
© 2018 Arm Limited

Ryan Hulguin

ryan.hulguin@arm.com

HPC Senior Applications Engineer

Debugging and
Profiling HPC
Applications

ATPESC

August 7, 2019

© 2018 Arm Limited2

Agenda

• General Debugging and Profiling Advice

• Arm Software for Debugging and Profiling

• Debugging with DDT

• Profiling with MAP

• Theta Specific Settings

© 2018 Arm Limited3

Debugging

Transforming a broken program to a working one

How? TRAFFIC!

•Track the problem

•Reproduce

•Automate - (and simplify) the test case

•Find origins – where could the “infection” be from?

•Focus – examine the origins

• Isolate – narrow down the origins

•Correct – fix and verify the test case is successful

© 2018 Arm Limited4

Profiling
Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

© 2018 Arm Limited5

Performance Improvement Workflow

Get a realistic
test case

Profile your
code

Look for the
significant

What is the
nature of the

problem?

Apply brain to
solve

Think of the
future

© 2018 Arm Limited

Arm Software

© 2018 Arm Limited7

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2018 Arm Limited8

Run and ensure application correctness
Combination of debugging and re-compilation

• Ensure application correctness with Arm DDT scalable debugger
• Integrate with continuous integration system.
• Use version control to track changes and leverage Forge’s built-in VCS support.

Examples:
$> ddt --offline mpirun –n 48 ./example
$> ddt mpirun –n 48 ./example

© 2018 Arm Limited9

Visualize the performance of your application

• Measure all performance aspects with Arm MAP parallel profiler
• Identify bottlenecks and rewrite some code for better performance

Examples:
$> map --profile mpirun –n 48 ./example

© 2018 Arm Limited

Debugging with DDT

© 2018 Arm Limited11

Arm DDT – The Debugger

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen?

• leaps to source

How did it happen?

• Diagnostic messages

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where, How,

Why

Fix

© 2018 Arm Limited12

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically -g

It is recommended to turn off optimization flags i.e. –O0

Leaving optimizations turned on can cause the compiler to optimize out some variables and
even functions making it more difficult to debug

© 2018 Arm Limited13

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?

© 2018 Arm Limited14

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and
investigate

© 2018 Arm Limited15

Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0)
which causes the segmentation fault.

i is not used, and x and y are not initialized

© 2018 Arm Limited16

It works… Well, most of the time

A strange behaviour where the
application “sometimes” crashes is a
typical sign of a memory bug

Arm DDT is able to force the crash
to happen

•I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG !

© 2018 Arm Limited17

Advanced Memory Debugging

© 2018 Arm Limited18

Heap debugging options available

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
•Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

See user-guide:

Chapter 12.3.2

© 2018 Arm Limited19

Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

© 2018 Arm Limited20

Ah… Integer
overflow!

© 2018 Arm Limited21

New Bugs from Latest Changes

© 2018 Arm Limited22

caption

Track Your Changes in a Logbook

© 2018 Arm Limited

Arm DDT Demo

© 2018 Arm Limited24

Five great things to try with Allinea DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

© 2018 Arm Limited25

Arm DDT cheat sheet

Load the environment module

• $ module load forge/19.0.2

Prepare the code

• $ cc -O0 -g myapp.c -o myapp.exe

Start Arm DDT in interactive mode

• $ ddt aprun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism

• On the login node:

• $ ddt &

• (or use the remote client) <- Preferred method

• Then, edit the job script to run the following command and submit:

• ddt --connect aprun -n 8 ./myapp.exe arg1 arg2

© 2018 Arm Limited

Profiling with MAP

© 2018 Arm Limited27

Small data files

<5% slowdown

No instrumentation

No recompilation

Arm MAP – The Profiler

© 2018 Arm Limited28

Glean Deep Insight from our Source-Level Profiler

Track memory usage across the
entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

© 2018 Arm Limited29

Initial profile of CloverLeaf shows surprisingly unequal I/O
Each I/O operation should take about the same time, but it’s not the case.

© 2018 Arm Limited30

Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.

© 2018 Arm Limited31

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

© 2018 Arm Limited32

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.

© 2018 Arm Limited33

Arm MAP: Python profiling

• Launch command
• $ python ./laplace1.py slow 100 100

• Profiling command
• $ map --profile python ./laplace1.py slow 100 100
• --profile: non-interactive mode
• --output: name of output file

• Display profiling results
• $ map laplace1.map

Laplace1.py

[…]
err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv

diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)
[…]

© 2018 Arm Limited34

Naïve Python loop (laplace1.py slow 100 1000)

© 2018 Arm Limited35

Optimizing computation on NumPy arrays

Naïve Python loop

err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)

NumPy loop

u[1:-1, 1:-1] =
((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

return g.computeError()

© 2018 Arm Limited36

NumPy array notation (laplace1.py numeric 1000 1000)
This is 10 times more iterations than was computed in the previous profile

© 2018 Arm Limited37

Arm MAP cheat sheet
Load the environment module (manually specify version)

• $ module load forge/19.0.2

Generate the wrapper libraries (static is default on Theta)

• $ make-profiler-libraries --lib-type=static

Unload Darshan module (It wraps MPI calls which cannot be used with MAP)

• $ module unload darshan

Follow the instructions displayed to prepare the code

• $ cc -O3 -g myapp.c -o myapp.exe -Wl,@/path/to/profiler_wrapper_libraries/allinea-profiler.ld

• Edit the job script to run Arm MAP in “profile” mode

• $ map --profile aprun -n 8 ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client connected to the remote system or locally)

© 2018 Arm Limited38

Six Great Things to Try with Allinea MAP

Find the peak memory
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP
regions make sense

Improve memory access
Restructure for
vectorization

© 2018 Arm Limited

Theta Specific Settings

© 2018 Arm Limited40

Configure the remote client
Install the Arm Remote Client

• Go to : https://developer.arm.com/products/software-development-

tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client

• Open your Remote Client

• Create a new connection: Remote Launch ➔ Configure ➔ Add

– Hostname: <username>@theta.alcf.anl.gov

– Remote installation directory:

/soft/debuggers/forge

• ALCF Documentation available at

https://tinyurl.com/debugging-cpw-2018-05

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://tinyurl.com/debugging-cpw-2018-05

© 2018 Arm Limited41

Static Linking Extra Steps

To enable advanced memory debugging features, you must link explicitly against our
memory libraries

Simply add the link flags to your Makefile, or however appropriate

lflags = -L/soft/debuggers/ddt/lib/64 -Wl,--undefined=malloc -ldmalloc -Wl,--allow-multiple-
definition

In order to profile, static profiler libraries must be created with the command
make-profiler-libraries --lib-type=static

Instructions to link the libraries will be provided after running the above command

© 2018 Arm Limited

Questions?

4343 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

