Software

AND ROOFLINE MODEL

tFNU 2F LSWASBXKE t | NI
Roadmap Notice: Alhformation provided here is subject to change without notice.
Contactyour Intel representative to obtain the latest Intel product specifications and roadmaps

https://software.intel.com/en-us/articles/optimization-notice#opt-en

Contacts

Advisor Support Mail List vector.advisor @intel.com

Zakhar Matveev zakhar.a.matveev@intel.com

Intel Advisor Product Architect

Kirill Rogozhin Kkirill.rogozhin@intel.com

Intel Advisor Project Manager

Egor Kazachkov egor.kazachkov@intel.com

Intel Advisor Senior Developer

Optimization Notice

ClikiTHAG + <::2# DIiAT Clij 11 Giipr: ¢ii a1aniu InehGenfidgential
*Other names and brands may be claimed as the property of others.

mailto:vector.advisor@intel.com
mailto:zakhar.a.matveev@intel.com
mailto:kirill.rogozhin@intel.com
mailto:egor.kazachkov@intel.com

WhatisIntelIN Cgj 1T 1J] 1

Vectorization analysis

Roofline

Function Call Sites | why Mo ___|Total Vectorized Loops
= and Loops Wectorization? Self Time Time Type vec... | Efficiency |Gair'|...|
= _tmainCRTStartup 0.000s1 1.669: @ Function

=) f main

. in main at 3loog
[loop in rmain at Sloops, g

. = inner loop wa ...

0.000s |
0.000s |
1138 @

=/ (0 [loop in f at Aoops.cpp: || @ inner loop was ... 0.000s1
4|0 [loop in f at Sloops.cpp:|| @ inner loop was ... 0.000s1
[loop in f at Sloops.cpp: 0.296510
u f f 0.000=1
=I5 [loop in main at 3loops.o 0.234s1

1.669s B Function
1.2373s O |Scalar

1.373= @ “ectari...

B2 4,7

0.296s0 Scalar .
0.29650 Scalar i]
0.2065 0 Vectari... AVXZ 6.12x B
0.296s0 Inlined... o
023451 Inside

FCollsionBGK IbpGET oppc212
Padomance: 4. 75 OFLOFS

Tetnl Tene: 0,351 &

Anthmetc Ingeraity. 0.35 FLOPByie
So¥ Elnpsed Time: 0,357 5

Cache Simulator and MAP

Site Location | Strides Distribution & ‘ Access Pattern

Python API

import advisor

[loop in ComputeTimeStep.. | 805/ 0%/ 209800 Mixed strides

project = advisor.open_project{sys.argv[1])
data = project.load({advisor.SURVEY)

roofs = data.get roofs(4, advisor.RoofsStrategy.MULTI THREAD

for roof in roofs:
memory roofs

if 'bandwidth' in roof.name.lower():

bandwidth = roof.bandwidth / math.pow(1®, 9) # conve

[loop in pricePath_Coreat ... | 92%/0%/8% [Mixed strides
L4
Memory Access Patterns Report | Dependencies Report | '4' Recommend:
D | ‘Stride ‘T}rpe Source ¥
Ep53 @ 1 Unit stride ch_4 v233.cppT6
o Gather stride ch_4 v253.cpp:
mp2 @ 1 Unit stride ch_4 v233.cpp:218

print "{} {:.8f} GB/s'.format(roof.name, bandwidth)
compute roofs
else:
bandwidth = roof.bandwidth / math.pow(1@, 9) # cony
print '{} {:.0f} GFLOPS'.format{roof.name, bandwidth

321

16+

B

i

21

Threading prototyping

Scalability of Maximum Site Gain

Tasks Modeling

Avg. Number of Avg. Task
s Tasks: Duration:
; I 50000000 < 0.001s
(@) 0.008x 0.008x%
0.040x 0.040x%
Q 0.200x 0.200x
g 1x (10000000} 1x (< 0.001s)
_rl S S
23% 25%
@ 125 123x
Apply |

2 4 g 6 32 o4

CPU Count

Optimization Notice

Intel Confidential

experience
what’s inside”

VEGTORIZATION

CHij ¢ GWijHI €| gAtivisorGIJij H1 & DY ij F
Vectorization Optimization

Have you: Data Driven Vectorization:

A Recompiled for AVX2 with little gain A What vectorization will pay off most?

A Wondered where to vectorize? A Gh Gijplolding vectorization? Why?

A Recoded intrinsics for new arch.? A Are my loops vector friendly?

A Struggled with compiler reports? A Will reorganizing data increase performance?
A |s it safe to just use #pragma omp simd?

Elapsed time: 1462355 (RO ly Not Vectorized FILTER:| Al Modules ~|| AllSources ~ || Loops = |[AllThreads | ore [l

[a |
Summary oy, Survey & Roofline " Refinement Reports IHI.EI. AIWISI]R 2“]“

'E: [=] Functien Call Sites and Loops [v lPerFormance Self Timew Total Time Why Mo Vectorization? Vectorized Loops FLOPS .
i SIS Vi Com.. | Self GFLOPS | Self Al
= M | * 2 Assumed ...| 15.484sC—1| 578.0465) |Threaded (Op... | = vector dependenc..
310 [loop in runCRawlLoops at runCRawloops.coe| [@ 2 Assumed d.. 11.7665 11,7661 Scalar @ vector dependence... 0.9951 0.08333
4O [loop in runCForalllambdaloops at runCForal O @ 2Assumedd.. 11.766s 000 11.766s1 Scalar B vector dependence... 0.9951 0.08333
;510 [loop in runCRawLoops at runCRawLoops.cor O ©2Assumedd. 5.156s 8 315851 Scalar @ vector dependence... 1.5121 0.11458
= 3 [loop in runCForallLambdaloops at runCForall [| @ 2 Assumed d.. 512558 512551 Scalar & vector dependence... 15211 0.11458
=10 [leop in runOMPRawlLoopsSompSparallel@64 [0 @ 1Ineffective .. 4.190s@ 4190s1 Vectorized+Thr... AVX 500 4 5.28x 6.767 1 0.02486
=)0 [loop in runOMPRawloopsSompSparallel@ [3.768: @ 3.768s1 Remainder+Th... 41381 0.02083
=/ [leep in runOMPRawloopsSompSparallel @ O 040651 040651 Vectorized (Bo... AVX 4 5.28¢ | 27.368) 0.03125
=103 [loep in runOMPRawlLoopsSompSparallel@ [0.016s| 0.016s| Peeled+Thread... 0.1131 0.02083 w7
< > £ >

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which loops What prevents

Trip Counts

are vectorized! vectorization?

[| Elapsed time: 1262.355 [[ol et Not Ve |~ || Loops ~|[AllThrea

Summary) Survey & Roofline " Refinement Reports

Trip Counts
[=] Function Call Sites and Loops || ‘¢ Performance |ssues Self Timew Why MNo Vectorization?
Average | Call Count Vect... Com
[loop in runOMPRawLoops$omp{ * 2 Assumed dependency present 15.484s 1| 446 101976000 | = vector dependence prevents vectoriz ...
4|00 [loop in runCRaw).oops at runCRai| @ 2 Assumed dependency present 11,766 0 12511 75120000 & vector dependence prevents vectorization
410 [loop in runCFerffliLambdaloops | @ 2 Assumed dependency present 11.766: W 12511 75120000 @ vector dependence prevents vectorization
HIED O [loop in runCRaMLoops at runCRai| @ 2 Assumed dependency present 5.156s@ 19387 3075000 B vector dependence prevents vectorization
AE) [loop in runCFBIILambdaloops & @ 2 Assumed dependency present 51250 19387 3075000 @ vector dependence prevents vectorization
=10 [leop in runO)j awLoopsSomp$|| @ 1 Ineffective peeled/remainder loop(s).. 4.130:@ 2 110; 2 | 112590000... 5.28x
=0 [loopinn PRawlLoopsSom 37680 2 1125900000
=0 [loop in PRawlLoopsSom 0.40650 110 12320000 5.28x
=0 [loop i PRawlLoopsSom 0.016s1 2 280000 v
< > ([€ >

Focus on What vectorization

Which Vector instructions How efficient

hot loops iIssues do | have?

are being used? is the code?

Get Faster Code Faster!

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

5 Steps to Efficient Vectorization

DY ij AdivisNr YVectorization Advisor

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it

| Vectorized Loops 3| Instruction Set Analysis - o
[=] Function Call Sites and Loops | Self Time All Advisor-defectable issues: C= | Fortran x
i | vect...| Efficiency~ | Gain... VL (... | Traits [pata... 5 dation: Add data paddi
[loop in looplnit at LCALSSuite.cce| 0.016s1 AVX T3% 29% 4 Divisions; Type C... Float64 scommendation: ata pacaing
[loop in loaplnit at LCALSSuite.coe| 0.016s| AVX 0%] 299« 4 Divisions; Type C... Float64 The irip count is not @ multiple of wector lengin. Ta fix: Do one afthe i ,
following: Issue: meffective peelediremainder
[loop in runCForalllambdaloops 3| 0.672s] AVK: ... 560¢ 248 Extracts FMA: Ty... Float64: e ———
[loop in runCRawLoops at runCRav| _ 0.578s1 All or some source loop iterations are not
[loop in runOMPRawLoopsSompSy| 0.953s) 1 + e ihi 1 executing in the loop body. Improve
P B 3. Trip Cou nts FLOP: un_derstand utilization, e
floop in runARawL oops at runARay 0.734s) parallelism granularity & overheads o ssled et looks o e 0o
[loop in runAForallLambdaloops 3| 0.578s] .
)] Trip Counts FLOPS 0 ikt Ay
[=] Function Call Sites and Loops
HAverage | Call Count | Self GFLOPSw | Self Al
410 [loop in runOMPRawLoopsSomp| 111 5712000 4275160 0.22794

[leop in runOMPRawloopsSomp| 124 1; 13; ... 46816000; ... 204.293 03D 017103

4. Memory Access Patterns Analysis| 5. LoopCarriedDependency Analysis
Site Location | Strides Distribution & | Access Pattern
[locp in ComputeTimeStep.. | 80%/ 0%/ 20580 Mixed strides D W Type Site Name Sources Modules State
[loop in pricePath_Core at ... 92% /0% /8% Mixed strides P1 @ Parallel site information site2 datest2 cpp dgtest? « Not a problem
£ F2 @ Read after wiite dependency site2 dqtest2.cpp dqtest2 R New
P @ Read after wite dependency site2 dqtest2.cpp dgtest2 R Hew
Memory Access Patterns Report | Dependencies Report ‘ ' Recommend:| [N AT dgtest2.cpp
PS @ Wiite after write dependency site2 dqtest2.cpp dgtest2 R New
D | | Stride | Type | Sourcew P @ Wiite after read dependency site2 dotest2.cpp dotest2 P New
mps2 @ 1 Unit stride ch_4_v253.cpp:76 F7 @ Wiite after read dependency site2 dqtest2.cpp: idle.n dqtest2 R New
EP1 = Gather stride ch_4 w233,
mps2 @ 1 Unit stride ch_4 v233.cpp218

Optimization Notice

CljxkiTHRM[<:;A# DY ijAT Clij i GijT vy Ci1 1 THRMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

[2]| Instructic Anal
[=] Function Call Sites and L

2
2

t Binary An

Vector Efficiency: All The Data In One Place
Ek fjHI h] 1 TGV GH ijhHI T] THi{jHI R

Vectorized Loops Instruction Set Analysis
[=] Function Call Sites and Loops Self Time . X :
Vect... ‘ Efficiency « ‘ Gain... | VL (... | Traits
[loop in runCForalllambdaloops at runCForallLa 0.734s1 AV .. [26% 211k 48 Extracts; Inserts; Type Conversions
[loop in runCRawloops at runCRawloops.cee 70| 062351 AV .. 2% 48 Extracts; Inserts; Type Conversions
[loop in runCForalllambdaloops at runCForallLar| 2.703s8 AVXZ 250 48 FMA; Inserts; Permutes; Unpacks
[locp in runCRawloops at runCRawloops.cce117| 2609s0 AVK2 250 48 FMA: Inserts: Permutes; Unpacks
[loop in runOMPRawloopsSompSparallel@1353 at) 0433s1 AVK2 180 4 Blends; Divisions; FMA; Masked Stores; Square Roots
[locp in runAForalllambdaloops at runAFeralllar] 0.234s1 AVK2 182x 4 Blends; Divisions; FMA; Masked Stores; Square Roots

509 A Auto -vectorization : affected <3% of code
A With moderate speed-ups
A First attempt to simply put #pragma omp simd :
A Introduced slow-down

Original (scalar) Achieved Upper bound: A Look at Vector Issues and Traits to find out why
code efficiency. Efficiency 100% ACit 1TT7gwl |h fTAT 1k T GT1
Corresponds efficiency AEWIGITx 61 TiglGGiT |1 |h
to 1x speed-up. 4x gain
(VL=4)
EJi] A" ¢cTT¢g 1Jij Th k] JdJr GIgH T 37 gHAI

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

Vectorization tied to your code

Elapsed time: 1462355 (NIt oy

FILTER:| AllModules ~|| AllSources || Loops ~|[All Threads ~|

Mot Vectoriz

. [a]
INTELADVISOR 2018

Summary ?"; Survey & Roofline !.'ﬂ Refinement Reports

|

Vectorized Loops Trip Counts FLOPS 3

Vect... | Efficiency + | Gain... | VL (.. | Com.. | Average | Call Count | Self GFLOPS| Self Al

[loop in runOMPRawloopsSompSg| 0.953s) | @ 1 Ineffective peeled/remainder loop(s) .. AVX 9% 27w 4 3.87x 14272 113232000.. 43.2471 0.12500
[loop in runOMPRawlLoopsSompSg| 1.953s) | @ 1 Ineffective peeled/remainder loop(s).. AVX [[68% | | 2.74x «3.08¢ 27:2; 22 | 8176000; 8... 151001 001880

[loop in runARawloops at runARz} 0.734s| | ® 3 Ineffective peeled/remainder loo....

4
1

[loop in runAForalllambdaloops al| 0.578s| @ 3 Ineffective peeled/remainder loop(s).. AVK2 m 267 4 2.66x 61283 2045000; 2. 7.2351 0.10232
4
1

[=] Function Call Sites and Loops || Self Time | ‘& Performance Issues

F
[loep in unOMPRawloopsSompSy| 1.578s1 | Q' 3 Ineffective peeled/remainder loop(s) .. AVX2 262 266x 2:110;2 [113225000;.. 26.8451 0.12934
[loop in runBRawLoops at runBRaw| 243751 | @ 3 Ineffective peeled/remainder loop(s) .. AVX2 258 257 61283 1840000:1.. 15381 015299 v
< >« >

Source | Top Down | Code Analytics | A y | & Rec dati & Why Mo Vectorization?

Line| Source TotaITime| % |L00p.-"FunctionTime| % | Traits &

150 =] for (Index type i=0 ; i<len ; i++) { 0.078s 0.734s .

[loop in runlRawLoops at runfBawLoops.cxx:l50]
Vectorized AVE; AVE2; FMR loop processes Float6d; Int32; UInt32; Ulntéd data type(s) an
No loop transformations applied
U] [loop in runfRawLoops at runfRawloops.cxx:150]
Scalar remainder loop with instructions that use EVX registers
No loop transformations applied
ons use AVX registers

151 Real_type g_tilde ; Blends

152

153 if (delwec[i] > 0.0) { 0.047s |

154 q_tilde = 0. ; 0.062s |

155 1

Selected (Total Time): 0.078s v
£ >

Optimization Notice

CljxkiTHRM[<:;A# DYijAT Clij i GijT vy Ci1 1 THMjN
*Other names and brands may be claimed as the property of others.

] 7T oeij dIJWij eHGIi) 1 TLH# eéeHGi] 11

See detailed times for each part of your loops. Is it worth more effort?

Elapsed time: 1462.35s (Rl liat gt HiotWeetonee FILTER:| AllModules ~ || AllSources ~|[Loops +|[AllThreads ~
Summary @ Survey & Roofline ™[] Refinement Reports
= Vectorized Loops
2 [=] Function Call Sites and Loops Self Timew | Type —)
o Vector 154 | Efficiency Gain .| VL ...
E = [loop in runCRawloops at runCRawloops.coc117] 280950 Vectorized (Body; Peeled; Remainder) AVA2 3156 250 43
3| [loop in runCRawloops at runCRawleoops.coe]| 20310 Vectorized (Body) AVX2 a
=) [loop in runCRawloops at runCRawloops.cee]| 051851 Vectorized (Remainder) AVE2 4
4|00 [loop in runCRawloops at runCRawloops.coe] 0.0625] Remainder
4|0 [loop in runCRawloops at runCRawleoops.cee] 0.000s] Peeled
=" [loop in runBRawloops at runBRawloops.coc55] | 256250 Vectorized (Body; Remainder) AVE 31% 4
4| [loop in runBRawloops at runBRawloops.cocl) 250050 Vectorized (Body) AVE 4
4|00 [loop in runBRawLoops at runBRawloops.coe 0.062s1 Remainder
= [loop in runBRawloops at runBRawloops.cee] 0.000s1 Vectorized (Remainder) AVE 4

Optimization Notice

CljxkiTHRM[<:;A# DY ijAT Clij i GijT vy Ci1 1 THRMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

2. Guidance: detect problem and
recommend how to fix it

isor-detectable issues. x

Recommendation: Add data padding

Issue: meffective peelediremainder
loop(s) present

executing in the |
performance by moving
from
body.

0 ‘Add data padding

and autemnatic objec
dding

Get Specific Advice For Improving Vectorization

10

[=] Function Call Sites and Loops ‘¢ Performance lssues Self Timew | Type

=
o
m

[=I'" [loop in runCForallLambdaloops at runCFoi| ' 2 Ineffective peeled/remainder loop(s).. 2.703s! Vectorized (Body; Peeled; Remainder)
=" [loop in runCForalllambdaloops at runCl| @ 1 Possible inefficient memory access patt.. 2.109s0 Vectorized (Body)

=/ [leop in runCFerallLambdaloops at runcC 0.500= | Yectorized (Remainder)
/(0 [loop in runCForallLambdaloops at runC 0.0%4s1 Remainder
FGR LI RILIESIEERY Click to see recommendation 0.000s] | Peeled
L4 >
Source | Top Down | Code Analytics | Assembly |@ Recommendations | B Why Mo Vectorization?

All Advisor-detectable issues: C++ | Fortran

Advisor shows hints to move

iterations to vector body.
Allor some source loop iterations are not executing in the loop body. Improve pe 0 SULTLE :
remainder loops to the loop body.

0 Add data padding

The frip count is not a multiple of vector lenath. To fix Do one of the following:

® Issue; Ineffective peelediremainder loop(s) present

|ncrease the size of objects and add iterations so the trip count is a multiple of vector length.
» |ncrease the size of static and automatic objects, and use a compiler option to add data padding.

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

1. Compiler diagnostics + Performance

016s|
0.016s|

p in runCRawl
p in runOMPR;

p in runARawLoops at runARay
loop in runAForallLambdaloops a

recommend how to fix it

All Advisor-detectable issues™ C:

Recommendation: Add data padding
The Irip count is not a multiple o ength. To fixx Do one of the

3. Trip Counts + FLOP:understand utilization,
parallelism granularity & overheads

@

Issue: meffective peelediremainder

loop(s) present

All or s

executing in the
performance by movin:
from o

0 ‘Add data padding

iterations are not

loops to the loop

2. Guidance: detect problem and

Critical Data Made Easy

Loop Trip Counts

Knowing the time
spent in a loop is not

enough!

Trip Counts

[=] Function Call Sites and Loops | Self Timew | Type

Average | Min Mazx Call Count

(= [leop in runOMPRawlLoopsSompsgy 4190s8 Vectorized+ Threaded (Body; Peeled; Remainder) 2 1102 1,171 3 111, 3 112590000...

4|00 [loop in runOMPRawlLoopsSormn) 376858 Remainder+ Threaded (OpenMP) 2 1 3 1125900000
(0 [leop in runOMPRawloopsiom 0.406= | Vectorized (Body)+ Threaded (OpenMP) 110 17 111 12320000
4|0 [loop in runOMPRawLoopsSom| 0.016s] Peeled+ Threaded (OpenMP) 2 1 3 220000

Check Find trip counts for
actual trip each part of a loop

counts

Optimization Notice
Cljiki THMIj <:;A# DVijAT Clij 1 GijT 1! Ci1 1 THRMjIE 1+ ABAI] Ag!
*Other names and brands may be claimed as the property of others.

Precise Repeatable FLOP Metrics

A FLOPS by loop and function A Instrumentation (count FLOP) plus
sampling (time with low overhead)

A Adjusted for masking
with AVX-512 processors

A All recent Intel processors

Vectorized Loops FLOPS
[=] Function Call Sites and Loops || Self Time — :
Vect... | Efficiency Gain... [VL (... | 5elf GFLOPS= | Self Al
=7 [loop in runOMPRawLoopsSompSg 1.984s0 Ay ... | 100% | 430 4 204,298 3 017103
=0 [loop in runOMPRawlLoopsSom) 146951 AVX2 4 393.921 0 017574
4| [loop in runOMPRawlLoopsSom) 0.078s1 AVX 4 20,6331 0.06250
3|0 [loop in runOMPRawLoopsSom| 0.141s] 13.1521 0.06250
3|00 [loop in runOMPRawLoopsSom)| 0.234s| 12,7971 0.14315
3|0 [loop in runOMPRawLoopsSom| 0.063s| 0.1041 0.06250
[loop in runOMPRawLoopsSompSy| 140651 AVX2 1.05¢ |2 107.057 @ 0.22428

=Y

[loop in runOMPRawloopsSompSy| 117250 Avx [81% | 3.22« £3.3540 0.07500

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

3. Memory Access Patterns Analysis
Site Location Strides Distribution & | Access Pattern
[loop in ComputeTimeStep .. [80/ 0%/ 20800
[loop in pricePath_Coreat ... | 92% /0% /8% ¢

Sourcew

ch_4 v233.cpp:76

ch_4 v233 76
J.cppi218

Unit stride
Gather stride

EP1
Unit stride

HP52

Improve Vectorization

Memory Access pattern analysis

Summary &5 Survey & Roofline ™ Refinement Reports

pru)

:E: [=] Function Call Sites and Loops &~ | Self Time ‘¢’ Performance |ssues

E [locp in pricePath_Core at ch_3_1_5_kernel.c 7.828=0 & 2 Unoptimized floating point operati ...
[loop in ComputeTimeStepKernel at ch_d v Sads1 @ 1 Inefficient gather/scatter instructio ...
4]0 [locp in maxPriceCore at ch_3_1_5_kernel_rr L] | 34565 lssumed dependency present
5| (5 [locp in maxPriceCore at ch_3_1_5_kernel_m (] 26027-@8 & 4A scndency present

Select loops of
interest

Run Memory Access Patterns analysis,
just to check how memory is used in
the loop and the called function

Optimization Notice

Cljiki THMIj <:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!

*Other names and brands may be claimed as the property of others.

Advisor Memory Access Pattern (MAP)
know your access pattern

Site Location |L00p-[arried Dependencies ‘Strides Distribution ‘Access Pattern | Site Name
[loop in fPropagationSwap at IbpSUB.cpp:1247] No information available 33%_ Mixed strides loop_site_60
’j_‘___ﬁ T
blue color: Henw/ﬂ red color. . .
fraction of unit stride “fixed" stride fraction of iregular (variable stride) accesses
16% / 84% /0% Mixed strides ” I
. . Memor]f Access Patterns REDD[T @ 16%:percentage of memery instructions with unit stride or stride 0 accesses
Un|t - Stnde access Unit stride (stride 1) = Instruction accesses memory that consistently changes
m - Iy ¥ g
ID Stride by one element from iteration to iteration
for (i=0; i<N; i+ +) Stride 0 = Instruction accesses the same memory from iteration to teration
i = C[i]I*DJi D 843 percentage of memory instructions with fixed or constant non-unit
Alll CliI*DIi] P g v
1246 fendif stride accesses
. 1947 for (int m=1; r Constant stride (stride M) = Instruction accesses memory
Constant St”de access ! by M elements from iteration to iteration
- : - 1248 nextx = fCppl Example: for the double floating point type, stride 4 means the memeory
for (i=0; i<N; i++) 1249 nexty = fCppM address accessed by this instruction increased by 32 bytes, (4*sizeof(double]]
point [i].x = X[i] 1950 nextz = fCppl with each iteration
@ 09%: percentage of memory instructions with irregular (variable or random)
p q y 9
P11 @ 0:1 stride accesses
. . .] . . Irregular stride = Instruction accesses memory addresses that change by an
Var'able Stl‘lde access =P12 -289559; - 274359, - 14477, - 13717, unpredictable number of elements from iteration to iteration

Typically chserved for indirect indexed array accesses, for example, a[index[i]]

i=0: i<N: i 1251 ilnext = (nex
for (1=0; i<N; i+ *) 1252 #ifndef { B - gather (irreqular) accesses, detected for v(p)gather® instructions on AVX2
A[BIi] = C[i]*D[i] et AL RS Instruction Set Architecture

1253 fSwapPair (lbf[il*lbsitelength + L*lbsy.nq + m + half|, Lbf|ilnext*lbsitelength + L*1bsy.nc

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

Find vector optimization opportunities

Memory Access pattern analysis

Site Location | Strides Distribution | Access Pattern | Mazx. Site Footprint
[loop in ComputeTimeStepKer ... B0 05 20500 Mixed strides ZKB
[loop in pricePath_Core at ch_3 ... 92% /0% /8% Mixed strides 1KB

<

Memory Access Patterns Report | Dependencies Report | ¢ Recommendations

All Advisor-detectable issues: C++ | Fortran

Recommendation: Refactor code with detected regular stride
access patterns

The Memaory Access Patterns Report shows the following regular stride access(es):

Variable Pattern
Dlock Dx2e23c404b80 allocated at cache aligned allocatorcpp:196 | Invariant

See details in the Memory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compilerto a regular stride access.

Sometimes, it might be beneficial to use the ipo/Qipo compiler option to enable interprocedural
optimization (IPC) between files.

Optimization Notice

CljxkiTHRM[<:;A# DY ijAT Clij i GijT vy Ci1 1 THRMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

5. LoopCarriedDependency Analysis

Site Name Sources Modules State
Parallel site information site2 dqtest2.cpp dgtest2 Not a problem
Read after write dependency site2 dqtest2.cpp dqtest2 R New
Read after write d-pendonc\ site2 dqtesr‘* cpp dgtest2 R Hew
El
PS @ Wiite after write depundenr te2 dqtest2.cpp dgtest2 R New
e dqtest2.cpp dqtest2 P Hew
dqtest2.cpp: idle.n dtest2 R New

Enabling vectorization

Vector Issues

Self Timew | Total Time

20.030s! | 20.030s| |Scalar Versions =
13.508s1 13.508s1 Scalar -]

6.895s | 27.750s1 Scalar a2

| * 2 Assumed dependency present
g

rort ﬂ Refinement Reports

Use #pragma simd

[al

h_4 v253.cpp:183]

e E——
_3.1_5_kernel_max.cpp:20] {2 No dependencies found P
Vectorized Loops
Vector Issues Self Timew |Total Time |Type — -
Vector ISA | Efficiency Gain ... VL (V...
10.507s1 22.989s| Scala

® 2 Possible inef... 1.762s

Optimization Notice

Clijki THMG <::A# DYViAT €l GiT)pyr Cii 1 THMGIW 1+ ABAI] Ag! mtel\ 18
*Other names and brands may be claimed as the property of others.

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

Summary @5 Survey & Roofline ™ Refinement Reports

=]

= [=] Function Call Sites and Loops & |SelfTime | Why Mo Vectorization?

E 5| (0 [locp in maxPriceCore at ch_3_1_5_kernel_m 34.565: B & vector dependence prevents vectorization
40 [loop in maxPriceCore at ch_3_1_5_kernel_m 26,027 @@ & vector dependence prevents vectorization
4|00 [loop in OptionDecision at ch_4_v253.cpp:1 0,360z B vector dependence prevents vectorization
u| (5 [leop in _10<lambdal> at ch_3_1_5_kernel_ 0.01es| B vector dependence prevents vectorization

Select loop for
Correct
Analysis and

Vector Dependence
prevents
Vectorization!

press play!

Optimization Notice
CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

Correctness Yls It Safe to Vectorize?

Loop-carried dependencies analysis
Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REALdependencies

Detected

dependencies 2. Explore dependencies with code snippets

In this example 3 dependencies were detected:
A RAWYRead After Write
A WARY Write After Read

A WAW Y Write After Write

This is NOT a good candidate to force

Source lines with Read and vectorization!
Write accesses detected

Optimization Notice

CljxkiTHRM[<:;A# DY iAT Claij i GijT vy Ci1 1 THMjI 1 ABAIT] Ag!
*Other names and brands may be claimed as the property of others.

