Software

Profiling your application
with Intel® Vtune™

Amplifier

Paulius Velesko

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

— Targeting the current ISA is fundamental to fully exploit vectorization

= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...)

— Up to 64 Physical cores and 256 logical processors per socket on Theta!

= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk 10 and network traffic)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Compiler Reports

FREE* performance metrics

Compile with -qopt-report=5

= Which loops were vectorized = Prefetching
= Vector Length = |ssues preventing vectorization
= Estimated Gain = |nline reports
= Alignment = |nterprocedural optimizations

= Scatter/Gather = Register Spills/Fills

LOOP BEGIN at ../src/timestep.F(4835,13) _ _ _
remark #15389: vectorization support: reference nbd_(1) has unaligned access [../src/timestep.F(4836,16)]
remark #15381: vectorization support: unaligned access used inside loop body

remark #15305: vectorization support: vector length 2

remark #15399: vectorization support: unroll factor set to 4

remark #15309: vectorization support: normalized vectorization overhead 0.139
remark #15450: unmasked unaligned unit stride loads: 1

remark #15463: unmasked indexed (or scatter) stores: 1

remark #15475: --- begin vector cost summary ---

remark #15476: scalar cost: 4

remark #15477: vector cost: 4.500

remark #15478: estimated potential speedup: 0.880

remark #15488: --- end vector cost summary ---
remark #25439: unrolled with remainder by 2
LOOP END

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

remark #15335: loop was not vectorized: vectorization possible but seems inefficient. Use vector always directive or -vec-thresholde to override
remark #15329: vectorization support: irregularly indexed store was emulated for the variable <coefd (nbd (1))=, part of index 1s read from memory

Intel® Application

Performance Snapshot

Bird’s eye view

VTune™ Amplifier’s Application Performance Snapshot

High-level overview of application performance

|dentify primary optimization areas

Recommend next steps in analysis

Extremely easy to use

Informative, actionable data in clean HTML report
Detailed reports available via command line

Low overhead, high scalability

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home

$ module swap intel/18.0.0.128 intel/19.0.3.199

$ export PMI_NO_FORK=1
Launch your job in interactive or batch mode:

$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aps -report=./aps result ...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-01 12:08:48

umber of ranks: 142 Your application is MPI bound.

anks per noge: . . Pt P . .

Opem\,':p threads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), non-
HW Platform: intel(R) Xeon(R) Processor code named Broadwel(-EP optimal communication schema or MPI library settings. Use MPI profiling tools

Logical Core Count per node: 72

like Intel ® Trace Analyzer and Collector to explore performance bottlenecks.

MPI Time 53.74%K <10% I
Elapsed Time OpenMP Imbalance 0.43% <10%

14.70% <20%
0.30%Kk >50% I

0.00% <10%

50.98 0.68

SP FLOPS CPI

MPI Time QpenMP_Imbalance Memory Stalls FPU Utilization
53.74%N of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots 0.30%Kr
65.23s 0.52s
(65235) 0529 Cache Stalls SP FLOPs per. Cycle
MPI Imbalance 12.84% of cycles 0.08 Out of 32.00
11.03% of Elapsed Time i
(13 ;9:) P Mgmorv FOOth’I nt DRAM Stalls Vector Capacity Usage
:) Resident: 0.18% of cycles 25.84%R
TOP 5 MPI Functions % Per node:
Waitall 3735 Peak: 786.96 MB NUMA FP Instruction Mix
Rend s Average: 687.49 MB 31.79% of remote accesses % of Packed FP Instr.: 3.54%
- Per rank:
Barrier 5.52 E_e_@_k; 127.62 MB
Irecv 3.70 Average: 38.19 MB
Scatterv 0.00 ko FP Arith/Mem Rd Instr. Ratio
Per node: 007K
Peak: 9173.34 MB '
|/0 Bound Average: 9064.92 MB FP Arith/Mem Wr Instr. Ratio
OOO‘V """""""" Per rank: 0.30K
A (]

Peak: 566.52 MB
________ Average: 503,61 MB

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tuning Workflow

Intel® VTune™ Amplifier's
Application Performance Snapshot

MPI Bound Thread-level FPU
MPI Imbalance CPU Bound read-leve
sl e indentieatn
+ Thread-level scalability issues parallelization issues) y

¥

Intel® Advisor

and Collector

CLUSTER NODE CORE

Optimization Notice

(OpenMP analysis) I
Intel® Trace Analyzer I

lhreading Vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VTUNE™ Amplifier

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/vtune-xc40

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= |ow overhead

= Comprehensive (microarchitecture, memory, IO, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

= User-mode driverless sampling

= Event-based sampling

Analyzing code access to shared resources is critical to achieve good performance on
multicore and manycore systems

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

= uarch-exploration General microarchitecture exploration
= hpc-performance HPC Performance Characterization

" memory-access Memory Access

= disk-io Disk Input and Output
" concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

= |ocksandwaits Locks and Waits

= memory-consumption Memory Consumption
= system-overview System Overview

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Python Support

Getting your application ready for profiling

8

-dynamic

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Running on Theta

e Cray systems (such as Theta) use aprun instead of mpirun

e No SPMD notatation

e mpirun -n 1 amplxe-cl -c hotspots ./exe : -n <N-1> ./exe

* Use SPE_RANK in a bash script instead
* |f SPE_RANK==0 amplxe-cl -c hotspots ./exe; else ...

e PMI_NO FORK
e Darshan profiling

* Dynamic Linking

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

amplxe.qsub Script

* Copy and customize the script from /soft/perftools/intel/vtune/amplxe.qsub

* All-in-one script for profiling

 Jobsize - ranks, threads, hyperthreads, affinity Google

e Attach to a single, multiple or all ranks

* Binary as arg#l, input as argt2

 gsub amplxe.qsub ./your_exe ./inputs/inp
 Binary and source search directory locations
 Timestamp + binary name + input name as result directory

* Save cobalt job files to result directory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

vtune alcf $ Q

All Shopping News Images Videos More Settings Tools

About 575 results (0.33 seconds)

VTune on XC40 | Argonne Leadership Computing Facility
https://www.alcf.anl.gov/user-guides/vtune-xc40 v

VTune is an advanced profiling tool which helps you to optimize your code on the KNL architecture. It
allows you to track how well your code is threaded and ...

You've visited this page 5 times. Last visit: 4/29/19

L] s & b3 QDD"'('DHWeIcome HNewA... b%e

Z Choose Analysis Type INTEL VTUNE AMPLIFIER 201

4 @ Analysis Target & Analysis Type b
Start ’

Algorithm Analysis H H I o

y Y HPC Performance Characterization 2
Basic Hotspots
Advanced Hotspots) o)) o) ») .) ' @ Start Paused ’
Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,
Concurrency memory usage, and FPU utilization with vectorization information. [< ch]
Locks and Waits For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor. It identifies the loops EhaasedRGAL

that will benefit the most from refined vectorization and gives tips for improvements.

NenayEenEi patan The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

yrization analysis is limited for this platform. Only metrics based on binary static analysis such as vector instruction set will be available

Compute-Intensive Application Analysis A Vectc

HPC Performance Characterization
CPU sampling interval, ms

Microarchitecture Analysis !

General Exploration & Copy Command Line to Clipboard@jlselogin2 X

Memory Access
e Command line:

TSX Exploration

soft/compilersfinteljvtune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpc-
TSX Hotspots performance -app-working-dir fusr/bin -- Is

SGX Hotspots

Platform Analysis
CPU/GPU Concurrency

System Overview
GPU Hotspots
Copy | Close |
GPU In-kernel Profiling
Disk Input and Output [Use -collect-with action

Hide knobs with default values

Custom Analysis

53 Command Line...

CUNYIHIBIIL Y £UAU, 1L SUT PV UL MU SIS L0t Ve

*Other names and brands may be claimed as the property of others.

Hotspots analysis for nbody demo (ver7: threaded

* gsub amplxe.qsub ./your_exe ./inputs/inp

B> 9P| @ | welcome vtune_res X =
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018
4 [CollectionLog ® Analysis Target A Analysis Type & Summary & Bottom-up &3 Caller/Callee & Top-down Tree = Platform 2

A

Elapsed Time : 1.037s
CPU Time : 21.420s
Effective Time ~: 2.280s
Spin Time : 18.660s &
Imbalance or Serial Spinning 17.319s &
Lock Contention Os
Other 1.342s
Overhead Time : 0.480s
Total Thread Count: 64
Paused Time 0s

OpenMP Analysis. Collection Time : 1.037
Serial Time (outside parallel regions) : 0.733s (70.7%) &
Top Serial H ide parallel reg

Parallel Region Time : 0.304s (29.3%)

Top Hotspots
CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage

value

1000ms

e

800ms

Elapsed Time
Target Utilization

600ms -

400ms -

200ms +

Oms - T T T T T
0 50 100 150 200 250

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OpenMP Region Duration Histogram
This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance
bottleneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration

OpenMP Region: | startSomp$parallel64@unknown:146:182 -

5004

400

Instance Count

300+

200

0.002 0.027

-ETE_

Duration Type (sec)

Lots of spin time indicate issues with load balance and synchronization

Given the short OpenMP region duration it is likely we do not have
sufficient work per thread

Let’s look a the timeline for each thread to understand things better...

Bottom-up Hotspots view

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ I INE AMPLIFIER 2018
7 [Collection Log D Analysis Target A Analysis Type & Summary & Bottom-up &3 Caller/Callee & Top-down Tree ‘= Platform [GSimulation... Py - 4
Grouplng:‘ Module / Function / Call Stack v ‘ E| ‘g‘ ‘:‘ | CPU Time v ‘

CPU Time ¥ « Viewing « 10of 1 » selected stack
Module / Function / Call Stack Effective Time by Utilization » Spin Time » Overhood Thne » Module 100.0% (2.260s of 2.260s)
Oide ®Poor §Ok @ideal @ Over nbody.x!GSimulation:start$omp..
» libiomp5.so Os 18.660s 0.320s : libiomp5.so![OpenMP dispatche.
¥ nbody.x 2260s (D 0s 0.160s ¢ libiomp5.s0![OpenMP fork]+0x1.
2.260s [] (5 0s \ nbody.x \ [ESINTENTLRE ER eI nbody.x!GSimulation: start+0x69. .
» GSimulation::start Os 0s 0.160s nbody.x GSimulation::start(void) nbody.x!main+0x86 - main.cpp:43
» [Unknown] 0.020s | 0s 0s nbody.x!_stari+0x28 - start.S:118
< >l < >
O: + 0s 01s 02s 03s . : tananatane Ruler Area:
£ OMP Worker Thread #80 (TI Eaamg”se::;ﬁfme“
OMP Worker Thread #56 (T1
OMP Worker Thread #50 (T1...] Running
OMP Worker Thread #55 (T1. M CPU Time
OMP Worker Thread #54 (T1... [M Spin and Overhea.--
OMP Worker Thread #49 (TI... 0 @ cPu sample
OMP Worker Thread #58 (Tl [J cPUUsage
OMP Worker Thread #59 (T1...
OMP Worker Thread #61 (T1
OMP Worker Thread #52 (T1
OMP Worker Thread #41 (T1 [
OMP Worker Thread #47 (T1...
OMP Worker Thread #35 (T1...
FILTER 100.0% % | |Any Process v | Thread | Any Thread v] |Any Module VI | Any Utilizatio V| | | Only user functions VI [Show inline functic VI I Functions only v

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

There is not enough work per thread
in this particular example.

Double click on line to access source
and assembly.

Notice the filtering options at the
bottom, which allow customization of
this view.

Next steps would include additional
analysis to continue the optimization
process.

& Intel VTune Amplifier — O X
= & P & B = O welcome amplxe_distress__2019-04-10-20-23 x =
Hotspots Hotspots by CPU Utilization + @ INTELVTUNE AMPLIFIER2019
Analysis Configuration Collection Log Summary Bottom-up gCaller/Callee Top-down Tree Platform yd
Grouping:; Function / Call Stack ! v “5\ H 0 H o
Function / Call Stack CPUTIme ¥ | Module | Function (Full) Source File | StartAddress |
) vdpowr_ 18.664s libmkl_intel_Ip64.so vdpowr_ 0x695310
aa 10.495s distress aa aux.fo0 Ox41ecic
aa 9.674s distress aa aux.fo0 Ox41ec9a
invariants 9.055s distress invariants aux.fo0 0x41d550
__libm_csqrt_ex 7.792s libimf.so __libm_csqrt_ex Oxc7a50
spinoru 7.779s distress spinoru aux.fo0 0x41e9e0
ktjet 7.137s distress ktjet analysis.f90 0x420ae0
__svml_log8_mask_b3 6.056s distress __svml_log8_mask_b3 0x532f50
breit2lab 2.096s distress breit2lab PS.f90 0x4602d0
getljet 1.857s distress getljet analysis.f90 0x421830
me0_qlqlgg 1.814s distress me0_qlqlgg amplitudes.f90 0x4408d0
__libm_acos_I9 1.688s libimf.so __libm_acos_I9 Oxedd80
analyzejet 1.658s distress analyzejet analysis.f90 0x422050
ds_ql_s_nnlo_qgcd_g 1.605s distress ds_gl_s_nnlo_qcd_g sub.f90 0x4694e0
csart 1.384s | libimf.so csart 0x1d430 v
Q : + Ousl T T R | 12?81 || 1 1 |4?S| L IR ST R | -6los| 1 1 1 1 ns?su L I 1 1|O|0:sl I 1 1 1|ZIO|SI | I | 1 1|4|0|Sl 1 i ’Thread V|
Bl distress (TID: 55598) [ERunning
% WuCPU Time
#aSpin and Overhead ...
[] ®CPU Sample
CPU Utilization
WaCPU Time
M Spin and Overhead ...

— CPU Utilization

Ml FILTER 100.0% % | |AnyProce35v| ’AnyThread v| |AnyModuIe v| |AnyUtilizati-v| | |Userfunctions+1 v| |Showinlinefunctv| ’Functions only

*Other nam

& Intel VTune Amplifier — O X

= & P & B = O welcome amplxe_distress__2019-04-10-20-23 x =

Hotspots Hotspots by CPU Utilization ~ @ INTELVTUNE AMPLIFIER 2019

Analysis Configuration Colleﬁ Summary Bottom-up Caller/Callee Top-down Tree Platform IM

Grouping:: Function / Call Stack v @@
A

Function / Call Stack CPUTime ¥ » Module Function (Full) Source File Start Address
13.1% | libmkl_intel_lp64.s0 | vdpowr_ | 0x695310

) aa 7.4% distress aa aux.fo0 Ox41ecic
vaa |l B8% distress | . R auxf0 ...l Oxdlecoa |
»invariants 6.4% distress . invariants auxfo0 0x41d550
p __libm_csqrt_ex 5.5% libimf.so __libm_csqrt_ex Oxc7a50
) spinoru 5.5% distress spinoru aux.fo0 0x41e9e0
) ktjet 5.0% distress ktjet analysis.f90 0x420ae0
b __svml_log8_mask_b3 4.3% distress __svml_log8_mask_b3 0x532f50
) breit2lab 1.5% distress breit2lab PS.f90 0x4602d0
) getljet 1.3% distress getljet analysis.f90 0x421830
» me0_qlqglgg 1.3% distress me0_qlqlgg amplitudes.f90 0x4408d0
) __libm_acos_I9 1.2% libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.2% distress analyzejet analysis.f90 0x422050
) ds_qgl_s_nnlo_qcd_g 1.1% distress ds_gl_s_nnlo_qcd_g sub.f90 0x4694e0
b csart 1.0% libimf.so csart 0x1d430 v
Oid == o2 e B () [Tivead v
§ distress (TID: 55598)] [ERunning
e [v] maCPU Time
#aSpin and Overhead ...

[] ®CPU Sample

CPU Utilization
WuCPU Time
#aSpin and Overhead ..

CPU Utilization

e FILTER 100.0% X | |Any Proce35v| |AnyThread v| |AnyModuIe v| |Any Utilizati-v| | |Userfunctions+1 v| EShowinIinefuncfv| |Functions only

*Other nam

@ Intel VTune Amplifier

= o P

R

amplxe_distress__2019-04-10-20-23 x
£ Hotspots Hotspots by CPU Utilization + @

- a

X

INTELVTUNE AMPLIFIER 2019

*Other nam

Copyright © FILTER

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform yd
Grouping:: Source Function / Function / Call Stack v ‘ X ’Bl o
Source Function / Function / Call Stack CPUTme Vv 2 | Module Function (Full) ’ Source File Start Address ~
) aa 14.2% aa aux.fo0 0
vdpowr_ 13.1% vdpowr_ 0
invariants 6.4% invariants aux.fo0 0
__libm_csqrt_ex 5.5% __libm_csqrt_ex 0
spinoru 5.5% spinoru aux.fo0 0
ktjet 5.0% ktjet analysis.f90 0
__svml_log8_mask_b3 4.3% __svml_log8_mask_b3 0
subqcd 3.2% subqcd amplitudes.f90 0
breit2lab 1.6% breit2lab PS.f90 0
hamp_qlqlqgb_1 1.4% hamp_qlqlqgb_1 amplitudes.f90 0
getljet 1.3% getljet analysis.f90 0
me0_qlqlgg 1.3% me0_qlqlgg amplitudes.f90 0
__libm_acos_I9 1.2% __libm_acos_I9 0
analyzejet 1.2% analyzejet analysis.f90 0
hamp alalaab 2 1.1% hamp alalaab 2 amplitudes.f90 0
o+ o A e e e s [Tread -
§ distress (TID: 55598) [ERunning
‘E WCPU Time
#aSpin and Overhead ...
[] ®CPU Sample
CPU Utilization
#uCPU Time
M Spin and Overhead ...
CPU Utilization
100.0% X | |Any Process v| |Any Thread v| |Any Module v| |Any Utilizatii v| | | User functions + 1 v| EShow inline funct ~ | | Functions only

Intel VTune Amplifier - a X

Z & b= 9 welcome »

Grouping:| Source Function / Function / Call Stack v @
Source Function / Function / Call Stack CPUTime ¥ »/ Function (Full) Source File Start Address ~
spinoru aux.fo0 0
) invariants 9.0% (invariants aux.fo0 0
) getpdfs 8.3% getpdfs fitpdf.f90 0
> ktjet 6.9% ktjet analysis.f90 0
» me0_qlqlgg 6.1% ' me0_glqigg amplitudes.f90 0
b __svml_log8_mask_b3 5.9% __svml_log8_mask_b3 0
) breit2lab 2.5% breit2lab PS.f90 0]
b dli2 2.4% dli2 lis.f90 0 |
) getljet 1.8% getljet analysis.f90 0
) analyzejet 1.6% analyzejet analysis.f90 0
» me0_glglggb_f3 1.6% ' me0_glqglqgb_f3 amplitudes.f90 0
) ds_ql_s_nnlo_gcd_g 1.6% ds_ql_s_nnlo_qgcd_g sub.f90 0
) me0_qglglggb_f4 1.3% 'me0_glqlqgb_f4 amplitudes.f90 0
) ps4 1.3% ps4 PS.f90 0
» for costr 1.3% for costr 0 | hd
< > || £ >
ik == 2 % R S |6 [Thead “] °
| distress (TID: 55598) ERunning
£ WuCPU Time
W Spin and Overhead ...
[] ®CPU Sample
CPU Utilization
WaCPU Time
#Spin and Overhead --.

CPU Utilization

PG 98.9% o Any Thread v | [98.9%] distres v | | Any Utilizatic v | | |Userfunctions+1 v | | Hide inline functic v

@D |
—

m Intel VTune Amplifier

= S (| = Welcome

Hotspots Hotspots by CPU Utilization ~ @

Analysis Configuration

Collection Log Summary

amplxe_distress__2019-04-10-20-23 x

- a X

INTELVTUNE AMPLIFIER 2019

Bottom-up Caller/Callee Top-down Tree Platform aux.f90 x aux.fQQ,M

Grouping:| Source Function / Function / Call Stack

]

Copyright ©
*Other nam

Source Function / Function / Call Stack CPUTme Vv 2 Function (Full) Source File Start Address
[Loop at line 264 in spinoru] 23.8% [Loop at line 264 in spinoru] aux.fo0 0
) [Loop at line 141 in nnlobeami] 19.3% [Loop at line 141 in nnlobeami] beamintegrand.f90 0
) [Loop at line 2498 in dxsec_qgl_nnlor] 11.1% [Loop at line 2499 in dxsec_gl_nnlor] xsec.f90 0
) [Loop at line 112 in vegas] 10.6% [Loop at line 112 in vegas] vegas.fo0 0
) [Loop at line 2750 in dxsec_qgl_nnlov_a] 3.2% [Loop at line 2750 in dxsec_gl_nnlov_a] xsec.f90 0
) [Loop at line 60 in ktjet] 3.1% [Loop at line 60 in ktjet] analysis.f90 0
) [Loop at line 1778 in ds_ql_s_nnlo_qcd_g 2.9% [Loop at line 1778 in ds_qgl_s_nnlo_qcd_g] sub.f90 0
> [Loop at line 181 in invariants] 2.6% [Loop at line 181 in invariants] aux.fo0 0
) [Loop at line 180 in invariants] 2.1% [Loop at line 180 in invariants] aux.fo0 0
) [Loop at line 2055 in ds_ql_s_nnlo_gcd_ 2.0% [Loop at line 2055 in ds_qgl_s_nnlo_qcd_f2] sub.f90 0
) [Loop at line 43 in ktjet] 2.0% [Loop at line 43 in ktjet] analysis.f90 0
) [Loop at line 1986 in ds_ql_s_nnlo_qgcd_f 1.8% [Loop at line 1986 in ds_qgl_s_nnlo_qgcd_f1] sub.f90 0
) [Loop at line 1882 in ds_ql_s_nnlo_gcd_g 1.8% [Loop at line 1882 in ds_gl_s_nnlo_qcd_g] sub.f90 0
) [Loop at line 1846 in ds_ql_s_nnlo_qgcd_g 1.8% [Loop at line 1846 in ds_qgl_s_nnlo_qcd_g] sub.f90 0
L< [Loop at line 1812 inds al s nnlo acd) 1.7% [Loob at line 1812 inds al s nnlo acd al sub.f90 0 v
O: = x 2?54?56?3 80s 100s 120s 140s o [Thread .
§ distress (TID: 55598) [ERunning
£ WuCPU Time
M Spin and Overhead ..
[] ®CPU Sample
CPU Utilization
#uCPU Time
#Spin and Overhead -..
CPU Utilization
FILTER 0 98.9% x | |Any Process v| |Any Thread v| E[98_9%] distres: v| |Any Utilizatic v| | |User functions + 1 v| |Showinline functi v| |Loops only v|

Copyright © FILTER

@ Intel VTune Amplifier

= T (| = Welcome

Analysis Configuration

amMess_zow-omo-zo-zs x

Hotspots Hotspots by CPU Utilization ~

Collection Log Summary Bottom-up Caller/Callee = Top-down Tree

Platform aux.f90 x aux.fQQ,M

/4

a

X

INTELVTUNE AMPlIFIERfZI]lg

Grouping:| Call Stack

v

)]

Function Stack \ CPU Time: Total ¥ » ‘ CPU Time: Self » Module ’ Function (Full) | Source File ‘ Start Address ‘ ~
v Total 100.0% Os
v [Outside any loop] 99.9% 0.020s [Outside any loop] 0
v [Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.f90 0x4162c8
¥ [Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.fo0 0x416641
v [Loop at line 112 in vegas] ‘ 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.fo0 0x4166f1
v [Loop at line 2499 in dxsec_q|l_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_gl... xsec.f90 0x49ba17
v [Loop at line 263 in spinoru] | 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6
23.2% 32.939s | distress [Loop at line 264 in spinoru] aux.f90 Ox41edcf
» [Loop at line 238 in spinoru] | 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.f90 O0x41ea9%4
» [Loop at line 260 in spinoru] | 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 Ox41ec41
» [Loop at line 2487 in LHAPD| 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢c9
» [Loop at line 1169 in LHAPD | 0.1% 0.036s libLHAPDF.so [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
) [Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
) [Loop at line 43 in ktjet] | 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 0x420c70
. b [Loob at line 2750 in dxsec o)l ‘ 3.8% 4.494s distress [Loob at line 2750 in dxsec al... 'xsec.f90 0x49d2b2 v
Dik — ol A M e | [T -
§ distress (TID: 55598) [ERunning
£ WCPU Time
M Spin and Overhead ..
[] ®CPU Sample
CPU Utilization
WaCPU Time
#Spin and Overhead -..
CPU Utilization
100.0% X | |Any Process v| |Any Thread v| ’Any Module v| |Any Utilizatic v‘ | |Userfunctions+1 v| |Showinline functi v| |Loops only v|

-

o+

pr e

Analysis Configur

Grouping:

S| = Welcome

HPC Performance Characterization

Call Sta Hotspots by CPU Utilization

Funi

Total

A

Thread |

Copyright © FILTER

*Other nam

[Outside any loop]
[Loop at line 100 in vegas]
[Loop at line 112 in vegas]

distress (TID: 55598)

Threading Efficiency

[Loop at line 112 in vegas]

[Loop at line 2499 in dxsec_ql_
[Loop at line 263 in spinoru]
[Loop at line 264 in spinor
[Loop at line 258 in spinoru]
[Loop at line 260 in spinoru]
[Loop at line 2487 in LHAPD
[Loop at line 1169 in LHAPD
[Loop at line 139 in nnlobeami]

[Loop at line 43 in ktjet]

[Loob at line 2750 in dxsec al
>

O: + |

CPU Utilization

amplxe_distress__2019-04-10-20-23
Hotspots Hotspots by CPU Utilization + @

— O

INTELVTUNE AMPLIFIER 2019

[] ®CPU Sample

CPU Utilization
WuCPU Time
#Spin and Overhead ..

ottom-up Caller/Callee Top-down Tree Platform aux.f90 »x aux.f90 x
. ‘ Ol[e

al v /| CPUTime: Self » Module Function (Full) | SourceFile | StartAddress | A
100.0% Os
99.9% 0.020s [Outside any loop] 0
99.6% Os distress [Loop at line 100 in vegas] vegas.fo0 0x4162c8
99.6% 1.531s distress [Loop at line 112 in vegas] vegas.fo0 0x416641
98.2% 13.427s distress [Loop at line 112 in vegas] vegas.fo0 0x4166f1
36.9% 15.606s distress [Loop at line 2499 in dxsec_gl... xsec.f90 0x49ba17
24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6
23.2% 32.939s distress [Loop at line 264 in spinoru] aux.f90 Ox41edcf

1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea94

0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 Ox41ecé41

0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669c9

0.1% 0.036s libLHAPDF.so [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9

6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 0x420c70

3.8% 4.494s distress [Loob at line 2750 in dxsec al... xsec.f90 0x49d2b2 v

[L e O O R R B [Thead y
WCPU Time
#aSpin and Overhead ...

100.0%

% | ’Any Process v‘ ‘AnyThread

v| ’AnyModuIe v| ‘AnyUtiIizati(v‘ | ‘Userfunctions+1 v‘ |Showinlinefunctiv| ‘Loopsonly

Intel VTune Amplifier@jlselogin1
g % r L O e o0

AT

Welcome

| r000hpcC

Bottom-up

INTELVTUNE AM

Grouping:| Function / Call Stack

PLIFIER 201

IR

Function / Call Stack

bicub_interpoll_aio _vec

» bicub_interpol2_aio_vec

» efield_gk_elec2_vec

» derivs_elec_vec

» field_following_pos2_vec

» i_interpol_ider0_aio_vec

» field_vec

» derivs_single_with_e_eles

» fld_vec_modulefield_follo

» bvec_interpol_vec

» pushe_single_vec
i_infernol ider0 aio vec

[

O:dp == & ir|0s

CPU

Time Y| CPIRate
0.8% 0F
11.1% 1.488
10.9% 1.850
8.7% 2.241
57% 0.969
53% 1.896
48% 2413
3.0% 1734
3.0% 1189
29% 1131
2.3% 1.943

OMP Master Thread #0 (...

Thread

OMP Worker Thread #1 (..

OMP Worker Thread #2 (..

OMP Worker Thread #3 (..

OMP Worker Thread #17 ..

paused

OMP Worker Thread #55 ..

OMP Worker Thread #52 ..

CPU Time

Y

X’

Any Process v

Front-End Bound

15.2%
36.4%
29.2%
57.9%
43.6%
12.0%
57.1%
55.5%
34.9%
38.8%
43.9%

)%

Any Thread v |

Bad Speculation

0.9%
1.0%
0.2%
1.8%
0.0%
0.0%
0.0%
6.7%
0.0%
1.5%

Back-End Bound

Memory Latency

L1 Hit Rate

97.8%
85.2%
86.2%
94.3%
89.5%
89.9%
88.5%
74.0%
91.2%
71.3%

90 6%

L2 Hit Rate

00.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%

0 0%

L2 Hit Bound L2 Miss Bound

7.2% 0.0%
31.0% 0.0%
28.7% 0.0%
33.3% 0.0%
11.8% 0.0%
23.6% 0.0%
34.4% 0.0%
73.0% 0.0%
36.2% 0.0%
54.7% 0.0%

0.0% 0.0%

183.876s |200s

Mer
UTLB Overhead Split Loads
0.3% 0.0%
2.7% 0.0%
0.3% 0.0% |
0.2% 0.0%| H
0.5% 0.0%
0.0% 0.0%
0.8% 0.0%
0.9% 0.0%
0.0% 0.0%
1.1% 5.1%
1.4% 0.0%
¥ |Thread v
|| & EERunning
¥ @aCPU Time
¥ CPU Time
#aCPU Time

Any Module ¥ User functions + 1 v Functions only v | Show inline functions ¥ | .

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

i Basic Hotspots Hotspots by CPU Usag;viewpoint (change) © INTEL VTUNE AMPLIFIER 2018 -

A A i B - Naive implementation of the calculation of

Elapsed Time : 209.598s

{ L) L]
Top Hotspots ~a covariance matrix
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance. 1

Function Module CPU Time
haive covpy 113533s

cov.py 91.587s
utsid known module] 1.460s S u m m a r S h OWS .
Unknown stack frame(s)] 1.260s y °
‘module cov.py 0.588s

= Single thread execution

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value

N = Top function is “naive”
1 Click on top function to go to Bottom-up

T T T T T T
50 100 150 200 250
b d b I

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

N/

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © |
< [collection Log @ Analysis Target A Analysis Type & Summary & Bottom-up &3 Caller/Callee & Top-down Tree (=i Platform [3 cov.py

Grouping [Module / Function / Call Stack v Q CPU Time ‘
CPUTime v A Viewing + 10of 1 + selected stack(s)
Module / Function / Call Stack e E:e;;v;: Tlmgkby ;n:;:m‘. ver » SpinTime | Overhead Time Module coVl()()l 0%‘ (112.473s of 112.473s)
| pylnaive - covpy
¥ covpy 203.728s (D 2.280s 0s covpylmain+0x42 - cov.py:200
¥ naive 111.873s (D 1.660s 0s covpy naive(fullArray) cov.pyl<module>+0x221 - cov.py
v main 110.833s (D 1.660s 0s covpy main() python2.7!_start+0x28 - [unknow.

» * <module> — _start 110.813s | 1.660s 0s | covpy <module>

» B main — <module> — _star cov.py main()
> naive « main « <module> « 1.040s 0s 0s covpy naive(fullArray)

» <genexpr> 90.967s D 0.620s 0s covpy naive@<genexpr>:

» <module> 0.588s 0Os 0s covpy <module>

» main 0.300s 0s 0s covpy main()
» [Unknown] 2720s | 0s 0s
» libc-dynamic.so 1
» python2.7
» libpin3dwarf so
w trarkdanc cn V9 P v
< >« >

O: + 0s 50s 100s 150s 200s = [Thread

£ [#a CPU Time

[] 4 Spin and Overhead Ti
[0 @ cPu sample

Inefficient array multiplication found quickly
We could use numpy to improve on this

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) ©
7 [l Collection Log @ Analysis Target A Analysis Type & Summary @ Bottom-up @ Caller/Callee & Top-down Tree ‘=

Assembly % & W% Q Assembly grouping: Function Range / Basic Block / Address

CPU Time:
Jou- Source Effective Time by Util
Line y Util
Bidie @Poor Dok W ide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros((numRows, 1), dtype=float))
63 for j in range (numRows) : |
64 normArrays([i] [j]=fullArray[:, i) [j]-np.mean(fullArray([:, i 6.3%-
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for j in range (numCols): |
70 result(i,j] = sum(p*q for p,q in zip(
7 normArrays(i] ,normArrays(j]))/ (numRows)
72
73 end = time.time ()
74 print('overall runtime = ' + str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

When do | use Vtune vs Advisor?

Vtune

What’s my cache hit ratio?

Which loop/function is consuming most
time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

Remember

Compile with -g and -dynamic
Profile 1 rank and small number of threads - amplxe.qsub/advixe.qsub
Advisor for big picture

Vtune for details

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Resources

Product Pages

= https://software.intel.com/sites/products/snapshots/application-snapshot

= https://software.intel.com/en-us/advisor

= https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles

= https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems

= https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

= https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-covariance-
demonstration

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

S
O
ftwa
re

VTune Cheat Sheet

Compile with —g —-dynamic

amplxe-cl —-c hpc-performance -flags -- ./executable
* --result-dir=./vtune output dir
e -—-search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true —-knob collect-memory-
bandwidth=false

* -—-knob analyze-openmp=true

e -—-finalization-mode=deferred 1f finalization 1s taking too long on KNL
e -data-limit=125 < in mb

* —trace-mpi for MPI metrics on Theta

* amplxe-cl —help collect survey

Optimization Notice https://software.intel.com/en-us/vtune-amplifier-help-amplxe-

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. cI-command-syntax

Advisor Cheat Sheet

Compile with —-g -dynamic

advixe-cl —-c roofline/depencies/map —-flags -- ./executable
* —--project-dir=./advixe output dir
e —--search-dir src:=../src —--search-dir bin:=./

* —-no—-auto-finalize 1f finalization 1s taking too long on
KNL

e ——-1nterval 1 (sample at Ims 1interval, helps for profiling
short runs)

e —data-limit=125 € in mb

* advixe-cl -help

Optimization Notice https://software.intel.com/en-us/advisor-help-lin-command-

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. line-interface-reference

