
• Simon Hammond – Sandia National Laboratories (sdhammo@sandia.gov)
• Howard Pritchard – Los Alamos National Laboratory (howardp@lanl.gov)

UNCLASSIFIED UNLIMITED RELEASE

NNSA Explorations:
ARM for Supercomputing

mailto:sdhammo@sandia.gov
mailto:howardp@lanl.gov

Exciting Time to be in HPC…

Exascale Computing Adoption of ML/AI for HPC New Hardware/Software

What we’ll cover today

• Why Arm – what’s so interesting about it?

• Marvell Thunder TX2 overview and comparison with x86_64
• Astra/Vanguard Program

• ASC mini-app and application performance
• Porting to ARM

7/30/19 Unclassified

What’s sooooooo Interesting About Arm?

• In many ways not much…
• Its just an instruction set
• As long as it can run Fortan, C and C++

we are good right?

• In others ways quite a lot is
interesting
• Different business model, consortium

of implementations
• Open for partners to suggest new

instructions
• Broad range of intellectual property

opportunities
• Broad(er) range if implementations

than say X86, POWER, SPARC etc

What’s sooooooo Interesting About Arm?

• DOE invests more than $100M in the hardware of a typical supercomputer
(often substantially more than this when the final bill comes in)
• Competition helps to drive down prices and increase innovation
• We want to optimize price/perf for our machines – get the absolute best workload

performance we can for the best price we can buy hardware

• The future is interesting – Arm is an IP company, not an implementation
• What if we could blend existing Arm IP blocks with our own DOE inspired accelerators?
• Build workload optimized processors and computers that benefit DOE scientists?

• e.g. a machine just for designing new materials but one which is 100X faster than today?
• Arm is an opportunity to engage with a broad range of suppliers and an ecosystem

• Not the only way to do this, can partner with traditional vendors like Intel, IBM, AMD etc

7/30/19 Unclassified

Arm is Growing in HPC…

7/30/19 Unclassified

NNSA/ASC Vanguard Program
A proving ground for next-generation HPC technologies in support of the

NNSA mission

http://vanguard.sandia.gov

Astra – the First Petscale Arm based Supercomputer

7/30/19 Unclassified

Test Beds
• Small testbeds

(~10-100 nodes)
• Breadth of

architectures Key
• Brave users

Vanguard
• Larger-scale experimental

systems
• Focused efforts to mature

new technologies
• Broader user-base
• Not Production
• Tri-lab resource but not for

ATCC runs

ATS/CTS Platforms
• Leadership-class systems

(Petascale, Exascale, ...)
• Advanced technologies,

sometimes first-of-kind
• Broad user-base
• Production Use

ASC Test Beds Vanguard ATS and CTS Platforms

Greater Scalability, Larger Scale, Focus on Production

Higher Risk, Greater Architectural Diversity

Where Vanguard Fits in our Program Strategy

7/30/19 Unclassified

NNSA/ASC Advanced Trilab Software Environment (ATSE) Project

• Advanced Tri-lab Software Environment
• Sandia leading development with input from Tri-lab Arm team
• Will be the user programming environment for Vanguard-Astra
• Partnership across the NNSA/ASC Labs and with HPE

• Lasting value
• Documented specification of:

• Software components needed for HPC production applications
• How they are configured (i.e., what features and capabilities are enabled) and interact
• User interfaces and conventions

• Reference implementation:
• Deployable on multiple ASC systems and architectures with common look and feel
• Tested against real ASC workloads
• Community inspired, focused and supported

ATSE is an integrated software environment for ASC workloads

ATSE
stack

7/30/19 Unclassified

HPE’s HPC Software Stack
HPE:
• HPE MPI (+ XPMEM)
• HPE Cluster Manager

• Arm:
• Arm HPC Compilers
• Arm Math Libraries
• Allinea Tools

• Mellanox-OFED & HPC-X
• RedHat 7.x for aarch64

ATSE Collaboration with HPE’s HPC Software Stack

ATSE
stack

7/30/19 Unclassified

SVE Enablement – Next Generation of SIMD/Vector Instructions

• SVE work is underway
• SVE = Scalable Vector Extensions
• Length agnostic vector instructions at an ISA level
• Using ArmIE (fast emulation) and RIKEN GEM5 Simulator
• GCC and Arm toolchains

• Collaboration with RIKEN
• Visited Sandia (participants from SNL, LANL, LLNL, RIKEN)
• Discussion of performance and simulation techniques
• Deep-dive on SVE (GEM5)

• Short term plan
• Use of SVE intrinsics for Kokkos-Kernels SIMD C++/data parallel

types
• Underpins number of key performance routines for Trilinos

libraries
• Seen large (6X) speedups for AVX512 on KNL and Skylake
• Expect to see similar gains for SVE vector units

• Critical performance enablement for Sandia production codes
7/30/19 Unclassified

•Workflows leveraging containers and virtual machines

• Support for machine learning frameworks

• ARMv8.1 includes new virtualization extensions, SR-IOV

• Evaluating parallel filesystems + I/O systems @ scale

• GlusterFS, Ceph, BeeGFS, Sandia Data Warehouse, …

• Resilience studies over Astra lifetime

• Improved MPI thread support, matching acceleration

• OS optimizations for HPC @ scale

• Exploring spectrum from stock distro Linux kernel to HPC-tuned Linux

kernels to non-Linux lightweight kernels and multi-kernels

• Arm-specific optimizations

ATSE
stack

ATSE R&D Efforts – Developing Next-Generation NNSA Workflows

7/30/19 Unclassified

Marvell Thunder X2

7/30/19 Unclassified

ThunderX2 - Second Generation High-End Armv8-A Server SoC

7/30/19 Unclassified

Up to 32 custom Armv8.1 cores, up to 2.5GHz

Full OoO, 1, 2, 4 threads per core

1S and 2S Configuration

Up to 8 DDR4-2667 Memory Controllers, 1 & 2 DPC

Up to 56 lanes of PCIe, 14 PCIe controllers

Full SoC: Integrated SATAv3 USB3 and GPIOs

Server class RAS & Virtualization

Extensive Power Management

LGA and BGA for most flexibility

40+ SKUs (75W – 180W)

7/30/19 Unclassified

Marvell
ThunderX2

Haswell E5-2698
v3

Broadwell E5-
2695

Skylake Gold
6152

Cores/Socket 32 (max 4 HT) 16 (2 HT) 22 (2 HT) 22 (2 HT)

L1 Cache/Core 32KB I/D (8-way) 32KB I/D (8-way) 32KB I/D (8-way) 32KB I/D (8-way)

L2 Cache/Core 256KB (8-way) 256 KB (8-way) 256 KB (8-way) 1 MB (16-way)

L3 Cache/Socket 32 MB 40 MB 33 MB 30.25 MB

#Memory

Channels/Socket

8 DDR4 4 DDR4 4 DDR4 6 DDR4

Base Clock Rate 2.2 GHz 2.3 GHz 2.2 GHz 2.1 GHz

Vector/SIMD

Length

128b (NEON) 256b (AVX2) 256b (AVX2) 512b (AVX512)

ThunderX2 Comparison with Xeon Processors

7/30/19 Unclassified

Roofline Comparison

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

Nvidia tesla V100 (7.5 TFlops)

90
0 G

flo
ps

/s

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

Nvidia tesla V100 (7.5 TFlops)

90
0 G

flo
ps

/s

FD
TD

 -
El

as
tic

 -
4t

h
or

de
r

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

Nvidia tesla V100 (7.5 TFlops)

90
0 G

flo
ps

/s

FD
TD

 -
El

as
tic

 -
4t

h
or

de
r

FD
TD

 -
Ac

ou
st

ic
(IS

O
) -

 8
th

 o
rd

er

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

Nvidia tesla V100 (7.5 TFlops)

90
0 G

flo
ps

/s

FD
TD

 -
El

as
tic

 -
4t

h
or

de
r

FD
TD

 -
Ac

ou
st

ic
(IS

O
) -

 8
th

 o
rd

er

FD
TD

 -
Ac

ou
st

ic
(T

TI
) -

 8
th

 o
rd

er

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

Nvidia tesla V100 (7.5 TFlops)

90
0 G

flo
ps

/s

FD
TD

 -
El

as
tic

 -
4t

h
or

de
r

FD
TD

 -
Ac

ou
st

ic
(IS

O
) -

 8
th

 o
rd

er

FD
TD

 -
Ac

ou
st

ic
(T

TI
) -

 8
th

 o
rd

er

SE
M

 -
El

as
tic

 -
4t

h
or

de
r

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

 4

 16

 64

 256

 1024

 4096

 0.0625 0.25 1 4 16 64 256 1024

Marvell TX2-CN9980 (560 GFlops)

17
0 G

flo
ps

/s

Intel Skylake-8168 (2.08 TFlops)

12
7 G

flo
ps

/s

Fujitsu-A64FX (2.99 TFlops)

10
24

 G
flo

ps
/s

Huawei-Kunpeng920 (1.33 TFlops)

AMD EPYC Naples/7601 (1.13 TFlops)

Amazon Graviton (294 GFlops)

42
 G

flo
ps

/s

Intel KNL-7250 (3.04 TFlops)

40
0 G

flo
ps

/s

Nvidia tesla V100 (7.5 TFlops)

90
0 G

flo
ps

/s

FD
TD

 -
El

as
tic

 -
4t

h
or

de
r

FD
TD

 -
Ac

ou
st

ic
(IS

O
) -

 8
th

 o
rd

er

FD
TD

 -
Ac

ou
st

ic
(T

TI
) -

 8
th

 o
rd

er

SE
M

 -
El

as
tic

 -
4t

h
or

de
r

FD
TD

 -
Ac

ou
st

ic
(V

TI
) -

 8
th

 o
rd

er

AMD EPYC Rome (2.41 TFlops)

At
ta

in
ab

le
 (G

Fl
op

/s
)

Arithmetic Intensity (Flop/Byte)

NVIDIA Tesla V100 (7.5 TFlops)

Fujitsu A64FX (2.99 TFlops)

Intel Skylake 8168 (2.08 TFlops)

Huawei Kunpeng920 (1.13 TFlops)

Marvell ThunderX2 (0.56 TFlops)

Amazon Graviton (0.294 TFlops)

AMD EPYC Rome (2.41 TFlops)

T
h

e
o

re
ti

ca
l P

e
a

k
G

fl
o

p
s

4096

1024

256

64

16

4
0.25 1 644 16 256 1024

Arithmetic Intensity (Flop/Byte)

STREAM Triad Bandwidth
• ThunderX2 provides highest

bandwidth of all processors
• Vectorization makes no discernable

difference to performance at large
core counts
• Around 10% higher with NEON at

smaller core counts (5 – 14)

• Significant number of kernels in HPC
are bound by the rate at which they
can load/store to memory (“memory
bandwidth bound”)
• Makes high memory bandwidth

desireable
• Ideally want to get to these bandwidths

without needing to vectorize
7/30/19 Unclassified

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

M
e

a
su

re
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

Processor Cores

ThunderX2 (NEON)
ThunderX2 (No Vec)

Skylake (AVX512)
Skylake (No Vec)

Haswell (AVX2)
Haswell (No Vec)

Higher is better

 0

 20

 40

 60

 80

 100

 120

 0 500000 1x106 1.5x106 2x106 2.5x106

M
e

a
su

re
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

Data Array Size

Haswell Read
Skylake Read
Haswell Write
Skylake Write

ThunderX2 Read
ThunderX2 Write

Cache Performance

• Haswell has highest per-core
bandwidth (read and write) at L1,
slower at L2.
• Skylake redesigned cache sizes

(larger L2, smaller L3) shows up in
graph
• Higher performance for certain work-

set sizes (typical for unstructured
codes)

• TX2 more uniform bandwidth at
larger scale (see less asymmetry
between read/write)

7/30/19 Unclassified

Higher is better

Larger L2 capacity
for Skylake

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

M
e
a
su

re
d
 P

e
rf

o
rm

a
n
ce

 (
G

F
/s

)

Processor Cores

Skylake
Haswell

ThunderX2

DGEMM Compute Performance

• ThunderX2 has similar
performance at scale to Haswell
• Roughly twice as many cores (TX2)
• Half the vector width (TX2 vs. HSW)

• See strata in Intel MKL results,
usually a result of matrix-size
kernel optimization
• ARM PL provides smoother

performance results (essentially
linear growth)

7/30/19 Unclassified

Higher is better

Floating Point Performance Sanity Check: HPL

7/30/19 Unclassified

• ThunderX2 has about half the floating point capacity of comparable Xeon
CPUs
• Xeon 8180 vs. ThunderX2 • HPL.dat

163840 Ns

256 NBs

0 PMAP process mapping (0=Row-,1=Column-
major)

7 Ps

8 Qs

1 PFACTs (0=left, 1=Crout, 2=Right)

2 RFACTs (0=left, 1=Crout, 2=Right)

0 BCASTs
(0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)

0 DEPTHs (>=0)

2 SWAP (0=bin-exch,1=long,2=mix)

64 swapping threshold

2.00E+03

8.82E+02

4.99E+02

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

Xeon 8180 SMT=2+Turbo SMT=4 w/o
Turbo

GF
LO

PS

HPL | N=163840 (200GB)

Results from using Astra and other TX2 Platforms

Applications

7/30/19 Unclassified

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

G
ig

a
-U

p
d

a
te

s/
S

e
co

n
d

 (
G

U
P

/s
)

Processor Cores

ThunderX2 (No Vec)
Skylake (No Vec)
Haswell (No Vec)

GUPS Random Access

• Running all processors in SMT-1

mode, SMT(>1) is usually better

performance

• Expect SMT2/4 on TX2 to give better

numbers

• Usually more cores gives higher

performance (more load/store

units driving requests).

• Typical for TLB performance to be a

limiter

• Need to consider larger pages for

future runs

7/30/19 Unclassified

Higher is better

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30

F
ig

u
re

 o
f
M

e
ri
t
(Z

o
n
e
/S

)

Processor Cores

Skylake (AVX512)
Skylake (No Vec)

Haswell (AVX2)
Haswell (No Vec)

ThunderX2 (NEON)
ThunderX2 (No Vec)

LULESH Hydrodynamics Mini-App

• Typically fairly intensive L2
accesses for unstructured mesh
(although LULESH is regular
structure in unstructured format)
• Expect slightly higher

performance with SMT(>1)
modes for all processesors

7/30/19 Unclassified

Higher is better

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5 10 15 20 25 30

F
ig

u
re

 o
f
M

e
ri
t
(L

o
o
ku

p
s/

S
)

Processor Cores

Skylake (AVX512)
Skylake (No Vec)

Haswell (AVX2)
Haswell (No Vec)

ThunderX2 (NEON)
ThunderX2 (No Vec)

XSBench Cross-Section Lookup Mini-App

• Two level random-like access into
memory, look-up in first table and
then use indirection to reach
second lookup
• Means random access but is more

like search so vectors can help

• See gain on Haswell and Skylake
which both have vector-gather
support
• No support for gather in NEON
• XSBench is mostly read-only

(gather)

7/30/19 Unclassified

Higher is better

Branson Mini-App and Benchmark

7/30/19 Unclassified

• Monte Carlo based Radiation transport
mini-app

• Lots of time spent in math intrinsics (exp,
log, sin, cos). Benefits from ARM
optimized math intrinsics

• Poor memory locality, benefits some from
large pages

• Doesn’t vectorize

• Random number generator not yet
optimized for ARM

• On a per node basis, TX2 is on par with
SKL-gold

• Need to improve vectorizability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64
TX2 TX2+armpl SKL-vec

Relative perf wrt SKL-gold

MPI Processes

EMPIRE on Astra

Trinity HSW 32 MPI x 1 OMP Astra TX2 56 MPI x 1 OMP

Strong and weak scaling studies for EMPIRE-PIC for awesome blob test case

Missing Trinity XL mesh 512 and 4096 node results because of MueLu FPE
Missing Astra XL mesh 2048 node results because of MueLu FPE

Work by Paul Lin7/30/19 Unclassified

EMPIRE on Astra

• TX2 node has ~2x memory bandwidth and 1.75x cores (56 vs. 32) of Trinity HSW
node

• (HSW time)/(TX2 time) > 1 means TX2 is faster
• Strong scaling for awesome blob small mesh (1-8 nodes), strong scaling for

medium mesh (8-64 nodes), strong scaling for large mesh (64-512)
• (HSW time)/(TX2 time) for linear solve not great, low

computation/communication regime

(Good)

7/30/19 Unclassified Work by Paul Lin

• TX2 node has ~2x memory bandwidth and 1.75x cores (56 vs. 32) of Trinity HSW

node

• (HSW time)/(TX2 time) > 1 means TX2 is faster

• Strong scaling for awesome blob medium mesh (1-8 nodes), strong scaling for

large mesh (8-64 nodes)

• (HSW time)/(TX2 time) for linear solve definite better than previous slide, due

to increased computation/communication

EMPIRE on Astra

(Good)

7/30/19 Unclassified Work by Paul Lin

xRAGE

7/30/19 Unclassified

• Eulerian-based
hydrodynamics/radiation
transport application
• Uses adaptive mesh

refinement
• Significant amount of

gather/scatter
• Does not currently benefit

from AVX2/512
vectorization
• Memory bound

0

100

200

300

400

500

600

700

8 16 32

TX2 (50ppn)
BWL (48ppn)
SKL (56ppn)

Results from Cray XC50 using
Cray CCE9 Compiler

Lower is better

#nodes

W
al

l t
im

e
(s

ec
s)

PARTISN

7/30/19 Unclassified

• Neutron transport code –
deterministic SN method
• Sensitive to cache

performance, not typically
memory bound
• Vectorizes well for avx512,

NEON
• Can be run mixed

MPI/OpenMP
• Limited by cache BW on

TX2 and front end stalls
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32

TX2
SKL-novec
SKL-vec

MPI Processes

Higher is better

Relative Perf. To BWL-vec

PARTISN can benefit from 4 SMTs/core

7/30/19 Unclassified

• Example of code with
significant front end stalls
• Taucommander indicates

high rate of branch
misprediction in the sweep
kernel

Cray XC50 - CCE 9.0 compiler

RIKEN Fiber Benchmarks – Compiler Performance Comparison

7/30/19 Unclassified

• Comparison of Cray 8/9
compilers against Allinea19
using Riken Fiber benchmarks
• Results are mixed, no clear

winner in terms of compilers
• Takeaway is to try to build your

app with several compilers

Cray XC50 - CCE 9.0 compiler
Lo

w
er

 is
 b

et
te

r

Early Results from Astra

7/30/19 Unclassified

System has been online for around two weeks , incredible team working round the
clock, already running full application ports and many of our key frameworks

Baseline: Trinity ASC Platform (Current Production), dual-socket Haswell

CFD Models Hydrodynamics Molecular DynamicsMonte Carlo

1.60X 1.45X 1.30X 1.42X

Linear Solvers

1.87X

Porting to ARM

7/30/19 Unclassified

Sanity Checks

• See if your software has already been ported to aarch64:
• www.gitlab.com/arm-hpc/packages/wikis
• See if its available via Spack https://github.com/spack/spack

• Don’t use old compilers:
• GCC 8.2 or newer, 9.1 better
• Allinea armflang/armclang 19.0 or newer
• If you’re package relies on some system packages in performance critical areas, may

want to build your own versions. Libraries that come with base release are not
optimized for Thunderx2

• If your application has lots of dependencies, this may be a good time to learn
how to use Spack
• Checkout training material at https://gitlab.com/arm-hpc/training

7/30/19 Unclassified

http://www.gitlab.com/arm-hpc/packages/wikis
https://github.com/spack/spack
https://gitlab.com/arm-hpc/training

7/30/19 Unclassified

Porting Cheat Sheet

Ensure all dependencies have been ported.
•Arm HPC Packages Wiki: https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages

Update or patch autotools and libtool as needed
•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess
•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub
•sed -i -e 's#wl=""#wl="-Wl,"#g' libtool
•sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

Update build system to use the right compiler and architecture
•Check #ifdef in Makefiles. Use other architectures as a template.

Use the right compiler flags
•Start with -mcpu=native -Ofast

Avoid non-standard compiler extensions and language features
•Arm compiler team is actively adding new “unique” features, but it’s best to stick to the standard.

Update hard-wired intrinsics for other architectures
•https://developer.arm.com/technologies/neon/intrinsics
•Worst case: default to a slow code.

Update, and possibly fix, your test suite
•Regression tests are a porter’s best friend.
•Beware of tests that expect exactly the same answer on all architectures!

Know architectural features and what they mean for your code
•Arm’s weak memory model.
•Division by zero is silently zero on Arm.

https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/technologies/neon/intrinsics

Questions?

7/30/19 Unclassified

