we write this as a unified RAJA kernel that is portable?
We use lambda statements to indicate intervening code between loops

```cpp
for (int row = 0; row < N; ++row) {
    for (int col = 0; col < N; ++col) {
        double dot = 0.0;
        for (int k = 0; k < N; ++k) {
            dot += A(row, k) * B(k, col);
        }
        C(row, col) = dot;
    }
}
```

Composing policies like this can help you do architecture-specific optimizations in a portable way.
RAJA::kernel_param takes an additional tuple for thread-local variables and kernel-local arrays

```cpp
RAJA::kernel_param<KERNEL_POL>(
    RAJA::make_tuple(col_range, row_range, dot_range),
    RAJA::tuple<double>{0.0}, // thread local variable for 'dot'

    [=] (int /*col*/, int /*row*/, int /*k*/, double& dot) {
        // lambda 0
        dot = 0.0;
    },

    [=] (int col, int row, int k, double& dot) {
        dot += A(row, k) * B(k, col);
    },

    [=] (int col, int row, int /*k*/, double& dot) {
        // lambda 2
        C(row, col) = dot;
    });
```

Here, all lambdas have the same args, but not all args must be used. RAJA provides other statement types to make this cleaner.
Use the execution policy to compose statements that define the kernel execution pattern

```cpp
using KERNEL_POL = RAJA::KernelPolicy<
    statement::For<1, exec_policy_row,
    statement::For<0, exec_policy_col,
        statement::Lambda<0>,
        statement::For<2, RAJA::seq_exec,
            statement::Lambda<1>,
        statement::Lambda<2>
    >
    >;
```

Nested statements are analogous to nested for-loops and other statements in a C-style loop nest.
using KERNEL_POL =
RAJA::KernelPolicy<
 statement::Collapse<RAJA::omp_parallelCollapse_exec,
 RAJA::ArgList<1, 0>, // row, col
 >,
 statement::Lambda<0>, // dot = 0.0
 statement::For<2, RAJA::seq_exec,
 statement::Lambda<1> // dot += ...
 >,
 statement::Lambda<2> // C(row, col) = dot;
>;

This policy distributes iterations in loops ‘1’ and ‘0’ across CPU threads.
Other policies: launch loops as a CUDA kernel

```cpp
using KERNEL_POL = RAJA::KernelPolicy<
    statement::CudaKernel<
        statement::For<1, RAJA::cuda_block_x_loop, // row
        statement::For<0, RAJA::cuda_thread_x_loop, // col
        statement::Lambda<0>, // dot = 0.0
        statement::For<2, RAJA::seq_exec,
            statement::Lambda<1>, // dot += ...
        >,
        statement::Lambda<2> // set C(row, col) = ...
    >,
>;```

This policy distributes ‘row’ indices over CUDA thread blocks and ‘col’ indices over threads in each block.
Back to the matrix transpose loop tiling example...

```c
for (int br = 0; br < Ntile_r; ++br) { // Outer loops over tiles
 for (int bc = 0; bc < Ntile_c; ++bc) {
 int Tile[TILE_SZ][TILE_SZ];

 for (int tr = 0; tr < TILE_SZ; ++tr) {
 // Read a tile of ‘A’
 for (int tc = 0; tc < TILE_SZ; ++tc) {
 if (row < N_r && col < N_c) { Tile[tr][tc] = A(row, col); }
 }
 }

 for (int tc = 0; tc < TILE_SZ; ++tc) {
 // Write a tile of ‘At’
 for (int tr = 0; tr < TILE_SZ; ++tr) {
 if (row < N_r && col < N_c) { At(col, row) = Tile[tr][tc]; }
 }
 }
 }
}
```

Often, local array usage can improve memory access efficiency.
Note: different parallel strategies have different access requirements for local data

**Parfor**

```c
(int br = 0; br < Ntile_r; ++br) {
 for (int bc = 0; bc < Ntile_c; ++bc) {
 // Thread-private array
 int Tile[TILE_DIM][TILE_DIM];

 for (int tr = 0; tr < TILE_DIM; ++tr) {
 for (int tc = 0; tc < TILE_DIM; ++tc) {
 Tile[tr][tc] = A(row, col);
 }
 }
 // ...
 }
}
```

When outer loop is parallel, tile data should be private to each thread

```c
(int br = 0; br < Ntile_r; ++br) {
 for (int bc = 0; bc < Ntile_c; ++bc) {
 // Shared array
 int Tile[TILE_DIM][TILE_DIM];

 for (int tr = 0; tr < TILE_DIM; ++tr) {
 for (int tc = 0; tc < TILE_DIM; ++tc) {
 Tile[tr][tc] = A(row, col);
 }
 }
 // ...
 }
}
```

When inner loop is parallel, tile data should be shared between threads
RAJA’s LocalArray type is used to manage these cases in a portable manner

```
using namespace RAJA;
using TILE_MEM = LocalArray<int, Perm<0, 1>, SizeList<TILE_SZ, TILE_SZ>>;

TILE_MEM TileArray;
```

The LocalArray type defines a multi-dimensional array of fixed size that can be used to create a local array in a kernel.
RAJA’s LocalArray type is used to manage these cases in a portable manner

```
using namespace RAJA;
using TILE_MEM = LocalArray<int, Perm<0, 1>, SizeList<TILE_SZ, TILE_SZ>>;

TILE_MEM TileArray;

using EXEC_POL = KernelPolicy<
 statement::Tile<1, statement::tile_fixed<TILE_SZ>>, loop_exec,
 statement::Tile<0, statement::tile_fixed<TILE_SZ>>, loop_exec,
 statement::InitLocalMem<
 tile_mem_policy,
 ParamList< # >,
 >,
 ...
>
>
>
>
>

The local array is initialized for use in a kernel using the ‘InitLocalMem’ statement. The initialization requires a memory policy and binds the local array object to a slot in the parameter tuple (#).
```
RAJA provides several memory policy types for local arrays.

- **RAJA::cpu_tile_mem** – Allocates memory on the CPU stack
- **RAJA::cuda_shared_mem** – Allocates memory in CUDA shared memory (sharable across threads in a CUDA thread block)
- **RAJA::cuda_thread_mem** – Allocates memory local to a CUDA thread
using namespace RAJA;
using TILE_MEM = LocalArray<int, Perm<0, 1>, SizeList<TILE_SZ, TILE_SZ>>;
TILE_MEM TileArray;

RAJA::kernel_param<EXEC_POL>(
    RAJA::make_tuple(RAJA::RangeSegment(0, N_c), RAJA::RangeSegment(0, N_r)),
    RAJA::make_tuple((int)0, (int)0, TileArray),
    [=](int col, int row, int tx, int ty, TILE_MEM& TileArray) {
        TileArray(ty, tx) = Aview(row, col);
    },
    [=](int col, int row, int tx, int ty, TILE_MEM& TileArray) {
        Atview(col, row) = TileArray(ty, tx);
    }
);
Exercise #8: Matrix transpose with a local array

- See file: RAJA/exercises/tutorial_halfday/ex8_matrix-transpose-local-array.cpp
  - It contains a C-style sequential implementation of the matrix transpose which stores tile data in a local array. Additionally, a RAJA sequential kernel version is provided which stores tile data in a RAJA local array.

- Exercise: Implement the RAJA policy for the OpenMP RAJA kernel variant of matrix transpose which stores tile data in a RAJA local array (do the same for CUDA if you can). The file contains empty code sections indicated by comments for you to fill in and methods you can use to check your work and print results.

Notes:
- You will need both the local tile index as well as the global index.
- ‘ForICount’ statements generate local tile indices passed to lambdas in kernel. ‘Param’ statements identify index args.
- The `InitLocalMemory` statement may be used to initialize an array within a RAJA kernel.
Exercise #8 Solution for OpenMP

(See file RAJA/exercises/tutorial_halfday/ex8_matrix-transpose-local-array_solution.cpp)

```cpp
using namespace RAJA;
using RAJA::statement;
using EXEC_POL = KernelPolicy<
 Tile<1, tile_fixed<TILE_DIM>>, omp_parallel_for_exec,
 Tile<0, tile_fixed<TILE_DIM>>, loop_exec,
 InitLocalMem<cpu_tile_mem, ParamList<2>>, // local array is
 // param tuple
 ForICount<1, Param<0>>, loop_exec,
 ForICount<0, Param<1>>, loop_exec,
 Lambda<0>
>, // item 2
>
>
ForICount<0, Param<1>>, loop_exec,
ForICount<1, Param<0>>, loop_exec,
 Lambda<1>
>
>
> // InitLocalMem
>
> // Tile<0...
>
> // Tile<1...
>
>; // KernelPolicy
```
### RAJA support for complex loops

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments &amp; Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td>☢</td>
<td>☢</td>
<td>☢</td>
<td>☢</td>
<td>☢</td>
<td>☢</td>
<td>☢</td>
</tr>
<tr>
<td>Layouts &amp; Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ☢️ = available
- ☢️ = in progress
- ☢️ = not available
Application considerations
Consider your application’s characteristics and constraints when deciding how to use RAJA in it

- Profile your code to see where performance is most important
  - Do a few kernels dominate runtime? No one kernel takes a significant fraction of runtime?
  - Can you afford to maintain multiple, (highly-optimized) architecture-specific versions of important kernels?
  - Do you require a truly portable, single source implementation?
Consider your application’s characteristics and constraints when deciding how to use RAJA in it

- Construct a taxonomy of algorithm patterns/loop structures in your code
  - Is it amenable to grouping into classes of RAJA usage; e.g., execution policies?
  - If you have a large code with many kernels, it will be easier to port to RAJA if you define policy types in a header file and apply each to many loops
Consider your application’s characteristics and constraints when deciding how to use RAJA in it

- Consider developing a lightweight wrapper layer around RAJA
- How important is it that you preserve the look and feel of your code?
- How comfortable is your team with software disruption and using C++ templates?
- Is it important that you limit implementation details to your CS/performance tuning experts?
RAJA promotes flexibility via type parameterization

- Define **type aliases in header files**
  - Easy to explore implementation choices in a large code base
  - Reduces source code disruption
RAJA promotes flexibility and tuning via type parameterization

- Define **type aliases in header files**
  - Easy to explore implementation choices in a large code base
  - Reduces source code disruption

- Assign execution policies to “loop/kernel classes”
  - Easier to search execution policy parameter space

```cpp
using ELEM_LOOP_POLICY = ...; // in header file
RAJA::forall<ELEM_LOOP_POLICY>(/* do elem stuff */);
```

Application developers must determine an appropriate “loop taxonomy” and policy selection for their code.
RAJA (like any programming model) is **an enabling technology** – not a panacea

- Loop characterization and performance tuning are manual processes
  - Good tools are essential...
- Memory motion and access patterns are critical. Pay attention to them!
  - True for CPU code as well as GPU code
Application **coding styles may need to change** regardless of programming model (e.g., GPU execution)

- Change algorithms to ensure correct parallel execution
- Recast some patterns as reductions, scans, etc.
- Move variable declarations to innermost scope to avoid threading issues
- Virtual functions and C++ STL are problematic for GPU execution

**Simpler is almost always better** – use simple types and arrays.
Wrap-up
RAJA features are supported for a variety of programming model back-ends

<table>
<thead>
<tr>
<th>Feature</th>
<th>Seq</th>
<th>SIMD</th>
<th>OpenMP (CPU)</th>
<th>OpenMP (target)</th>
<th>CUDA</th>
<th>TBB</th>
<th>HIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple loops</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segments &amp; Index sets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomics</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Loops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layouts &amp; Views</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Green** = available
- **Yellow** = in progress
- **Red** = not available

Wrap up
Materials that supplement this tutorial are available

- Complete working example codes are available in the RAJA source repository
  - https://github.com/LLNL/RAJA
  - Many similar to the examples we presented today
  - Look in the “RAJA/examples” directory

- The RAJA User Guide
  - Topics we discussed today, configuring & building RAJA, etc.
  - Available at http://raja.readthedocs.org/projects/raja (also linked on the RAJA GitHub project)
related software is also available

- The RAJA Performance Suite
  - Algorithm kernels in RAJA and baseline (non-RAJA) forms
  - Sequential, OpenMP (CPU), OpenMP target, CUDA variants
  - We use it to monitor RAJA performance and assess compilers
  - Essential for our interactions with vendors
  - Benchmark for CORAL and CORAL-2 systems
  - https://github.com/LLNL/RAJAPerf
More related software...

- CHAI
  - Provides automatic data copies to different memory spaces behind an array-style interface
  - Designed to work with RAJA
  - Could be used with other lambda-based C++ abstractions
  - [https://github.com/LLNL/CHAI](https://github.com/LLNL/CHAI)
Again, we would appreciate your feedback...

- If you have comments, questions, suggestions, etc., please talk to one of us

- You are welcome to join our Google Group linked to our Github repository home page (https://github.com/LLNL/RAJA)

- Or contact us via our team email list: raja-dev@llnl.gov
Thank you for your attention and participation

Questions?