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Debugging

Transforming a broken program to a working one

How? TRAFFIC!

•Track the problem

•Reproduce

•Automate - (and simplify) the test case

•Find origins – where could the “infection” be from?

•Focus – examine the origins

• Isolate – narrow down the origins

•Correct – fix and verify the test case is successful
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Profiling
Profiling is central to understanding and improving application performance.
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Performance Improvement Workflow

Get a realistic 
test case

Profile your 
code

Look for the 
significant

What is the 
nature of the 

problem?   

Apply brain to 
solve

Think of the 
future
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Arm Software
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Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable 

Commercially supported
by Arm



© 2018 Arm Limited8

Run and ensure application correctness
Combination of debugging and re-compilation

• Ensure application correctness with Arm DDT scalable debugger
• Integrate with continuous integration system.
• Use version control to track changes and leverage Forge’s built-in VCS support.

Examples:
$> ddt --offline mpirun –n 48 ./example
$> ddt mpirun –n 48 ./example
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Visualize the performance of your application

• Measure all performance aspects with Arm MAP parallel profiler
• Identify bottlenecks and rewrite some code for better performance

Examples:
$> map --profile mpirun –n 48 ./example
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Debugging with DDT
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Arm DDT – The Debugger

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen? 

• leaps to source

How did it happen? 

• Diagnostic messages

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Arm tools

Identify 
a problem

Gather info
Who, Where, How, 

Why

Fix
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Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically -g

It is recommended to turn off optimization flags i.e. –O0

Leaving optimizations turned on can cause the compiler to optimize out some variables and 
even functions making it more difficult to debug
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Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?
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Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and 
investigate
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Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0) 
which causes the segmentation fault.

i is not used, and x and y are not initialized
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It works… Well, most of the time

A strange behaviour where the 
application “sometimes” crashes is a 
typical sign of a memory bug

Arm DDT is able to force the crash 
to happen

•I am buggy 
AND not 
buggy. How 
about that?

SCHRODIN
BUG !
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Advanced Memory Debugging
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Heap debugging options available

basic
•Detect invalid pointers 
passed to memory 
functions 
(e.g. malloc, free, 
ALLOCATE, 
DEALLOCATE,...) 

check-fence
•Check the end of an 
allocation has not been 
overwritten when it is 
freed. 

free-protect
•Protect freed memory 
(using hardware 
memory protection) so 
subsequent read/writes 
cause a fatal error. 

Added goodiness
•Memory usage, 
statistics, etc. 

Fast free-blank
•Overwrite the bytes of 
freed memory with a 
known value. 

alloc-blank
•Initialise the bytes of 
new allocations with a 
known value.

check-heap
•Check for heap 
corruption (e.g. due to 
writes to invalid 
memory addresses).

realloc-copy
•Always copy data to a 
new pointer when re-
allocating a memory 
allocation (e.g. due to 
realloc)

Balanced check-blank
•Check to see if space 
that was blanked when 
a pointer was 
allocated/freed has 
been overwritten.

check-funcs
•Check the arguments of 
addition functions 
(mostly string 
operations) for invalid 
pointers. 

Thorough

See user-guide:

Chapter 12.3.2



© 2018 Arm Limited19

Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max ( “mprotect fails” error)

• Beware the additional memory usage cost



© 2018 Arm Limited20

Ah…   Integer 
overflow!
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New Bugs from Latest Changes
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caption

Track Your Changes in a Logbook
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Arm DDT Demo



© 2018 Arm Limited24

Five great things to try with Allinea DDT

The scalable print 
alternative

Stop on variable change
Static analysis warnings 

on code errors

Detect read/write 
beyond array bounds

Detect stale memory 
allocations
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Arm DDT cheat sheet

Load the environment module

• $ module load forge/19.0.2

Prepare the code

• $ cc -O0 -g myapp.c -o myapp.exe

Start Arm DDT in interactive mode

• $ ddt aprun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism

• On the login node:

• $ ddt &

• (or use the remote client) <- Preferred method

• Then, edit the job script to run the following command and submit:

• ddt --connect aprun -n 8 ./myapp.exe arg1 arg2



© 2018 Arm Limited

Profiling with MAP
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Small data files

<5% slowdown

No instrumentation

No recompilation

Arm MAP – The Profiler
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Glean Deep Insight from our Source-Level Profiler

Track memory usage across the 
entire application over time

Spot MPI and OpenMP 
imbalance and overhead

Optimize CPU memory and 
vectorization in loops

Detect and diagnose I/O 
bottlenecks at real scale
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Initial profile of CloverLeaf shows surprisingly unequal I/O
Each I/O operation should take about the same time, but it’s not the case.
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Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.
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Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.
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Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.
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Arm MAP: Python profiling

• Launch command
• $ python ./laplace1.py slow 100 100

• Profiling command
• $ map --profile python ./laplace1.py slow 100 100
• --profile: non-interactive mode
• --output: name of output file

• Display profiling results
• $ map laplace1.map

Laplace1.py

[…]
err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv

diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)
[…]
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Naïve Python loop (laplace1.py slow 100 1000)
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Optimizing computation on NumPy arrays

Naïve Python loop

err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)

NumPy loop

u[1:-1, 1:-1] = 
((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 + 
(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

return g.computeError()
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NumPy array notation (laplace1.py numeric 1000 1000)
This is 10 times more iterations than was computed in the previous profile
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Arm MAP cheat sheet
Load the environment module (manually specify version)

• $ module load forge/19.0.2

Generate the wrapper libraries (static is default on Theta)

• $ make-profiler-libraries --lib-type=static

Unload Darshan module (It wraps MPI calls which cannot be used with MAP)

• $ module unload darshan

Follow the instructions displayed to prepare the code

• $ cc -O3 -g myapp.c -o myapp.exe -Wl,@/path/to/profiler_wrapper_libraries/allinea-profiler.ld

• Edit the job script to run Arm MAP in “profile” mode

• $ map --profile aprun -n 8 ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client connected to the remote system or locally)
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Six Great Things to Try with Allinea MAP

Find the peak memory 
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP 
regions make sense

Improve memory access
Restructure for 
vectorization
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Theta Specific Settings
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Configure the remote client
Install the Arm Remote Client

• Go to : https://developer.arm.com/products/software-development-

tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client

• Open your Remote Client

• Create a new connection: Remote Launch ➔ Configure ➔ Add 

– Hostname: <username>@theta.alcf.anl.gov

– Remote installation directory: 

/soft/debuggers/forge

• ALCF Documentation available at

https://tinyurl.com/debugging-cpw-2018-05

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://tinyurl.com/debugging-cpw-2018-05
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Static Linking Extra Steps

To enable advanced memory debugging features, you must link explicitly against our 
memory libraries

Simply add the link flags to your Makefile, or however appropriate

lflags = -L/soft/debuggers/ddt/lib/64 -Wl,--undefined=malloc -ldmalloc -Wl,--allow-multiple-
definition

In order to profile, static profiler libraries must be created with the command
make-profiler-libraries --lib-type=static

Instructions to link the libraries will be provided after running the above command
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Questions?
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Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद


