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Vectorization analysis

Roofline

Function Call Sites | why Mo ___|Total Vectorized Loops
= and Loops Wectorization? Self Time Time Type vec... | Efficiency |Gair'|...|
= _tmainCRTStartup 0.000s1  1.669: @ Function

=) f main

. in main at 3loog
[loop in rmain at Sloops, g

. = inner loop wa ...

0.000s |
0.000s |
1138 @

=/ (0 [loop in f at Aoops.cpp: || @ inner loop was ... 0.000s1
4|0 [loop in f at Sloops.cpp:|| @ inner loop was ... 0.000s1
[loop in f at Sloops.cpp: 0.296510
u f f 0.000=1
=I5 [loop in main at 3loops.o 0.234s1

1.669s B Function
1.2373s O |Scalar

1.373= @ “ectari...

B2 4,7

0.296s0  Scalar .
0.29650  Scalar i ]
0.2065 0 Vectari... AVXZ 6.12x B
0.296s0  Inlined... o
023451 Inside ... .

FCollsionBGK IbpGET oppc212
Padomance: 4. 75 OFLOFS

Tetnl Tene: 0,351 &

Anthmetc Ingeraity. 0.35 FLOPByie
So¥ Elnpsed Time: 0,357 5

Cache Simulator and MAP

Site Location | Strides Distribution & ‘ Access Pattern

Python API

import advisor

[loop in ComputeTimeStep.. | 805/ 0%/ 209800 Mixed strides

project = advisor.open_project{sys.argv[1])
data = project.load({advisor.SURVEY)

roofs = data.get roofs(4, advisor.RoofsStrategy.MULTI THREAD

for roof in roofs:
# memory roofs

if 'bandwidth' in roof.name.lower():

bandwidth = roof.bandwidth / math.pow(1®, 9) # conve

[loop in pricePath_Coreat ... | 92%/0%/8% [ Mixed strides
L4
Memory Access Patterns Report | Dependencies Report | '4' Recommend:
D | ‘Stride ‘T}rpe Source ¥
Ep53 @ 1 Unit stride ch_4 v233.cppT6
o Gather stride ch_4 v253.cpp:
mp2 @ 1 Unit stride ch_4 v233.cpp:218

print "{} {:.8f} GB/s'.format(roof.name, bandwidth)
# compute roofs
else:
bandwidth = roof.bandwidth / math.pow(1@, 9) # cony
print '{} {:.0f} GFLOPS'.format{roof.name, bandwidth

321

16+

B

i

21

Threading prototyping

Scalability of Maximum Site Gain

Tasks Modeling

Avg. Number of  Avg. Task
s Tasks: Duration:
; I 50000000 < 0.001s
(@) 0.008x 0.008x%
0.040x 0.040x%
Q 0.200x 0.200x
g 1x (10000000} 1x (< 0.001s)
_rl S S
23% 25%
@ 125 123x
Apply |

2 4 g 6 32 o4

CPU Count
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CHij ¢ GWijHI €| gAtivisorGIJij H1 & DY ij F
Vectorization Optimization

Have you: Data Driven Vectorization:

A Recompiled for AVX2 with little gain A What vectorization will pay off most?

A Wondered where to vectorize? A Gh Gijplolding vectorization? Why?

A Recoded intrinsics for new arch.? A Are my loops vector friendly?

A Struggled with compiler reports? A Will reorganizing data increase performance?
A |s it safe to just use #pragma omp simd?

Elapsed time: 1462355 (RO ly Not Vectorized FILTER:| Al Modules ~|| AllSources ~ || Loops = |[ AllThreads | ore [l

[ a |
Summary oy, Survey & Roofline " Refinement Reports IHI.EI. AIWISI]R 2“]“

'E: [=] Functien Call Sites and Loops [ v lPerFormance Self Timew Total Time Why Mo Vectorization? Vectorized Loops FLOPS .
i SIS Vi Com.. | Self GFLOPS | Self Al
= M | * 2 Assumed ...| 15.484sC—1| 578.0465) |Threaded (Op... | = vector dependenc..
310 [loop in runCRawlLoops at runCRawloops.coe| [ @ 2 Assumed d.. 11.7665 11,7661 Scalar @ vector dependence... 0.9951 0.08333
4O [loop in runCForalllambdaloops at runCForal O @ 2Assumedd.. 11.766s 000 11.766s1  Scalar B vector dependence... 0.9951 0.08333
;510 [loop in runCRawLoops at runCRawLoops.cor O ©2Assumedd.  5.156s 8 315851 Scalar @ vector dependence... 1.5121 0.11458
= 3 [loop in runCForallLambdaloops at runCForall [ | @ 2 Assumed d.. 512558 512551  Scalar & vector dependence... 15211 0.11458
=10 [leop in runOMPRawlLoopsSompSparallel@64 [0 @ 1Ineffective .. 4.190s@ 4190s1  Vectorized+Thr... AVX 500 4 5.28x 6.767 1 0.02486
=)0 [loop in runOMPRawloopsSompSparallel@ [ 3.768: @ 3.768s1  Remainder+Th... 41381 0.02083
=/ [leep in runOMPRawloopsSompSparallel @ O 040651 040651 Vectorized (Bo... AVX 4 5.28¢ | 27.368) 0.03125
=103 [loep in runOMPRawlLoopsSompSparallel@ [ 0.016s| 0.016s|  Peeled+Thread... 0.1131 0.02083 w7
< > £ >
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The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which loops What prevents

Trip Counts

are vectorized! vectorization?

[ | Elapsed time: 1262.355 [[ol et Not Ve |~ || Loops ~|[ AllThrea

Summary ) Survey & Roofline " Refinement Reports

Trip Counts
[=] Function Call Sites and Loops || ‘¢ Performance |ssues Self Timew Why MNo Vectorization?
Average | Call Count Vect... Com
[loop in runOMPRawLoops$omp{ * 2 Assumed dependency present 15.484s 1| 446 101976000 | = vector dependence prevents vectoriz ...
4|00 [loop in runCRaw).oops at runCRai| @ 2 Assumed dependency present 11,766 0 12511 75120000 & vector dependence prevents vectorization
410 [loop in runCFerffliLambdaloops | @ 2 Assumed dependency present 11.766: W 12511 75120000 @ vector dependence prevents vectorization
HIED O [loop in runCRaMLoops at runCRai| @ 2 Assumed dependency present 5.156s@ 19387 3075000 B vector dependence prevents vectorization
AE) [loop in runCFBIILambdaloops & @ 2 Assumed dependency present 51250 19387 3075000 @ vector dependence prevents vectorization
=10 [leop in runO)j awLoopsSomp$|| @ 1 Ineffective peeled/remainder loop(s).. 4.130:@ 2 110; 2 | 112590000... 5.28x
=0 [loopinn PRawlLoopsSom 37680 2 1125900000
=0 [loop in PRawlLoopsSom 0.40650 110 12320000 5.28x
=0 [loop i PRawlLoopsSom 0.016s1 2 280000 v
< > ([ € >

Focus on What vectorization

Which Vector instructions How efficient

hot loops iIssues do | have?

are being used? is the code?

Get Faster Code Faster!
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5 Steps to Efficient Vectorization

DY ij AdivisNr YVectorization Advisor

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it

| Vectorized Loops 3| Instruction Set Analysis - o
[=] Function Call Sites and Loops | Self Time All Advisor-defectable issues: C= | Fortran x
i | vect...| Efficiency~ | Gain... VL (... | Traits [pata... 5 dation: Add data paddi
[loop in looplnit at LCALSSuite.cce|  0.016s1  AVX T3% 29% 4 Divisions; Type C... Float64 scommendation: ata pacaing
[loop in loaplnit at LCALSSuite.coe| 0.016s|  AVX 0% ] 299« 4 Divisions; Type C... Float64 The irip count is not @ multiple of wector lengin. Ta fix: Do one afthe i ,
following: Issue: meffective peelediremainder
[loop in runCForalllambdaloops 3| 0.672s]  AVK: ... 560¢ 248 Extracts FMA: Ty... Float64: e ———
[loop in runCRawLoops at runCRav| _ 0.578s1 All or some source loop iterations are not
[loop in runOMPRawLoopsSompSy|  0.953s) 1 + e ihi 1 executing in the loop body. Improve
P B 3. Trip Cou nts FLOP: un_derstand utilization, e
floop in runARawL oops at runARay  0.734s) parallelism granularity & overheads o ssled et looks o e 0o
[loop in runAForallLambdaloops 3| 0.578s] .
) ] Trip Counts FLOPS 0 ikt Ay
[=] Function Call Sites and Loops
HAverage | Call Count | Self GFLOPSw | Self Al
410 [loop in runOMPRawLoopsSomp| 111 5712000 4275160 0.22794

[leop in runOMPRawloopsSomp| 124 1; 13; ... 46816000; ... 204.293 03D 017103

4. Memory Access Patterns Analysis| 5. LoopCarriedDependency Analysis
Site Location | Strides Distribution & | Access Pattern
[locp in ComputeTimeStep.. | 80%/ 0%/ 20580 Mixed strides D W Type Site Name  Sources Modules  State
[loop in pricePath_Core at ... 92% /0% /8% Mixed strides P1 @ Parallel site information site2 datest2 cpp dgtest?  « Not a problem
£ F2 @  Read after wiite dependency site2 dqtest2.cpp dqtest2 R New
P @ Read after wite dependency site2 dqtest2.cpp dgtest2 R Hew
Memory Access Patterns Report | Dependencies Report ‘ ' Recommend:| [N AT dgtest2.cpp
PS @ Wiite after write dependency site2 dqtest2.cpp dgtest2 R New
D | | Stride | Type | Sourcew P @ Wiite after read dependency site2 dotest2.cpp dotest2 P New
mps2 @ 1 Unit stride ch_4_v253.cpp:76 F7 @ Wiite after read dependency site2 dqtest2.cpp: idle.n dqtest2 R New
EP1 = Gather stride ch_4 w233,
mps2 @ 1 Unit stride ch_4 v233.cpp218
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1. Compiler diagnostics + Performance
Data + SIMD efficiency information

[2]| Instructic Anal
[=] Function Call Sites and L

2
2

t Binary An




Vector Efficiency: All The Data In One Place
Ek fjHI h] 1 TGV GH ijhHI T ] THi{jHI R

Vectorized Loops Instruction Set Analysis
[=] Function Call Sites and Loops Self Time . X :
Vect... ‘ Efficiency « ‘ Gain... | VL (... | Traits
[loop in runCForalllambdaloops at runCForallLa 0.734s1 AV .. [ 26% 211k 48 Extracts; Inserts; Type Conversions
[loop in runCRawloops at runCRawloops.cee 70| 062351 AV .. 2% 48 Extracts; Inserts; Type Conversions
[loop in runCForalllambdaloops at runCForallLar|  2.703s8 AVXZ 250 48 FMA; Inserts; Permutes; Unpacks
[locp in runCRawloops at runCRawloops.cce117|  2609s0  AVK2 250 48 FMA: Inserts: Permutes; Unpacks
[loop in runOMPRawloopsSompSparallel@1353 at)  0433s1  AVK2 180 4 Blends; Divisions; FMA; Masked Stores; Square Roots
[locp in runAForalllambdaloops at runAFeralllar]  0.234s1 AVK2 182x 4 Blends; Divisions; FMA; Masked Stores; Square Roots

509 A Auto -vectorization : affected <3% of code
A With moderate speed-ups
A First attempt to simply put #pragma omp simd :
A Introduced slow-down

Original (scalar) Achieved Upper bound: A Look at Vector Issues and Traits to find out why
code efficiency.  Efficiency  100% ACit 1TT7gwl |h fTAT 1k T GT1
Corresponds efficiency AEWIGITx 61 TiglGGiT |1 |h
to 1x speed-up. 4x gain
(VL=4)
EJi ] A" ¢cTT¢g 1Jij Th k] JdJr GIgH T 37 gHAI
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Vectorization tied to your code

Elapsed time: 1462355 (NIt oy

FILTER:| AllModules ~|| AllSources || Loops ~|[ All Threads ~|

Mot Vectoriz

. [ a ]
INTELADVISOR 2018

Summary ?"; Survey & Roofline !.'ﬂ Refinement Reports

|

Vectorized Loops Trip Counts FLOPS 3

Vect... | Efficiency + | Gain... | VL (.. | Com.. | Average | Call Count | Self GFLOPS| Self Al

[loop in runOMPRawloopsSompSg|  0.953s) | @ 1 Ineffective peeled/remainder loop(s) .. AVX 9% 27w 4 3.87x 14272 113232000.. 43.2471 0.12500
[loop in runOMPRawlLoopsSompSg|  1.953s) | @ 1 Ineffective peeled/remainder loop(s).. AVX  [[68% | | 2.74x «3.08¢ 27:2; 22 | 8176000; 8... 151001 001880

[loop in runARawloops at runARz} 0.734s| | ® 3 Ineffective peeled/remainder loo....

4
1

[loop in runAForalllambdaloops al|  0.578s| @ 3 Ineffective peeled/remainder loop(s).. AVK2 m 267 4 2.66x 61283  2045000; 2. 7.2351 0.10232
4
1

[=] Function Call Sites and Loops || Self Time | ‘& Performance Issues

F
[loep in unOMPRawloopsSompSy|  1.578s1 | Q' 3 Ineffective peeled/remainder loop(s) .. AVX2 262 266x  2:110;2 [ 113225000;.. 26.8451  0.12934
[loop in runBRawLoops at runBRaw| 243751 | @ 3 Ineffective peeled/remainder loop(s) .. AVX2 258 257 61283 1840000:1.. 15381 015299 v
< >« >

Source | Top Down | Code Analytics | A y | & Rec dati & Why Mo Vectorization?

Line| Source TotaITime| % |L00p.-"FunctionTime| % | Traits &

150 =] for (Index type i=0 ; i<len ; i++ ) { 0.078s 0.734s .

[loop in runlRawLoops at runfBawLoops.cxx:l50]
Vectorized AVE; AVE2; FMR loop processes Float6d; Int32; UInt32; Ulntéd data type(s) an
No loop transformations applied
U] [loop in runfRawLoops at runfRawloops.cxx:150]
Scalar remainder loop with instructions that use EVX registers
No loop transformations applied
ons use AVX registers

151 Real_type g_tilde ; Blends

152

153 if (delwec[i] > 0.0) { 0.047s |

154 q_tilde = 0. ; 0.062s |

155 1

Selected (Total Time): 0.078s v
£ >
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See detailed times for each part of your loops. Is it worth more effort?

Elapsed time: 1462.35s (Rl liat gt HiotWeetonee FILTER:| AllModules ~ || AllSources ~|[ Loops +|[ AllThreads ~
Summary @ Survey & Roofline ™[] Refinement Reports
= Vectorized Loops
2 [=] Function Call Sites and Loops Self Timew | Type — )
o Vector 154 | Efficiency Gain .| VL ...
E = [loop in runCRawloops at runCRawloops.coc117] 280950 Vectorized (Body; Peeled; Remainder) AVA2 3156 250 43
3| [loop in runCRawloops at runCRawleoops.coe]| 20310 Vectorized (Body) AVX2 a
=) [loop in runCRawloops at runCRawloops.cee]| 051851 Vectorized (Remainder) AVE2 4
4|00 [loop in runCRawloops at runCRawloops.coe]  0.0625] Remainder
4|0 [loop in runCRawloops at runCRawleoops.cee]  0.000s] Peeled
=" [loop in runBRawloops at runBRawloops.coc55] | 256250 Vectorized (Body; Remainder) AVE 31% 4
4| [loop in runBRawloops at runBRawloops.cocl) 250050 Vectorized (Body) AVE 4
4|00 [loop in runBRawLoops at runBRawloops.coe  0.062s1  Remainder
= [loop in runBRawloops at runBRawloops.cee]  0.000s1  Vectorized (Remainder) AVE 4
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2. Guidance: detect problem and
recommend how to fix it

isor-detectable issues. x

Recommendation: Add data padding

Issue: meffective peelediremainder
loop(s) present

executing in the |
performance by moving
from
body.

0 ‘Add data padding

and autemnatic objec
dding




Get Specific Advice For Improving Vectorization

10

[=] Function Call Sites and Loops ‘¢ Performance lssues Self Timew | Type

=
o
m

[=I'" [loop in runCForallLambdaloops at runCFoi| ' 2 Ineffective peeled/remainder loop(s).. 2.703s! Vectorized (Body; Peeled; Remainder)
=" [loop in runCForalllambdaloops at runCl| @ 1 Possible inefficient memory access patt..  2.109s0  Vectorized (Body)

=/ [leop in runCFerallLambdaloops at runcC 0.500= | Yectorized (Remainder)
/(0 [loop in runCForallLambdaloops at runC 0.0%4s1  Remainder
FGR LI RILIESIEERY Click to see recommendation 0.000s] | Peeled
L4 >
Source | Top Down | Code Analytics | Assembly |@ Recommendations | B Why Mo Vectorization?

All Advisor-detectable issues: C++ | Fortran

Advisor shows hints to move

iterations to vector body.
Allor some source loop iterations are not executing in the loop body. Improve pe 0 SULTLE :
remainder loops to the loop body.

0 Add data padding

The frip count is not a multiple of vector lenath. To fix Do one of the following:

® Issue; Ineffective peelediremainder loop(s) present

# |ncrease the size of objects and add iterations so the trip count is a multiple of vector length.
» |ncrease the size of static and automatic objects, and use a compiler option to add data padding.
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1. Compiler diagnostics + Performance

016s|
0.016s|

p in runCRawl
p in runOMPR;

p in runARawLoops at runARay
loop in runAForallLambdaloops a

recommend how to fix it

All Advisor-detectable issues™ C:

Recommendation: Add data padding
The Irip count is not a multiple o ength. To fixx Do one of the

3. Trip Counts + FLOP:understand utilization,
parallelism granularity & overheads

@

Issue: meffective peelediremainder

loop(s) present

All or s

executing in the
performance by movin:
from o

0 ‘Add data padding

iterations are not

loops to the loop

2. Guidance: detect problem and




Critical Data Made Easy

Loop Trip Counts

Knowing the time
spent in a loop is not

enough!

Trip Counts

[=] Function Call Sites and Loops | Self Timew | Type

Average | Min Mazx Call Count

(= [leop in runOMPRawlLoopsSompsgy  4190s8  Vectorized+ Threaded (Body; Peeled; Remainder) 2 1102 1,171 3 111, 3 112590000...

4|00 [loop in runOMPRawlLoopsSormn) 376858 Remainder+ Threaded (OpenMP) 2 1 3 1125900000
(0 [leop in runOMPRawloopsiom 0.406= | Vectorized (Body)+ Threaded (OpenMP) 110 17 111 12320000
4|0 [loop in runOMPRawLoopsSom|  0.016s] Peeled+ Threaded (OpenMP) 2 1 3 220000

Check Find trip counts for
actual trip each part of a loop

counts
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Precise Repeatable FLOP Metrics

A FLOPS by loop and function A Instrumentation (count FLOP) plus
sampling (time with low overhead)

A Adjusted for masking
with AVX-512 processors

A All recent Intel processors

Vectorized Loops FLOPS
[=] Function Call Sites and Loops || Self Time — :
Vect... | Efficiency Gain... [ VL (... | 5elf GFLOPS= | Self Al
=7 [loop in runOMPRawLoopsSompSg  1.984s0 Ay ... | 100% | 430 4 204,298 3 017103
=0 [loop in runOMPRawlLoopsSom) 146951 AVX2 4 393.921 0 017574
4| [loop in runOMPRawlLoopsSom)  0.078s1 AVX 4 20,6331 0.06250
3|0 [loop in runOMPRawLoopsSom|  0.141s] 13.1521 0.06250
3|00 [loop in runOMPRawLoopsSom)|  0.234s| 12,7971 0.14315
3|0 [loop in runOMPRawLoopsSom|  0.063s| 0.1041 0.06250
[loop in runOMPRawLoopsSompSy| 140651 AVX2 1.05¢ |2 107.057 @ 0.22428

=Y

[loop in runOMPRawloopsSompSy| 117250 Avx [ 81% | 3.22« £3.3540 0.07500
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3. Memory Access Patterns Analysis
Site Location Strides Distribution & | Access Pattern
[loop in ComputeTimeStep .. [ 80/ 0%/ 20800
[loop in pricePath_Coreat ... | 92% /0% /8% ¢

Sourcew

ch_4 v233.cpp:76

ch_4 v233 76
J.cppi218

Unit stride
Gather stride

EP1
Unit stride

HP52




Improve Vectorization

Memory Access pattern analysis

Summary &5 Survey & Roofline ™ Refinement Reports

pru)

:E: [=] Function Call Sites and Loops &~ | Self Time ‘¢’ Performance |ssues

E [locp in pricePath_Core at ch_3_1_5_kernel.c 7.828=0 & 2 Unoptimized floating point operati ...
[loop in ComputeTimeStepKernel at ch_d v Sads1 @ 1 Inefficient gather/scatter instructio ...
4]0 [locp in maxPriceCore at ch_3_1_5_kernel_rr L] | 34565 lssumed dependency present
5| (5 [locp in maxPriceCore at ch_3_1_5_kernel_m (] 26027-@8 & 4A scndency present

Select loops of
interest

Run Memory Access Patterns analysis,
just to check how memory is used in
the loop and the called function
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Advisor Memory Access Pattern (MAP)
know your access pattern

Site Location |L00p-[arried Dependencies ‘Strides Distribution ‘Access Pattern | Site Name
[loop in fPropagationSwap at IbpSUB.cpp:1247]  No information available 33%_ Mixed strides loop_site_60
’j_‘___ﬁ T
blue color: Henw/ﬂ red color. . .
fraction of unit stride “fixed" stride fraction of iregular (variable stride) accesses
16% / 84% /0% Mixed strides ” I
. . Memor]f Access Patterns REDD[T @ 16%:percentage of memery instructions with unit stride or stride 0 accesses
Un|t - Stnde access Unit stride (stride 1) = Instruction accesses memory that consistently changes
m - Iy ¥ g
ID Stride by one element from iteration to iteration
for (i=0; i<N; i+ +) Stride 0 = Instruction accesses the same memory from iteration to teration
i = C[i]I*DJi D 843 percentage of memory instructions with fixed or constant non-unit
Alll CliI*DIi] P g v
1246 fendif stride accesses
. 1947 for (int m=1; r Constant stride (stride M) = Instruction accesses memory
Constant St”de access ! by M elements from iteration to iteration
- : - 1248 nextx = fCppl Example: for the double floating point type, stride 4 means the memeory
for (i=0; i<N; i++) 1249 nexty = fCppM address accessed by this instruction increased by 32 bytes, (4*sizeof(double]]
point [i].x = X[i] 1950 nextz = fCppl with each iteration
@ 09%: percentage of memory instructions with irregular (variable or random)
p q y 9
P11 @ 0:1 stride accesses
. . . ] . . Irregular stride = Instruction accesses memory addresses that change by an
Var'able Stl‘lde access =P12 -289559; - 274359, - 14477, - 13717, unpredictable number of elements from iteration to iteration

Typically chserved for indirect indexed array accesses, for example, a[index[i]]

i=0: i<N: i 1251 ilnext = (nex
for (1=0; i<N; i+ *) 1252 #ifndef { B - gather (irreqular) accesses, detected for v(p)gather® instructions on AVX2
A[BIi] = C[i]*D[i] et AL RS Instruction Set Architecture

1253  fSwapPair (lbf[il*lbsitelength + L*lbsy.nq + m + half|, Lbf|ilnext*lbsitelength + L*1bsy.nc
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Find vector optimization opportunities

Memory Access pattern analysis

Site Location | Strides Distribution | Access Pattern | Mazx. Site Footprint
[loop in ComputeTimeStepKer ... B0 05 20500 Mixed strides ZKB
[loop in pricePath_Core at ch_3 ... 92% /0% /8% Mixed strides 1KB

<

Memory Access Patterns Report | Dependencies Report | ¢ Recommendations

All Advisor-detectable issues: C++ | Fortran

Recommendation: Refactor code with detected regular stride
access patterns

The Memaory Access Patterns Report shows the following regular stride access(es):

Variable Pattern
Dlock Dx2e23c404b80 allocated at cache aligned allocatorcpp:196 | Invariant

See details in the Memory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compilerto a regular stride access.

Sometimes, it might be beneficial to use the ipo/Qipo compiler option to enable interprocedural
optimization (IPC) between files.
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5. LoopCarriedDependency Analysis

Site Name  Sources Modules  State
Parallel site information site2 dqtest2.cpp dgtest2  Not a problem
Read after write dependency site2 dqtest2.cpp dqtest2 R New
Read after write d-pendonc\ site2 dqtesr‘* cpp dgtest2 R Hew
El
PS @ Wiite after write depundenr te2 dqtest2.cpp dgtest2 R New
e dqtest2.cpp dqtest2 P Hew
dqtest2.cpp: idle.n dtest2 R New




Enabling vectorization

Vector Issues

Self Timew | Total Time

20.030s! | 20.030s| |Scalar Versions =
13.508s1 13.508s1 Scalar -]

6.895s | 27.750s1 Scalar a2

| * 2 Assumed dependency present
g

rort ﬂ Refinement Reports

Use #pragma simd

[al

h_4 v253.cpp:183]

e E——
_3.1_5_kernel_max.cpp:20] {2 No dependencies found P
Vectorized Loops
Vector Issues Self Timew |Total Time |Type — -
Vector ISA | Efficiency Gain ... VL (V...
10.507s1 22.989s| Scala

® 2 Possible inef... 1.762s
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Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

Summary @5 Survey & Roofline ™ Refinement Reports

=]

= [=] Function Call Sites and Loops & |SelfTime | Why Mo Vectorization?

E 5| (0 [locp in maxPriceCore at ch_3_1_5_kernel_m 34.565: B & vector dependence prevents vectorization
40 [loop in maxPriceCore at ch_3_1_5_kernel_m 26,027 @@ & vector dependence prevents vectorization
4|00 [loop in OptionDecision at ch_4_v253.cpp:1 0,360z B vector dependence prevents vectorization
u| (5 [leop in _10<lambdal> at ch_3_1_5_kernel_ 0.01es| B vector dependence prevents vectorization

Select loop for
Correct
Analysis and

Vector Dependence
prevents
Vectorization!

press play!
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Correctness Yls It Safe to Vectorize?

Loop-carried dependencies analysis
Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REALdependencies

Detected

dependencies 2. Explore dependencies with code snippets

In this example 3 dependencies were detected:
A RAWYRead After Write
A WARY Write After Read

A WAW Y Write After Write

This is NOT a good candidate to force

Source lines with Read and vectorization!
Write accesses detected
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