Software

NTEL ADVISOR
AND ROOFLINE MODEL

Part of Intel® Parallel Studio XE

Roadmap Notice: All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

https://software.intel.com/en-us/articles/optimization-notice#opt-en

Contacts

Advisor Support Mail List vector.advisor@intel.com

Zakhar Matveev zakhar.a.matveev@intel.com

Intel Advisor Product Architect

Kirill Rogozhin kirilL.rogozhin@intel.com

Intel Advisor Project Manager

Egor Kazachkov egor.kazachkov@intel.com

Intel Advisor Senior Developer

Optimization Notice

Copyright © 2015, Intel Cor, i i rved. Intel Confidential
*Other names and brands m

mailto:vector.advisor@intel.com
mailto:zakhar.a.matveev@intel.com
mailto:kirill.rogozhin@intel.com
mailto:egor.kazachkov@intel.com

What is Intel® Advisor

Vectorization analysis

Function Call Sites | why Mo ___|Total Vectorized Loops
= and Loops Weactorization? Self Time Tirme T Type vac,.. | Efficiency | Gain...
= _tmainCRTStartup 0.000s1 1.669: @ Function

=) f main

0.000s |
0.000s |

in main at oo = inner loop wa ...

1.669s B Function
1.2373s O |Scalar

Roofline

[loop in main at Aoops.: 1.139:@ 1,373 @ Vectori., AVX2 4,70y

= (0 [loop in f at Sloops.cpp: | B inner loop was ... 0.000s1 0.29650 Scalar
4% [loop in f at Sloops.cpp:| B inner loop was ... 0.000s1 0.29650 Scalar y L]
[loop in f at Joops.cpp: 029650 029650 vectori,., AV2 6.12x -
al f f 000051 020650 Inlined... -
=I5 [loop in main at 3loops.d 023450 023450 Inside ...

FCollisionBGK IbpGET opp212

Padomance: 4. 75 OFLOFS
Anthmetc Ingeraity. 0.35 FLOPByie

So¥ Elnpsed Time: 0,357 5

Tetal Teng: 0,354

Cache Simulator and MAP

Site Location

| Strides Distribution & ‘ Access Pattern

Python API

import advisor

[loop in ComputeTimeStep ..

8052/ 0%/ 20 Mixed strides

project = advisor.open_project{sys.argv[1])
data = project.load({advisor.SURVEY)

roofs = data.get roofs(4, advisor.RoofsStrategy.MULTI THREAD

for roof in roofs:
memory roofs

if 'bandwidth' in roof.name.lower():
bandwidth = roof.bandwidth / math.pow(1®, 9) # conve

[loop in pricePath_Coreat ... | 92%/0%/8% [Mixed strides
L4
Memory Access Patterns Report | Dependencies Report | '4' Recommend:
D | ‘Stride ‘T}rpe Source ¥
Ep53 @ 1 Unit stride ch_4 v233.cppT6
o Gather stride ch_4 v253.cpp:
mp2 @ 1 Unit stride ch_4 v233.cpp:218

print "{} {:.8f} GB/s'.format(roof.name, bandwidth)
compute roofs
else:
bandwidth = roof.bandwidth / math.pow(1@, 9) # cony
print '{} {:.0f} GFLOPS'.format{roof.name, bandwidth

321

16+

B

i

21

Threading prototyping

Scalability of Maximum Site Gain

Tasks Modeling

Avg. Number of Avg. Task
s Tasks: Duration:
; I 50000000 < 0.001s
(@) 0.008x 0.008x%
0.040x 0.040x%
Q 0.200x 0.200x
g 1x (10000000} 1x (< 0.001s)

2 4 g 6 32 o4
CPU Count

T
23%
125

S
25x
123x

Optimization Notice

Intel Confidential

experience
what’s inside”

VEGTORIZATION

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

Have you: Data Driven Vectorization:

= Recompiled for AVX2 with little gain = What vectorization will pay off most?

= Wondered where to vectorize? = What's blocking vectorization? Why?

= Recoded intrinsics for new arch.? = Are my loops vector friendly?

= Struggled with compiler reports? = Will reorganizing data increase performance?

» |s it safe to just use #pragma omp simd?

Elapsed time: 1462355 (RO ly Not Vectorized FILTER:| Al Modules ~|| AllSources ~ || Loops = |[AllThreads | EN
Summary oy, Survey & Roofline " Refinement Reports IHI.EI_ mlsnn 2“]“
i "
E: [=] Functien Call Sites and Loops [v lP:[IFssrmance Self Timew Total Time Why Mo Vectorization? Vectorized Loops FLOPS
o Vi Com.. | Self GFLOPS | Self Al
= M | * 2 Assumed ...| 15.484sC—1| 578.0465) |Threaded (Op... | = vector dependenc..
310 [loop in runCRawlLoops at runCRawloops.coe| [@ 2 Assumed d.. 11.7665 11,7661 Scalar @ vector dependence... 0.9951 0.08333
4O [loop in runCForalllambdaloops at runCForal O @ 2Assumedd.. 11.766s 000 11.766s1 Scalar B vector dependence... 0.9951 0.08333
;510 [loop in runCRawLoops at runCRawLoops.cor O ©2Assumedd. 5.156s 8 315851 Scalar @ vector dependence... 1.5121 0.11458
= 3 [loop in runCForallLambdaloops at runCForall [| @ 2 Assumed d.. 512558 512551 Scalar & vector dependence... 15211 0.11458
=10 [leop in runOMPRawlLoopsSompSparallel@64 [0 @ 1Ineffective .. 4.190s@ 4190s1 Vectorized+Thr... AVX 500 4 5.28x 6.767 1 0.02486
=)0 [loop in runOMPRawloopsSompSparallel@ [3.768: @ 3.768s1 Remainder+Th... 41381 0.02083
=/ [leep in runOMPRawloopsSompSparallel @ O 040651 040651 Vectorized (Bo... AVX 4 5.28¢ | 27.368) 0.03125
=103 [loep in runOMPRawlLoopsSompSparallel@ [0.016s| 0.016s| Peeled+Thread... 0.1131 0.02083 w7
< > £ >

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which loops What prevents

Trip Counts

are vectorized! vectorization?

[| Elapsed time: 1262.355 [[ol et Not Ve |~ || Loops ~|[AllThrea

Summary) Survey & Roofline " Refinement Reports

Trip Counts
[=] Function Call Sites and Loops || ‘¢ Performance |ssues Self Timew Why MNo Vectorization?
Average | Call Count Vect... Com
[loop in runOMPRawLoops$omp{ * 2 Assumed dependency present 15.484s 1| 446 101976000 | = vector dependence prevents vectoriz ...
4|00 [loop in runCRaw).oops at runCRai| @ 2 Assumed dependency present 11,766 0 12511 75120000 & vector dependence prevents vectorization
410 [loop in runCFerffliLambdaloops | @ 2 Assumed dependency present 11.766: W 12511 75120000 @ vector dependence prevents vectorization
HIED O [loop in runCRaMLoops at runCRai| @ 2 Assumed dependency present 5.156s@ 19387 3075000 B vector dependence prevents vectorization
AE) [loop in runCFBIILambdaloops & @ 2 Assumed dependency present 51250 19387 3075000 @ vector dependence prevents vectorization
=10 [leop in runO)j awLoopsSomp$|| @ 1 Ineffective peeled/remainder loop(s).. 4.130:@ 2 110; 2 | 112590000... 5.28x
=0 [loopinn PRawlLoopsSom 37680 2 1125900000
=0 [loop in PRawlLoopsSom 0.40650 110 12320000 5.28x
=0 [loop i PRawlLoopsSom 0.016s1 2 280000 v
< > ([€ >

Focus on What vectorization

Which Vector instructions How efficient

hot loops issues do | have? are being used? is the code?

Get Faster Code Faster!

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5 Steps to Efficient Vectorization

Intel® Advisor — Vectorization Advisor

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it
|V“t””ZEd Loops | Instruction Set Analysis Al Advisor-detectable issues: C+= | Fortran
[=] Function Call Sites and Loops || Self Time |Vect.‘. ‘ T |Ga|n..“VL(H. |Tra|ts |Data T - L= . X
[loop in looplnit at LCALSSuite.coe| 0.0168s1 AVX T3% 29% 4 Divisions; Type C... Float64 Recommendation: Add data paddmg
[loop in loaplnit at LCALSSuite.cos| 0.016s1 | AVX 298 4 Divisions; Type C... Float64 :”‘f‘ﬂ%"“‘s”“am““‘”'e of yector length, To fix: Do one of the 1SSUE Incffectve seclediremaind
[loop in runCFerallLambdaloops | 0.672s1 AV .. 560¢ 248 Extracts FMA: Ty... Float64: ellewing: e p'rez:m e peelediremainder
[loop in runCRawLoops at runCRav| _ 0.578s1 All or some source loop iterations are not
[loop in runOMPRawLoopsSompSy| 0.953s) 1 £l ili H executing in the loop body. Improve
Bt eome] Tome 3. Trip Counts + FLOP: understand utilization, e
lloop in runARawloops at runARay 0.734s) paral[e[ism granu[arity & overheads (e e e e el
[loop in runAForallLambdaloops 3| 0.578s] o
Trip Counts FLOPS © 14 ata pasing
[=] Function Call Sites and Loops
HAverage | Call Count | Self GFLOPSw | Self Al
410 [loop in runOMPRawLoopsSomp| 111 5712000 4275160 0.22794
[leop in runOMPRawloopsSomp| 124 1; 13; ... 46816000; ... 204.293 03D 0.17103
4. Memory Access Patterns Analysis 5. Loop-Carried Dependency Analysis
Site Location | Strides Distribution & | Access Pattern
[locp in ComputeTimeStep.. | 80%/ 0%/ 20580 Mixed strides D W Type Site Name Sources Modules State
[loop in pricePath_Core at ... Q2% /0% /8% Mixed strides P1 @ Parallel site information site2 datest2.cpp dgtest2 v Not a problem
£ F2 @ Read after wiite dependency site2 dqtest2.cpp dqtest2 R New
P @ Read after wite dependency site2 dqtest2.cpp dgtest2 R Hew
Memory Access Patterns Report | Dependencies Report ‘ ' Recommend:| [N AT dgtest2.cpp
PS @ Wiite after write dependency site2 dqtest2.cpp dgtest2 R New
D | | Stride | Type | Sourcew P @ Wiite after read dependency site2 dotest2.cpp dotest2 P New
Ps3 @ 1 Unit stride ch_4_v253.cpp:T6 P7 @ Wiite after read dependency site2 dgtest2.cpp: idie.h dgtes2 R New
EP1 = Gather stride ch_4 w233,
mps2 @ 1 Unit stride ch_4 v233.cpp218

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

[2| Instruction Set Analysis
[=] Function Call Sites and "
VL(..

=
28|58 | &%

e e
Ed 2| 2] a2 |a8 | a8 | e8| o
2
4

[
[
[
[
[
[
[
[

ysis

+ Binary Ana

Vector Efficiency: All The Data In One Place

My “performance thermometer”

Vectorized Loops Instruction Set Analysis
[=] Function Call Sites and Loops Self Time — i -
Vect... ‘ Efficiency « ‘ Gain... | VL (... | Traits
[loop in runCForalllambdaloops at runCForalllar 0.734s) AVX: .. | 26% 211k 48 Extracts; Inserts; Type Conversions
[loop in runCRawloops at runCRawloops.cee 70| 062351 AV .. 2% 48 Extracts; Inserts; Type Conversions
[loop in runCForalllambdaloops at runCForallLag 270350 AVX2 250 |48 FMA; Inserts; Permutes; Unpacks
[locp in runCRawloops at runCRawloops.cce117| 2609s0 AVK2 250 |4:8 FMA: Inserts: Permutes; Unpacks
[loop in runOMPRawloopsSompSparallel@1353 at) 0433s1 AVK2 180 4 Blends; Divisions; FMA; Masked Stores; Square Roots
[locp in runAForalllambdaloops at runAForalllag 023451 AVXZ 1.82x |4 Blends; Divisions; FMA; Masked Stores; Square Roots
505 * Auto-vectorization: affected <3% of code
* With moderate speed-ups
* First attempt to simply put #pragma omp simd:
* Introduced slow-down
Original (scalar) Achieved Upper bound: * Look at Vector Issues and Traits to find out why
code efficiency. Efficiency 100% » All kinds of “memory manipulations”
Corresponds efficiency « Usually an indication of “bad” access pattern
to 1x speed-up. 4x gain

(VL=4)

Survey: Find out if your code is “under vectorized” and why

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization tied to your code

Elapsed time: 1462355 (NIt oy

FILTER:| AllModules ~|| AllSources || Loops ~|[All Threads ~|

Mot Vectoriz

. [a]
INTELADVISOR 2018

Summary ?"; Survey & Roofline !.'ﬂ Refinement Reports

|

Vectorized Loops Trip Counts FLOPS 3

Vect... | Efficiency + | Gain... | VL (.. | Com.. | Average | Call Count | Self GFLOPS| Self Al

[loop in runOMPRawloopsSompSg| 0.953s) | @ 1 Ineffective peeled/remainder loop(s) .. AVX 9% 27w 4 3.87x 14272 113232000.. 43.2471 0.12500
[loop in runOMPRawlLoopsSompSg| 1.953s) | @ 1 Ineffective peeled/remainder loop(s).. AVX [[68% | | 2.74x «3.08¢ 27:2; 22 | 8176000; 8... 151001 001880

[loop in runARawloops at runARz} 0.734s| | ® 3 Ineffective peeled/remainder loo....

4
1

[loop in runAForalllambdaloops al| 0.578s| @ 3 Ineffective peeled/remainder loop(s).. AVK2 m 267 4 2.66x 61283 2045000; 2. 7.2351 0.10232
4
1

[=] Function Call Sites and Loops || Self Time | ‘& Performance Issues

F
[loep in unOMPRawloopsSompSy| 1.578s1 | Q' 3 Ineffective peeled/remainder loop(s) .. AVX2 262 266x 2:110;2 [113225000;.. 26.8451 0.12934
[loop in runBRawLoops at runBRaw| 243751 | @ 3 Ineffective peeled/remainder loop(s) .. AVX2 258 257 61283 1840000:1.. 15381 015299 v
< >« >

Source | Top Down | Code Analytics | A y | & Rec dati & Why Mo Vectorization?

Line| Source TotaITime| % |L00p.-"FunctionTime| % | Traits &

150 =] for (Index type i=0 ; i<len ; i++) { 0.078s 0.734s .

[loop in runlRawLoops at runfBawLoops.cxx:l50]
Vectorized AVE; AVE2; FMR loop processes Float6d; Int32; UInt32; Ulntéd data type(s) an
No loop transformations applied
U] [loop in runfRawLoops at runfRawloops.cxx:150]
Scalar remainder loop with instructions that use EVX registers
No loop transformations applied
ons use AVX registers

151 Real_type g_tilde ; Blends

152

153 if (delwec[i] > 0.0) { 0.047s |

154 q_tilde = 0. ; 0.062s |

155 1

Selected (Total Time): 0.078s v
£ >

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Don't Just Vectorize, Vectorize Efficiently
See detailed times for each part of your loops. Is it worth more effort?

Elapsed time: 1462.35s (Rl liat gt HiotWeetonee FILTER:| AllModules ~ || AllSources ~|[Loops +|[AllThreads ~

Summary @ Survey & Roofline ™[] Refinement Reports

iE|

Vectorized Loops

Efficiency Gain ...

VL ...

:;E;: [=] Function Call Sites and Loops Self Timew

E =" [loop in runCRawloops at runCRawloops.cos117) 2.609s1
4| [loop in runCRawloops at runCRawloops.coe]| 2.031s10
=l [loep in runCRawlocops at runCRawleoops.cee]| 051651

4|00 [loop in runCRawloops at runCRawloops.coe] 0.0625]
4|0 [loop in runCRawloops at runCRawleoops.cee] 0.000s]
=" [loop in runBRawloops at runBRawloops.cec55] | 2.562s1
4| [loop in runBRawloops at runBRawLoops.ceas| 2.500s10
4|00 [loop in runBRawLoops at runBRawloops.coes 0.062s1

= [loep in runBRawloops at runBRawloops.coes) 0.000s]

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Type Vector 154
Vectorized (Body; Peeled; Rernainder) AVX2
Vectorized (Body) AVKZ
Vectorized (Remainder) AVK2
Rernainder

Peeled

VYectorized (Body: Remainder) AVK
Vectorized (Body) AVE
Remainder

Yectorized (Remainder) AVK

3156 2,50

3,19

48

2. Guidance: detect problem and
recommend how to fix it
isor-detectable issues:

Recommendation: Add data padding

Issue: meffective peelediremainder
loop(s) present

executing in the |
performance by moving
from
body.

0 ‘Add data padding

and autemnatic objec
dding

Get Specific Advice For Improving Vectorization

10

[=] Function Call Sites and Loops ‘¢ Performance lssues Self Timew | Type

=
o
m

[=I'" [loop in runCForallLambdaloops at runCFoi| ' 2 Ineffective peeled/remainder loop(s).. 2.703s! Vectorized (Body; Peeled; Remainder)
=" [loop in runCForalllambdaloops at runCl| @ 1 Possible inefficient memory access patt.. 2.109s0 Vectorized (Body)
=/ [leop in runCFerallLambdaloops at runcC 0.500= | Yectorized (Remainder)

0,004z | Remainder

0.000= | Peeled

/(0 [loop in runCForallLambdaloops at runC
SR CLEIITLERIEIRL Click to see recommendation

Source

Top Down

Code Analytics | Assembly |@ Recommendations | B Why Mo Vectorization?

All Advisor-detectable issues: C++ | Fortran

Advisor shows hints to move

iterations to vector body.
Allor some source loop iterations are not executing in the loop body. Improve pe O SOUTCE TOap e eeled!
remainder loops to the loop body.

0 Add data padding

The frip count is not a multiple of vector lenath. To fix Do one of the following:

® Issue; Ineffective peelediremainder loop(s) present

|ncrease the size of objects and add iterations so the trip count is a multiple of vector length.
» |ncrease the size of static and automatic objects, and use a compiler option to add data padding.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1. Compiler diagnostics + Performance 2. Guidance: detect problem and

016s|
0.016s|

p in runCRawl
p in runOMPR;

p in runARawLoops at runARay
loop in runAForallLambdaloops a

recommend how to fix it

All Advisor-detectable issues™ C:
Recommendation: Add data padding @

The Irip count is not a multiple o ength. To fixx Do one of the

Issue: meffective peelediremainder
loop(s) present
All or s iterations are not

3. Trip Counts + FLOP: understand utilization, e
parallelism granularity & overheads o SR

0 ‘Add data padding

Critical Data Made Easy

Loop Trip Counts

Knowing the time
spentin a loop is not

enough!

Trip Counts

[=] Function Call Sites and Loops | Self Timew | Type

Average | Min Mazx Call Count

(= [leop in runOMPRawlLoopsSompsgy 4190s8 Vectorized+ Threaded (Body; Peeled; Remainder) 2 1102 1,171 3 111, 3 112590000...

4|00 [loop in runOMPRawlLoopsSormn) 376858 Remainder+ Threaded (OpenMP) 2 1 3 1125900000
(0 [leop in runOMPRawloopsiom 0.406= | Vectorized (Body)+ Threaded (OpenMP) 110 17 111 12320000
4|0 [loop in runOMPRawLoopsSom| 0.016s] Peeled+ Threaded (OpenMP) 2 1 3 220000

Check Find trip counts for
actual trip each part of a loop

counts

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Precise Repeatable FLOP Metrics

= FLOPS by loop and function » |[nstrumentation (count FLOP) plus

= All recent Intel processors sampling (time with low overhead)

= Adjusted for masking
with AVX-512 processors

Vectorized Loops FLOPS
[=] Function Call Sites and Loops || Self Time — :
Vect... | Efficiency Gain... [VL (... | 5elf GFLOPS= | Self Al
=7 [loop in runOMPRawLoopsSompSg 1.984s0 Ay ... | 100% | 430 4 204,298 3 017103
=0 [loop in runOMPRawlLoopsSom) 146951 AVX2 4 393.921 0 017574
4| [loop in runOMPRawlLoopsSom) 0.078s1 AVX 4 20,6331 0.06250
3|0 [loop in runOMPRawLoopsSom| 0.141s] 13.1521 0.06250
3|00 [loop in runOMPRawLoopsSom)| 0.234s| 12,7971 0.14315
3|0 [loop in runOMPRawLoopsSom| 0.063s| 0.1041 0.06250
[loop in runOMPRawLoopsSompSy| 140651 AVX2 1.05¢ |2 107.057 @ 0.22428

[loop in runOMPRawloopsSompSy| 117250 Avx [81% | 3.22«

=Y

633340 0.07500

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. Memory Access Patterns Analysis

Site Location
[loop in ComputeTimeStep .. [80/ 0%/ 20800
[loop in pricePath_Coreat ... | 92% /0% /8% ¢

Sourcew

ch_4 v233.cpp:76

ch_4 v233 76
J.cppi218

Unit stride
Gather stride

EP1
Unit stride

HP52

Improve Vectorization
Memory Access pattern analysis

Summary &5 Survey & Roofline ™ Refinement Reports

0y

[=] Function Call Sites and Loops &~

Self Time

‘&' Performance lssues

[locp in pricePath_Core at ch_3_1_5_kernel.c
[loop in ComputeTimeStepKernel at ch_d v

[
-
s
=
m

7.828=0
ds |

4]0 [locp in maxPriceCore at ch_3_1_5_kernel_rr L] | 34565
5| (5 [locp in maxPriceCore at ch_3_1_5_kernel_m (] 26027-@8 & 4A scndency present

& 2 Unoptimized floating point operati ...
@ 1 Inefficient gather/scatter instructio ...
lssumed dependency present

Select loops of
interest

Run Memory Access Patterns analysis,
just to check how memory is used in
the loop and the called function

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor Memory Access Pattern (MAP):
know your access pattern

Site Location |L00p-[arried Dependencies ‘Strides Distribution ‘Access Pattern | Site Name
[loop in fPropagationSwap at IbpSUB.cpp:1247] No information available 33%_ Mixed strides loop_site_60
[
blue color: ﬂlwﬂ red color:
fraction of unit stride “fixed" stride fraction of iregular (variable stride) accesses
16% /84% /0% Mixed strides ” I
. . Memor]f Access Patterns REDD[T @ 16%:percentage of memery instructions with unit stride or stride 0 accesses
Unlt—Stl’Ide access = - Unit stride (stride 1) = Instruction accesses mermaory that consistently changes
ID Stride by one element from iteration to iteration

for (i=0; i<N; i++)
A[i] = C[i]*D[1i]

Stride 0 = Instruction accesses the same memory from iteration to teration

[@ 284%: percentage of memary instructions with fixed or constant non-unit

1246 #endif stride accesses
. 1247 Fors (it ool o Constant stride (stride M) = Instruction accesses memory
Constant Strlde access ' by M elements from iteration to iteration
: : : 1248 nextx = fCppl Example: for the double floating point type, stride 4 means the memery
for (i=0; i<N; i++) 1249 nexty = fCppk address accessed by this instruction increased by 32 bytes, (4*sizecf(double])
point[i] .x = x[i] 1250 nextz = fCppl e B
@ 09%: percentage of memory instructions with irre ular (variable or random)
p g Ty g
P11 @ 01 stride accesses
. . .) . . Irregular stride = Instruction accesses memory addresses that change by an

Varlable Stl’lde access =P12 -289559; - 274359, - 14477, - 13717, unpredictable number of elements from iteration to iteration

for (i=0; i<N: i++) 1251 e — Typically chserved for indirect indexed array accesses, for example, a[index[i]]

. 2 gather (irregular) accesses, detected for vip)gather” instructions on AVX2
1252 #ifndef SWAP_CVERLAF Instruction Set Architecture

1253 fSwapPair (lbf[il*lbsitelength + L*lbsy.nq + m + half|, Lbf|ilnext*lbsitelength + L*1bsy.nc

A[B[i]] = C[i]*D[i]

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find vector optimization opportunities
Memory Access pattern analysis

Site Location | Strides Distribution | Access Pattern | Mazx. Site Footprint
[loop in ComputeTimeStepKer ... B0 05 20500 Mixed strides ZKB
[loop in pricePath_Core at ch_3 ... 92% /0% /8% Mixed strides 1KB

<

Memory Access Patterns Report | Dependencies Report | ¢ Recommendations

All Advisor-detectable issues: C++ | Fortran

Recommendation: Refactor code with detected regular stride
access patterns

The Memaory Access Patterns Report shows the following regular stride access(es):

Variable Pattern
Dlock Dx2e23c404b80 allocated at cache aligned allocatorcpp:196 | Invariant

See details in the Memory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compilerto a regular stride access.

Sometimes, it might be beneficial to use the ipo/Qipo compiler option to enable interprocedural
optimization (IPC) between files.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5. Loop-Carried Dependency Analysis

Site Name Sources Modules State
Parallel site information site2 dqtest2.cpp dgtest2 Not a problem
Read after write dependency site2 dqtest2.cpp dqtest2 R New
Read after write d-pendonc\ site2 dqtesr‘* cpp dgtest2 R Hew
El
PS @ Wiite after write depundenr te2 dqtest2.cpp dgtest2 R New
e dqtest2.cpp dqtest2 P Hew
dqtest2.cpp: idle.n dtest2 R New

ENABLING VECTORIZATION

Vector Issues

Self Timew | Total Time

Check dependencies

20.030s! | 20.030s| |Scalar Versions =
13.508s1 13.508s1 Scalar -]

6.895s | 27.750s1 Scalar a2

| * 2 Assumed dependency present
g

rort ﬂ Refinement Reports

Use #pragma simd

[al

h_4 v253.cpp:183]

e E——
_3.1_5_kernel_max.cpp:20] {2 No dependencies found P
Vectorized Loops
Vector Issues Self Timew |Total Time |Type — -
Vector ISA | Efficiency Gain ... VL (V...
10.507s1 22.989s| Scala

® 2 Possible inef... 1.762s

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. ‘ |nte| \ 18
*Other names and brands may be claimed as the property of others.

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

Summary @5 Survey & Roofline ™ Refinement Reports

=]

= [=] Function Call Sites and Loops & |SelfTime | Why Mo Vectorization?

E 5| (0 [locp in maxPriceCore at ch_3_1_5_kernel_m 34.565: B & vector dependence prevents vectorization
40 [loop in maxPriceCore at ch_3_1_5_kernel_m 26,027 @@ & vector dependence prevents vectorization
4|00 [loop in OptionDecision at ch_4_v253.cpp:1 0,360z B vector dependence prevents vectorization
u| (5 [leop in _10<lambdal> at ch_3_1_5_kernel_ 0.01es| B vector dependence prevents vectorization

Select loop for
Correct
Analysis and

Vector Dependence
prevents

Vectorization!
press play!

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Correctness - Is It Safe to Vectorize?

Loop-carried dependencies analysis

% Check for loop-carried dependencies in your application o

nmary < Survey Report [ACETISUMSY IR 4, Annotation Repart '} Suitability Report

SiteMame SiteFunction Sitelnfo Loop-Caried Dependencies Strides Distribution Access Pattem
loop_site 6 rmain main.cppil3 @RAWT AWART Awaw | INSIBAELASEE Mied strides

Detected
dependencies

D Description Source Function Module Stats
EX17 Read [E main.cpp:22 m: test_1 R Hew
20 K 4= a[a]
21 k %= a[8]:
2z k -=al7]:
23 K += al6];
24 k *= a[5]:

EX18 Read main.cppi23main g
Fi pay Source lines with Read and
23 k 4= al6]: .
Write accesses detected

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REAL dependencies
2. Explore dependencies with code snippets

In this example 3 dependencies were detected:

= RAW - Read After Write
= WAR - Write After Read
= WAW - Write After Write

This is NOT a good candidate to force
vectorization!

*Other names and brands may be claimed as the property of others.

Data Dependencies — Tough Problem #1

Is it safe to force the compiler to vectorize?

Elapsed time: 3,645 [RORE iy Not Vectorized | MKL |FILTER:| Al Modules || AllSources =

Summary 5 Survey & Roofline | ™J] Refinement Reports

Site Locationw ‘ Loop-Carried Dependencies | Recommendations
[loop in maxPriceCore at ch_3_1_5_kernel_max.cpp:103] @ Raw:1
[loop in maxPriceCore at ch_3_1_5_kernel_max.cpp:103] @ Mo dependencies found

[loop in d50MaxKernel at ch_5_2.cpp:708] & Potential WAR:T & Potential WAW:1
[loop in d50MaxKernel at ch_4.h:74] 2 MNo dependencies found
[loop in d50MaxKernel at ch_4.h:66] @ Mo dependencies found

B [loop in _10<lambdal> at ch_3_1_5_kernel_max.cpp:243]| # No dependencies found 1 Assumed dependen

Dependencies Report | & Recommendations
All Advisor-detectable issues: C++ | Fartran

Recommendation: Enable vectorization

The Dependencies analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe to vectorize using the
restrict keyword or a directive:

Directive Outcome
#pragma simd or #pragma omp simd | Ignores all dependencies in the loop
#pragma ivdep lgnores only vector dependencies (which is safest)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ROOFLINE

Questions to answer with Roofline: for your loops / functions

Am | doing well? How far am | from the
peak?

(do I utilize hardware well or not?)

Where is the final bottleneck?

Long-term ROI, optimization strategy

e (where will be my limit after all optimizations?)

GFlop/s

Peak FP

lﬁ?&ﬁlu%lzatlon gap.
tfor derutilizati
Banc? i (T ¥1n S |za: I?Zompufe

RnllnA uuund

Uit

Flop/byte

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

[l | Performance (GFLOPS)

k(Ql 1B - | [Use Single-Threaded Roofs ¢

el 5871 GFLOPS

?
DP Vector Add Pezk: 18.27 GFLOPS

?
Scalar Add Peak: 441 GFLOPS

EC ‘*Memtj?yivhouﬁd invest |nto cache

blocklng etc

18 loops total

Intel Confidential

Automated Roofline Chart Generation in Advisor - CARM

Performance (GFLOPS)

Each Roof (slope)
Gives peak CPU/Memory throughput
of your PLATFORM (benchmarked)

4216

k |§| + X B | Use Single-Threaded Roofs © =

OF Vector FMA Peak (single-thteadéd): 42.16.GFLOPS
; Sna e ;
?F’ Vector Add Peak mmgTeF thraaded) 72 89 GFLOPS

- - Scalar Add Peak (single-threaded) 5.37 GFLOPS __
r -
bl)
Each Dot |
represents loop or function in T
YOUR APPLICATION (profiled) 0.72

Arithmetic Intensity (FLOP/Byte)

Legend:
@ - Takes less time
O - Takes considerable time
. - Takes much time

Summarized memory-compute efficiency picture for the application

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

Intel Confidential

*Other names and brands may be claimed as the property of others.

Roofline picture

Roof configuration

Chart configuration

Summary % Survey & Roofline

Performance

100

®i Refinement Reports

I e it i e e i -
106_94@FM@‘—’—'— —————— . EB‘E —————— I
L c _.m=" : =l g=- g-cc DP Vector Add Peak: 56.14 GFLOPS

N

ores used for roof modeling | 4 v - FLOAT; No Callstacks; CARM (L1 + NTS); Loads+Stores ~ §3) =
7

| I Ao SP Vector EMA Pesk- 444 88 GFLOPS,, __

oo N pPvetior FMA Peak: 219.15 GFLOPS,, __

SP Vector Add Peak. 112.3 GFLOPS., |

B2 GFLOPS

3.4 O
e

[loop in matmult_naiveompparallel_for@8 at matmult_naive cpp:11]
Scalar; processes Float64 data type(s)

Performance: 0.53 GFLOPS

CARM (L1 + NTS) Loads+Stores Arithmetic Intensity: 0.083 FLOP/Byte

Self Time: 100.486 s by

Self Elapsed Time: 32 448 s
Total Time: 100.486 s

0.01

Self GB/s: 6.3535
Total GB/s: 0

netic Intensity)

Tooltip with more

data for dots 100

Physical Cores: 4 @ App Threads: 4 @

Switch to grid
represenation

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Chart configuration

Select which

operations are
Aggregate data

counted

over calltree

(@) FLOAT () INT

) INT+FLOAT

[] with Callstacks @

CARM (L1 +NTS) 112 [113 [DRAV g Select memory

levels

Memory Operation Type

() Loads () Siores (@) Loads+Siores

/ Apply | [Sance!

Select only loads
or stores

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Integrated Roofline Memory Traffic Data in Survey Grid

Review memory level and loads/stores distribution to see memory traffic for specific memory level
& surmmary @ Survey & Roofine ™ Refinement Reports |N“lﬂn“snﬂ2m9

Petformance Memory # & R |- [#] Wectorized Loops &
Function Call Sites and Loops [y ¢ Self Tirne: Tatal Time Type
EHE # Issues v s Self L2 Loaded GB | Self Lz Stored ¢ Show L1 Mermary Metrics wec... | Efficiency
47 [loop in stendl_2d at tiling.cpp:41]] 3 Possible ... 1.030s B8 1.030s @@ Inside vecto.. 21.626 0.833 L
51 [loop in stencil_2d at tiing.cop41] 1 @2 Possible in.. 0.20058 0.200s @ Scalar 2,546 0.138 Show L3 Memory Metrics
50 [loop in main at tiing.cppel] [l @1iData type ... 0.060s) 0.060s) Scalat 1.283 0.071 Show DRAM Memary Mefrics
510 [loop in main at tiling.cpp:101] [& 1Datatype...0.0495) 0.0595) Scalar 1.283 0.071
=10 [loop in main at tiing.cpp:e2] [@ 1Data type ... 0.0405) 0.050s1) Scalar 1.283 0.071 Show Memory Loads Operations
4| [logp in main at tiing.cop:120]] @ 1Datatype...0.0305) 0.030s1 Scalar 1283 0.071 Show Memory Stares Operations {]
. N N 5
51 [loop in main at tiling.cppi101] O 0.010s | 0.010s1 Vectorized (B.) O 0 ® Show All Memory Operations (Loads and Stores) | 89%
| [loop in main at tiling.cpp:g2] | 0.010s | 0.010s1 vectorized (B, 0O 0
® (u § _tmainCRTStartup O 0.000s | 1.469s Function < 0.001 a Hide Caolumn
= f stenc_2d d 0,000z | 1,240; @ Irlned Function < 0,001] Show All Calumns
u| f main [m] 0.000s | 1.469s Function 0.040 0.040 Lp = nme o i}
= [loop in stencil_2d at tiing.copi41] | 0.000s | 1.030: @@ Inside vectoriz . 0,154 0.006 & outer loop was n ... tiing.cpp:41
[loop in stencil_2d at tiing,cpp:38] O 0.000s | 1.230; @ Scalar [a] 0 & inner loop was A ... tiing.cpp: 38
[loop in stencil_2d at tiling.cpp:176]] & 1Datatype...0.000s1 1.240; @ Scalar < 0.001 0 8 inner loop was alr ... tiing.cpp: 176
[loop in stencil_2d at tiing.cop41] | 0.000s | 0,200 @ Scalar 0.020 0.001 & outer loop was i, tiling.cpp:41
s f printf O 0.000s | 0,040) Function [a] 0 printf.c:49
=% [Inop in output_| at output,c; 1073] | 0.000s | 0.04051 Scalar 0 0 output.c: 1073
et | [l NoNnne | N ndfe b Fonetinn NSyl n nutent 074 LI
i I | ! ol
Source ‘ Top Down ‘ Code Analytics | Assemnbly ‘ 'y Recommendations | B YWhy No Yectorization?
Loop in siencil_2d at titng.cop 41 Average Trip Counts: @ 128 & Statistics for FLOP~ ®
And Data Transfers Selt Total
1.030s) Far logp Par lteration Per Instance
o)
Inside vecforized Tofal fme GFLOP 9.66250 4.80000e-08 B.14325e-06
®
Data Transfers and Bandwidth @ GALOPS 830121 4EE027e-00 5.06441e-06
AN AVXZ, FMA - 1.0305 4 025532 1.26034e-09 152328607
Instruetion Sei Jefiime " E
Fer Loop Per Instance Per lteration Float &I Mask -
. . . @ 37.84478 0.00002 1.88000e-07 0.255319 LT &8 37.84478 1.88000e-07 0.00002
W Static fnstruction Mix Summan® y
¥ Dumarmic fnstcton hdiv Summans 2245959 0.00001 1.11572e-07 0430217 LTG0k i 36.74306
* Memory 44% (2214322176. 11) B 22.45881 000001 1.17573e-07 0430211 Elapsed Time 1.02988s
P Compute 12% (603906048, 3) 1.13457 7.21340e-07 5.63616e-09 8.51644
¥ Mixed 20% (1006510080, 5) @
Other 24% (1207812096, B) () Self bandwidth by memaorny levels . .
Code Optimizations ®
L7 Ghfs 36.7431 Campiler: Intel(R) C++ Intel(R) B4 Cornpiler for applications running an
GRL Total Time L2 865 218058
5116616095 | 6543462073 L3 Gbls 21 8081
Parfferation | Perlrstance DAAM Gbis 1.10154

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

@ Integrated Roofline. What is my current limit?

Integrated Roofline for one kernel

e ith traffic for all level
Performance is limited by L ratrie for a memory Ievers
Peak Flop/s

minimum of intercepts
(L2, LLC, DRAM, CPU)

In this case: by DRAM

Attainable Flop/s

Arithmetic Intensity (Flop/Byte)

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved Intel Confidential

*Other names and brands may be claimed as the property of others.

NEW?*: Selecting Integer, Float or Mixed operations

Surnrmary | &% Survey & Roofine ™ Refinernent Reports
k(G - = Eures:1av

100

T FLOAT: Mo Callstacks: CARRA (L1 + NTS: L2; L3: DRAR: Loads+Stares * |*l= 2 Compared Rezults =

AHOS

O perations

& FLOAT & INT & INT+FLOAT

5407449

Callztacks

I ‘with Callstacks &

| 1 emory Level

b emaory Operation Type
" Loads { Stores {+ Loads+Stores
Default I Apply I Cancel

0.01

T
n.om 01 1 10
FPhyzical Cores: 4 @ App Threads: 1 @ Self Elapzed Time: 7. 524 ¢ Total Time: ¥.524 =

Optimization Notice
Intel Confidential

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Integer Operations in Survey Grid and Loop Analytics

Use settings button on the “Compute Performance” column

Surnrmary 8 Survey & Roofline | ™ Refinernent Reports

8 ¢ Performance

TesLios Total Time

Self Tirne

[=] Function Call Sites and Loops

[| | 0.000s | 0.000s |
40 [lnop in Z_SOLWE at z_solve.f:332] [0.040s | 3.699:0
410 [loop in X_SOLWE at x_solve.f:331] O 0.050s | 3.369:0
40 [loop in ¥ _SOLVE at y_saolve,f:326] O 0.070s | 3.690=0
40 [loop in COMPUTE_RHS at rhs.f:273] [0.010s1 0.821s)
40 [loop in X_SOLWE at x_solve.f:384] (| 0.250s) 0.250s 1
=0 [lnop in Z_SOLVE at z_solve.f:396] | 0.2805) 0.280s1
= [laop in COMPUTE_RHS a rhs.f:134] IQ 009051 00905
4 b4

Compute Performance

Type Self GINTOPS
Scalar 14,3820
Scalar 11.4990
Scalar B8.2210
Scalar 2.7971
Scalar 1.1691
Scalar 1.0441
Wectarized (Body) 1.0001

Source | Top Down | Code Analytics | Aszernbly | ‘¢ Recommendations | & Why Mo Vectorization?

H Loop in EXACT AHS af exact s £¥39

<0.001s

dnside vectorized Tofal fime

< 00015

Sefffime

AN AN

Instrucfion Sef

W Stafic fnsfruction Mic Summdg'r'?' -

¥ Dvnamic instruckon Mic Summans

* Memory 41% (4182272, 17) D

* Compute 17% (1722112, 7) @

* Mixed~ 15% (1476096, 6) @
Other 27% (2706176, 11) 0D

CFL Tofal Time

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Ayerage Trip G 54

Statistics for INTOP .

And Data Transfe FLOP

avror” INTOP
GINTOPS = |NT+FLOAT
INT AL

Mask Usitzation 2l Operations
L1685
LT &b

€

Self GINTOR

=)

Show Mixed Compute Operations
0,573 .0 2.5
0.575 0.070s 3.690s
0.0z28 0.010s 0.821s
0.292 0.250s 0.250s
0.292 0.280s 0.2280s
0.000 0.090s 0.090s

Use type selector in
expanded Loop
Analytics section

®

Self Total
Per loop Per leration Per Instance
00072 7.00000e-09 4.48000e-07
03.70670 0.00042 0.02698
0.035877 1.61667e-07 0.00001
0.04330 1.76000e-07 0.00001
2607.48278
0.00002s

Elapzed Tr’mel'?'

|»

Compare results

Loaded results for

two versions

k Q E - |Number of cores used for roof modeling| 2 v “ FLOAT; No Callstacks; CARM (L1 + NTS); M&s - @ =
g -
DP W
: Current version - — =2 [Compared Resuits = |
- ?

(highlighted) op vig % &

o _'__.-"'"u ompared res
-7 | ¥ Current
Sc

—

atmuli-transposed

Result: matmult-transposed

[loop In mainompsparallel_for@9 at matmult.cpp:12]
Vectorized (Body) AVX2, processes Float64 data type(s)
Performance: 4.04 GFLOPS

Self Elapsed Time: 0.531s
Total Time: 1.063 s

0.1 -

Self GB/s: 48.5079

CAREM (L1 + NTS) Loads+Stores Anthmetic Intensity: 0.083 FLOP/Byte |

yie (Arithmetic Intensity

LZ')] Total GB/s: 0
Physical Cores: 2 ® App Threads: 2 ¥ Self Elapseommer o Zar s ToEMMMe UH7TS

Easy to check optimization progress

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Share with others

Standalone interactive HTML
(limited functionality)

Elapsed time: 12.81s

FILTER:| Al Modules ~|| All Sources ~ | [

Summa % Survey & Roofline | ™ Refinemer|
y Y

Snapshot (full- - S
p / [Roofline data from Intel - X \
fe atu red O pe n S i n C O ® file///C/TEMP/matmult/mm.html M O :
! [Expon_as HTML i apps [Suggested Sites Disk performance [Windows 8.1 Help ¢ Other bookmarks
AdVl SO r) AfD = z kQ | Number of cores used for roof modeling[2 v | © =
@ ?
u DP Vector FMA Peak: 42.95 GFLOPS
o]
g f DP Vector Add Peak: 19.11 GFLOPS?
10 o .
Scalar Add Peak: 4.76 GFLOPS
")
6“‘\6\“ <% [loop in matmult_transposedompparallel_for@8 at matmult_transposed.cpp:11]
\,'L%B 5@5\ Vectorized (Body) AVX2; processes Floaté4 data type(s)
11 o Performance: 4.99 GFLOPS
o oS a9 DRAM Loads+Stores Arithmetic Intensity: 0.31 FLOP/Byte
> s~ | Self Elapsed Time: 0.430 s
> Total Time: 0.844 s
P‘“'\Q) Self GB/s: 16.2642
o o Total GB/s: 0
. FLOP/Byte (Arithmetic Intensity)
0.01 0.1 1 10
Physical Cores: 2 @ App Threads: 2 €

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Use the rest of the Advisor

See additional info

Run Roofline

} Collect | im|]

+| =] Function Call Sites and Loops |E|0 Advanced

|:| Enable Roofline with Callstacks
=10 [loop in matmult_naiveompparal r

[loop in matmult_transposed$omp! |7 Unrolled by 4
[« Unrolled by 8

1.SurveyTargetJ +
+ [loop in matmult_blocked$Somp$}
@ Collect | | Bm

loop in matmult_blockedomppa

e =10 [loop in matmult_blockedomppa |—
LAl REE AT e =10 [loop in matmult_naiveomppar, |—
Select checkboxes in the Survey & =10 [loop in matmult_naiveSompSpg#fal |
Roo_ﬁne tab to mark loops for other B T im eatenls franermoard € —
Advisor analyses. < > <

R Summary % Survey & Roofline ™ Refinement Reports

r FMA Peak: 42.95 GFLOPS

= 2
tof Add Peak: 19.11 GFL"'IIB

)

Scalar Add Peak: 4.76 GFLOPS

4

0.1+

FLOP/Byte {Arthmetic Intensity)|
T

T T T
0.01 01 1 10
Physical Cores: 2 ® App Threads: 2 © €

() loops are marked
Code §

e E Source ‘ Top Down
1.1 Find Trip Counts and FLOP

< Collect | by | m Address | Line

0x1400016dd 20
0x1400016e4 20

21 chedkeM e 0x14000162e 20
-1 Check Memory Access Patterns O0X140001674

0x1400016fb
Sl d0001702

Select loops for

Trip Counts
FLOP

a

2.2 Check Dependencies

¥; Collect | |]

deeper analysis

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

alytics ‘ Assembly ‘ ‘¥ Recommendations

& Why No Vectorization? ‘

Total Time | % | Self Time | % Traits

0.049s | 0.049s |
0.020s | 0.020s |
0.020s | 0.020s | FMA
0.030s | 0.030s 1 FMA
0.019s | 0.019s| FMA

0.017s| 0.017s| FMA

Examine source or
assembly

~

A few words about callstacks

e
|Number of cores used for roof modeling | |1 | ¥ Roofline with Callstacks ¢

4
a

1uu o

Callstack:
O _start
O _libe_start_main a.

Same function, .
Rl O main at matmult.c..
Sa m e lo O p s I s — . O outer_second at ...

5407492

O inner at matmult.c.
i QO [loop in inner at m.
= O [loop in inner at m,
" O [loop in inner at m.

But dlfferent | - @ [loop in inner at m,
FLOPS and Al -

O n d iffe re nt Physical Cores: 4 ® App Threads:oil'E‘ Self Elapsed Timg COlleCtI ng Ca“‘StaCkS We Can
Cal l p at h S ! op Down | Code Analytics | Assembly | ¥ Recommendat

Function Call Sites and Loops Total Timg o See agg regated dots
HTotal 100.0% . .
=_start * Callees and inner loops included
[=__libc_start_main 100.0% . . .
Eiman woedl ¢ See different dots for different callchains
[Slouter_first 50.3%
50.3% =1} TUUTST FOTTCITOTT
[Houter second 49.6% I 5.510s 0.000s!(Function
49.6% BB 5510s 0.000s[Function
= O [loop in inner at matmult.cpp:10] 49.6% HE 5.510s 0.000s! Scalar vector deg
= [loop in inner at matmult.cpp:11] 49.6% N 5.510s 0.010sl Scalar vector dep
=IO [loop in inner at matmult.cpp:12] 49,5% N 5.500s 0.000s! Scalar Versions 1 vector d
O [loop in inner at matmult.cpp:12]| 49.5% HER 5.500s 5.500sH Scalar vector de

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Exporting Integer and Integrated Roofline as HTML

GUI: Use Export as HTML button Command line:

Surnmary | & Survey & Roofine lﬂRi <« C 0 @ file//C/Users/eantakov/Desktop/rf01.html @ ¢ @ :

x[Q B[4 [coes i i Apps @& Circuit) Buildbot @& Let's Meet » Other bookmarks adVixe-Cl _report roofline
Copy To Clipboard -
an Sa:: Ta FiI: Performance Metrics Summary ~ -data-type_float
-memory-level=L2

DR | o =
ot e mewnmes e’ | =E@MoOry-operation-type=load
- LA . ity e Siiiitssae -project-dir [path/to/project/dir
WQ G, DP Vecior Add Peak. 32.04 GFLOPS
}}‘ﬁﬁ o an,'élﬁ"' 10 O Scalar Add Peak 801 GFLOPS® P bl
e s T £ ossiple
iz ‘-‘?“-qﬂ’ﬁ% el o E . .
1 E et I 6 data types: float, int, mixed
s [, memory levels: L1, L2, L3, DRAM
011 s memory operation types: load, store, all
01
T J FLOP/Byte (Arithmetic Intensity)
thsicalnéuo1res:4 @ App Thre 0‘01 0‘1 1‘ 1‘0 160 mbn 10600

Physical Cores: 4 ® App Threads 1 ©

* Export Roofline from command line does not need GUI sub-system on clusters
» Useful for rooflines quick exchange

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

In a few words

Using Intel® Advisor, you can

Collect the data for the Hierarchical and Integrated Roofline

Analyze the roofline picture

Focus on data you are interested in

Compare roofline for different runs

Share roofline results

= and more

Optimization Notice

Copyright ©® 2017, Intel Co

COLLECTORS

Collections vs Analysis

Vectorization (basic) Survey + Trip Counts

Vectorization (advanced) As above + MAP + Dependencies

Roofline (CARM) Survey + Trip Counts with FLOP

Roofline (Integrated) Survey + Trip Counts with FLOP and
Cache Simulator

Threading Survey + Suitability + Dependencies

Custom Analysis (Python API) Depends

Mix and match as More data come
you wish with a cost

Optimization Notice

Copyright ® 2017, Intel Corporation. All rights reserved. Intel Confidential
*Other names and bra dmayblmd hppyfh

HANDS-ON EXERCISE

Activities

» Activity O: Building Stencil

> Activity 1: Doing Survey

»Activity 2: Dealing with data type conversions
»Activity 3: Checking for dependencies

> Activity 4: Adding threading and trying to enable vectorization
»Activity 5: Checking Memory Access Patterns
»Activity 6: Making unit stride explicit
»Activity 7: Doing Roofline analysis

> Activity 8: Splitting task to tiles

»Activity 9: Enabling AVX512

»Activity 10: Comparing roofline charts

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

STENCIL

ntel) software

STENCIL CODE EXAMPLE

Consider solving differential equation with finite-difference method on 3-dimensional grid

Example: calculating Laplace operator of some field

float * in = (float *) for(k=1;k<DIM-1;k++){
malloc (DIM*DIM*DIM * sizeof(float)); for(j=1;3j<DIM-1;j++){
float * out = (float *) for(i=1;i<DIM-1;i++){
malloc (DIM*DIM*DIM * sizeof(float)); int ijk = i*iStride + j*jStride + k*kStride;
out[ijk] = -6.0 * in[ijk]
uinté4_t iStride = 1; + in[ijk-iStride]
uint64_t jStride = DIM; + in[ijk+iStride]
uint64_t kStride = DIM * DIM; + in[ijk-jStride]
+ in[ijk+jStride]
+ in[ijk-kStride]
+ in[ijk+kStride];

We encourage you to try the following steps on your own
code, using the slides as a guide

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity O:
Buildin
STENC

(intel') Software

Build & Run

Setup environment:

$ source /soft/compilers/intel-2019/compilers_and_libraries/linux/bin/compilervars.sh intel64

Copy and unpack stencil sources:
$ cp /projects/ATPESC19_Instructors/advisor/advisor_lab.tar.gz ~ && cd && tar xzf advisor_lab.tar.gz
Go to working directory
$ cd ~/advisor lab/src && git checkout vereo
Build application
$ make
Run application
$./stencil

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity 0. Screenshot

[dayl@clx-2 src]$ source /opt/intel/compilers and libraries/linux/bin/compilervars.sh intel64
[dayl@clx-2 src]$ cd ~/advisor lab/src && git checkout ver®
HEAD is now at 92efbof... Initial commit
[dayl@clx-2 src]$ make
icc -0fast -qopenmp -no-ipo -fno-inline-functions -g main.c bench stencil.c -o stencil
[dayl@clx-2 src]$./stencil

Naive: Dim= 512, nIterations= 10, Time= 4.102s, Useful GB/s= 5.297
[dayl@clx-2 srcls$ [}

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity 1: Doing
Survey

(intel') Software

Launch Advisor

Purpose: Run Survey analysis in Advisor to get the baseline version

Setup environment:
$ source /soft/compilers/intel-2019/advisor 2019/advixe_vars.sh

$ export ADVIXE EXPERIMENTAL=int roofline,roofline_guidance
Launch Advisor GUI:

$ advixe-gui &

[dayl@clx-2 src]$ source /opt/intel/advisor 2019/advixe-vars.sh

Copyright (C) 2009-2019 Intel Corporation. All rights reserved.

Intel(R) Advisor 2019 (build 591490)

[dayl@clx-2 src]$ export ADVIXE EXPERIMENTAL=int roofline,roofline guidance

[dayl@clx-2 src]$ advixe-gqui &
[1] 5336

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Create Advisor Project

@ Getting Started

‘\‘ I\ﬁ, Pl Far, 2y | w ~ 'a H ™M T M “ N\ s v 71~ a2l = ~) ,’"\;. " (\I
f\ —2 [- {) | & £ \V/ 1~ J h -
vVeCeICLUITIE LU HTILE! AUVIODUI 24U LY

I T bkascen=od Do b o ou 7 - =
| I hread Prototyping

'

Vectorization OpfFimiz
vectorization optimizZat L

R 1. Click to — e e .
e create a new Create a Project x t
Open Project... pFOjeCt
= Open Result Project name: | stencil
2. Type Location: /home/dayl/advisor_lab/profile Browse...
name of the
project 3. Click to ,
AF Create Project Cancel
finish
creation

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Set UP Project

Set the application to launch:
~[advisor_lab/src/stencil

Press OK button

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

stencil - Project Properties

Analysis Target | Binary/Symbol Search
w [Survey Analysis Types
[0] Survey Hotspots Analysis
& Trip Counts and FLOP Anal

Source Search

Launch Application

-

Specify and configure the application executable (target) to analyze. Press F1 for more details.

A Suitability Analysis

w [Refinement Analysis Types
I Memory Access Patterns A
¥’; Dependencies Analysis

Application:

Jhome/dayl/advisor_lab/src/stencil

Application parameters:

\2 Use application directory as working directory

Waorking directory:

User-defined environment variables:

Modules:

(| Include only the following module(s)

(@) Exclude the following module(s)

Browse...

Modify...

Modify...

Modify...

OK

Cancel

Start Survey Analysis

Press “Collect” button in “1. Survey File View Help

Tal’get" Sectlon s ' B @) Start Survey
:7Welcome ‘ €000 ¥ ’

Activity 1. Screenshot

File

View Help

[/ With Callstacks
| For AllMemory Levels

1. Survey Target
U) Coliect by, B]

Mark Loops for Deeper Analysis

Select checkboxes in the Survey & Roofline tab to
‘mark loops for other Advisor analyses.

~- There are no marked loops —

1.1 Find Trip Counts and FLOP

<} Coliect Iy, M@]
|/ Trip Counts

| ¥ FLOP

O - Analyze all loops —

o

2.1 Check Memory Access Patterns

By Collect mm |]

0 - No loops selected -

®
2.2 Check Dependencies

F Collect 0 []

G Re-finalize Survey

B Summary

El FILTER:| AllModues || AlSources || Loops AndFunctions || AllThreads ~

% Survey & Roofline | ™ Refinement Reports

£ Higher instruction set architecture (ISA) available
Consider recompiling your application using a higher ISA.

<]
INTEL ADVISOR 2019
o X

[Z] Function Call Sites and Loops os | ‘P”f””"a”“ ST Type Why No Vectorization? R e Lmtoeton fetbelyie -
= ssues Total Time | Self Time w Vecto..|Efficiency | GainE..| VL (V... | Traits Data
410 [loop in bench_stencil at bench_stencilc:25] [@ 3Assumed dep... 5.610s [N 5.610s BENN Scalar 6 vector dependence pre... Type Conversions Float!
[# 5 [loop in main at main.c:20] [J & 1Misalignedlo... 0.420s1 0.420s1 Vectorized (Body) SSE a6k 4 NT-stores Float®
515 [loop in bench_stencil at bench_stencile: 24] (] © L Assumed dep... 5.520s [0.010s(Scalar & vector dependence pre...
5] § _start (6.040s I 0.000s (Function
51 § main 6.040s I 0.000s [Function NT-stores Float3
5 § bench_stencil @] 5.6205 [0.000s! Function
510 [loop in bench_stencil at bench_stencilc: 23] () © 1 Assumed dep... 5.620s [l 0.000s(Scalar & vector dependence pre.
51 [loop in bench_stencil at bench_stencil.c:22] ([© 1 Assumed dep... 5.620s [JE 0.000s(Scalar G vector dependence pre. Float6
——
Source | Top Down ‘ Code Analytics | Assembly @ Why No @ |
Line Source TotalTime | % | LoopfFunctionTime | % | Traits
i QATa_Y " TieW = Y3
7 data_t * temp;
18
13 int istep;
20
pil StartTime = omp_get wtime();
2 for (istep = 0; istep < NSTEP; istepr+) {
pE] for (k= 1; k < din + 1; ke+) {
24 for (j = 1; j < dim+ 1; j+) {
2 iedim+ 1; it { 04705 | 5.610s mm—
2% int ijk = i * iStride + j * jStride + k * kstride;
27 new(ijk] = -6.0 * old[ijK] 2351s W
2 + oldlijk - iStride] 0.130s
2 + oldlijk + iStride] 04315 |
3n + nldliik . iStridel NR19 B
Selected (Total Time): 04705

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Create a snapshot

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Create a Result Snapshot

Result name:

a1

tall (¥ Cache sources

[_| Pack into archive

Result path:

[_| Cache binaries

Activity 2:
Dealing with
data type
conversions =~

(intel) software

LOOK AT THE RECOMMENDATIONS

E] Elapsed time: 6,065 . FILTER:| AllModules || AllSources][Loops And Functions || AllTheads |]I]

Summary &, Survey & Roofline ™ Refinement Reports - mmmms

/& Higher instruction set architecture (ISA) available ® X
Consider recompiling your application using a higher ISA.

«

§ [+] [=] Function Call Sites and Loops \:i & @ f‘sesrlf):;mance e Tif“e = Type Why No Vectorization? Veetonz e L}oops mtriction Sethulysls =
sl Total Time Self Time w Vecto ... | Efficiency GainE..| VL (V... | Traits Data
Z =6 [loop in bench_stencil at bench_stencil.c:25] O 5.610s - 5.610s I Scalar & vector dependence pre... Type Conversions Float:
O [loop in main at main.c:20] () "rTMeangnea o 0.420s1 0.420s1 Vectorized (Body) SSE 467x 4 NT-stores Float?
5/ O [loop in bench_stencil at bench_stencil.c:24] u @ 1 Assumed dep ... 5.620s - 0.010s(Scalar @ vector dependence pre...
i[5 f start 6] 6.040s I 0.000s(Function
(51 £ main 6.040< [N 0.000s(Function NT-stores Float3
3/ § bench_stencil] 5.620s [0.000s(Function
5/ (D [loop in bench_stencil at bench_stencil.c:23] D © 1 Assumed dep ... 5.620s - 0.000s [Scalar & vector dependence pre... A
5/ (D [loop in bench_stencil at bench_stencil.c:22] D @ 1Assumed dep ... 5.620s - 0.000s [Scalar @ vector dependence pre... ¥ Float6
———
Source | Top Down | Code Analytics J‘Assembly | ' Recommendations Why No Vectorization?

s =) rarged e mgnc 1o
Although static analysis presumes the loop may benefit from EMA instructions available with the AVX2 or higher ISA, no FMA instructions executed for Assumed dependency present
this loop. To fix: Use the following compiler options: Confirm

XCORE-AVX2 to compile for machines with and without AVX2 support) L

% K ; Potential underutilization of
axCORE-AVX2 to compile for machines with AVX2 support only FMA instructions

XCOMMON-AVX512 to compile for machines with AVX-512 support only Target the higher ISA

axCOMMON-AVX512 to compile for machines with and without AVX-512 support ’

Note: the compiler options may vary depending on the CPU microarchitecture. Dataitype conversions present

Use the smalles

depe eal

Data type conversions present
There are multiple data types within loops. Utilize hardware vectorization support more effectively by avoiding data type conversion.
Use the smallest data type

The source loop contains data types of different widths. To fix: Use the smallest data type that gives the needed precision to use the entire vector
register width.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Activity 2

Purpose: Dealing with data type conversions

Build a version with fixed conversions
$ git checkout verl
$ make

Re-run Survey analysis
Create a snapshot

Compare with previous activity

Optimization Notice

Copyright © 2017, Intel Corporation
*Other names and brands

Activity 2. Screenshots

Flapsed time: 6.605 [NoIR o T et etonea ILTER| AllModules || AllSources

Summary @, Survey & Roofline W Refinement Reports:

H Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vec
vectorization and characterize your memory vs. vectorization bottlenecks with Advisor Roofline model automatic

&) Program metrics
Elapsed Time

Vector Instruction Set & SSE

&) Performance characteristics

Metrics Total

Total CPU time 6.54s |

Time in 1 vectorized loop k 0.44s

Time in scalar code 6.10s]
&) Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency @ 467X 100%

Program Approximate Gain® 1.25%

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

[| Elapsedtime: 2115 [ERETOIEY T — ILTER| AllModules || AllSources |

Summary | %% Survey & Roofline ™) Refinement Reports

H Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vect
vectorization and characterize your memory vs. vectorization bottlenecks with Advisor Roofline model automatio

&) Program metrics

Elapsed Time

Vector Instruction Set & SSE

(& Performance characteristics

Metrics Total

Total CPU time 4.09s |
Time in 1 vectorized loop r 0.43s

Time in scalar code 3.665 |

& Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency® 4.67x | 100% _

Program Approximate Gain® 1.39x

Activity 3: Doing
roofline analysis

(intel) software

Activity 3. Collect data to GET ROOFLINE CHART

Purpose: Characterize the application - -
using roofline model
orr i Baick e
Select "With Callstacks” and e
1] n
For all memory levels =0
Press “Collect” button in “Run For Integrated 9 S
Roofline” section Roofline (NEW!) =
~ 4 minutes i
U) Collect Py, Mm []
Create a snapshot et O
Select checkboxes in the Survey & Roofline tab to
mark loops for other Advisor analyses..

-~ There are no marked loops —

L2
1.1 Find Trip Counts and FLOP

< Collect by, m []

Optimization Notice

Copyright ©® 2017, Intel Co

Activity 3. Screenshot

E] Elapsed time: 4375 FILTER:| AllModules || AlSources || LoopsAnd Functions || AlThveads ~ < E

| Summary %, Survey & Roofline ™) Refinement Reports) mmmg

v 4 Higher instruction set architecture (ISA) available o X
Consider recompiling your application using a higher ISA.

BB P ol s i oo (g | @Performance | CPUTime R [Q ey v | cores: 1 @ + |V Default: FLOAT CARM (L1+NTS) |[52 compare + |[* Guidance ~ |

= - Issues Total Time Self Time w °

4/(5 [loop in bench_stencil at bench_stencil.c:25] [[] @ 2Assumeddep... 3.920s [3.920s B S 100 2 : 2

O [loop in main at main.c:20] (] @ 1Misalignedlo... 0.420s1l 0.420s1 u % .3 GFLOPS,
= : : - |] T

5/ [loop in bench_stencil at bench_stencil.c:24] [[] @ 1Assumeddep.. 3.930s [HlBM 0.010s(S ?

3 f _start [O 4.350s I 0.000s (F

5| f main O 4.350s I 0.000s (A

5 § bench_stencil O 3.930s [J 0.000s! F 104

5/ [loop in bench_stencil at bench_stencil.c:23] [@ 1 Assumed dep ... 3.930s - 0.000s [S

5/ [loop in bench_stencil at bench_stencil.c:22] (] ©1Assumeddep... 3.930s [0.000s(St

| 4 i

Bo'zmd by comprxte) o I .

and memory roofs’ ompute bound”

FLOP/Byte (Arithmetic Intensity)
T

T T
0.1 1 10
Physical Cores: 2 e App Threads: 1 @ Self Elapsed Time: 3.920 s Total Time: 3.920 s

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Activity 3. Screenshot

2 | Y tls v [cores: 1 @ + |[¥ Default: FLOAT CARM (L1+NTS) + |[I: compare ~ | /* Guidance
=
= 6 Q ¥ Display roof rulers @
é « Show memory level relationships e
@ “ Show Roofline boundaries @
-32.68 GFLOPS (13.6x) - .~
-----4.7 GFLOPS (2x)-%
[Defautt || Apply || cancel |
3 I
110GBls 6.9 GBfj=arnmss oo - -
loop in bench_stencil at bench_stencil.c:25]
Scalar; processes Float32 data type(s)
Performance: 2.4 GFLOPS
= ! s | L2 Loads+Stores Arithmetic Intensity: 0.35 FLOP/Byte
Ol self Time: 3.920 s
Source | Top Downfl: Code Analytics il Assembly ‘Q & WhyNo. fization? Y 1 Self Elapsed Time: 3.920 s
3.920s e s ——|Total Time: 3.920 s
Scalar TUf.ﬁ/ time SeliGpis 68613
Roofline) ® Code Optimizations 3.92| Total GB/s: 6.8613
3.920s mav,&““ Scalar Add Peak Compiler: Intel(R) C Intel(R) 64 Compiler for applications
Seif time hei running on Intel(R) 64,
. 5 8 Vs Version: 19.0.3.199 Build 20190206
» Static Instruction Mix Summary™ N 'L“b“‘&. 2.65 GFLOPS (11 1x)" ‘ Vectorization/Optimization report by Compiler: no messages
¥ Dynamic Instruction Mix Summary® bk - —f
» Memory 15% (2684354560, 2) . l2aGFLOPS |
> Compute 15% (2684354560, 2) @ ' "~ |02 FLoPmByte
> Mixed" 46% (8053063680, 5.99) (NN o !

Other 24% (4026531840, 2.99) @D

CPU Total Time
2.91480e-09s | 1.49529e-06s

Per Iteration | Per Instance

Optimization Notice

FLOP/BYte (ssithmeti intensiy)

0.1

This loop is mostly memory bound but may also be
compute bound

The performance of the loop is beund by the DRAM
bandwidth.

You can switch to the Recommendations tab to see
optimization recemmendations in the Roofline Conclusions
section.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

14

Compute bound®
FLOP/Byte (Arithmetic Intensity)
T

10

Activity 4:
Checking for
dependencies _

(intel) software

Activity 4. Collect data to GET Dependencies

- . Vectorieati ime: 4. © Vectorized [—
Purpose: Find loop-carried i ey

w4y Higher instruction set architecture (ISA) available

- 5
d e p e n d e n C I e S OFF [l Batch mode Consider recomplling your application using a higher ISA.

Run Roofline [+] [=] Function Call Sites and Loops =& .“
Select “loop in bench_stencil at D= O e s, [R
| w| With Callstacks
. . ” > (9 [loop inbench_stencil at bench_stencil.c:24] (=]
bench stencil.c:23 9 Fr iy e =
— . o f
X e Faret 5 § ::r:h,smnml

Press “Collect” button in “2.2 Check oo m D [)
Dependencies” section e

Select checkboxes in the Survey & Roofline tah to
. ;
mark loops for other Advisor analyses,
1 I I I“ lute & 1 loap is marked

@
1.1 Find Trip Counts and FLOP

Create a snapshot i 6]

_ —— ——
[+ Trip Counts

o Source | Top Down | Code Analytics | Assembl: ‘¢ Recommendatic
(v Fiop op Iyt by |

2.1 Check Memary Access. P.lttu'nnu Loop in bench_stencil at bench_stencil.c:23

By Coltect | i [] (5 3.930s

o Scalar Total time
2.2 Check Dependencies
Os

m] Self time

B Static Instruction Mix Summa:y‘é’ .

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

Activity 4. Screenshot

(@8] s
E S\mnary kl’b Survey & Roofline I fl Refinement Reports I

FILTER:| All Modules v” All Sources w

Footprint Estimate

Site Location Loop-Carried Dependencies Strides Distribution Access Pattern Site Name
Max. Per-Instruction Addr. Range First Instance Site Footprint Simulated Memory Footprint

» & [loop in bench_stencil at bench_stencil.c: .I@No Dependencies Found Islo Information Available No Information Available No Information Available No Information Available No Information Available loop_site_31

Source

Top Down ‘ Code Analytics

Assembly ‘ 'y Recommendations | @ Why No Vectorization?

All Advisor-detectable issues: C++ | Fortran

@) Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or a true dependency (Read after write - RAW) in the loop. Improve performance
by investigating the assumption and handling accordingly.

Enable vectorization

The Dependencies analysis shows there is no real dependency in the loop for the given wurl%load. Tell the compiler it is safe to vectorize using the
restrict keyword or a directive:

Example @

#pragma ivdep

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of oth

Activity 5:
Addlncg

threa INg and
enabhng _=
ve CtO rZatop

(intel) software

Activity 5

Purpose: Add threading and enable vectorization

Build a version with threading and vectorization
$ git checkout ver3
$ make

Re-run Roofline analysis
Create a snapshot

Compare with previous activity

Optimization Notice

Copyright © 2017, Intel Corporation
*Other names and brands r

Activity 5. Screenshots

Elapsed time: 2.74s G : [T —" F|LTEm| All Modules -.H AllSources w

B Summary @ & Roofline ™} Refinement Reports
Y Y f

H Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parallelism, discover performan
wvectorization and characterize your memory vs. vectorization bottlenecks with Advisor Roofline mode!l automation.

&) Program metrics
Elapsed Time

I Number of CPU Threads 4 I
Vector Instruction Set ® SSE

X ly v l Cores: 2 @ + “Y Default: FLOAT CARM (L1+NTS) v HAP Compare v “ # Guidance ¥

AJndns

ssie SP Vector Add-Péak: 116.42 GFLOPS..
DP_VerTo A Pez OPS

/s 22.1GBis

18.3 GBIs

FLOP/Byte (Arithmetic Intensity)

10.53
Physical Cores: 2 @ App Threads: 4 @ Self Elapsed Time: 1.240 s Total Time: 4.890 s

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of ot

Activity 6:
Checking
memory access -
patterns

(intel) software

Types OF MEMORY Access patterns

Unit-Stride access

for (i=0; i<N; i++)

A[i] = C[i]*D[i] OO IIIIIIITITI1]
Constant stride access
for (i=0; i<N; i++) NEEENEEESEEEN
point[i].x = x[i]
Pl o=y
i) (NHTHEEEETEET N
Variable stride access ~__ o

for (i=0; i<N; i++)
A[B[i]] = C[i]*D[i]

Optimization Notice

Copyright © 2017, Intel C.
*Other names and brands

Activity 6. Collect data to GET Memory Access

Patterns
. Vectorinat Elapsed time: 2405 [ROIR Ry
Purpose: Calculate strides ey T [

w /& Higher instruction set architecture (ISA) available

| For All Memory Levels

0 . orr il BIHI'"‘“'“EI - Consider recompiling your application using a higher ISA.
Select “loop in
) mmmmj [=] Function Call Sites and Loops (=&
be n Ch_StenC| |-$O m p$ parallel_fo r@z 3 at b Collect im [] (51 [laop in bench_stencilsompsparallel_far@23 at bene [
. . n = [#H [loop in main at main.c:20] O
b e n C h Ste n C I l.- C- 2 4 Rabciiites o [4] D [loop in bench_stencilompparallel_for@23 at benchy G

Press “Collect” button in “2.1 Check iy

[5 Collect |y, [5 : [
Memory ACCGSS PatternS” SeCtIOn ‘ = . £ (5 [loop in be omp$ parallel_for@23 at beri
Mark Loops for Deeper Analysis

~ 1 m I n ute Select checkboxes in the Survey & Roofline tab to

mark loops for other Advisor analyses.
(] 1 loop is marked

Create a SnapShOt 1.1 Find Trip Caunts and FLOF

<} Collect by B]

|/ Trip Counts
[FLOP
©
2.1 Check Memory Access Patterns Source | Top Down | CodeAnalytics | Assembly | ‘g Recommendat
CPU Time
fl, Collect] im D Function Call Sites and Loops
5 Total Time %

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity 6. Screenshot

Summary U, Survey & Roofline ™ Refinement Reports

| Footprint Estimate
Site Location Loop-Carried Dependencies Strides Distribution Access Pattern I T |
Max. Per-Instruction Addr. Range First Instance Site Footprint Simulated Memory F

» O [loopin bench_sténcil at bench_sténcil.c: 4 @No..Dependencies Found Mo Information Available | Mo Information Available . No Information Available .No Information Available .No Information Availi

[loop in bench_stencil at bench_stencil.c: .| No Information Available /40 Aixed Strides 183MB _

Memary Access Patterns Report | Dependencies Report | 's' Recommendations

¥} Stride Type Source Nested Function Variable references Mazx. Per-Instruction Addr. Range
» Pl 264196 Constant strde ench_stencil.c:28 block 0x7f5f5e019010 allocated at main.c:16, block 0x7f5f7ech7010 allocated at main.c:15 S1MB
P P2 264196 Constant stride ench_stencil.ck},S block 0x7f5f5e019010 allocated at main.c:16, block Ox7f5f7ecb 7010 allocated at main.c:15 91MB
pF3 264196 Constant stride ench_stencil.c:29 block 0x7f5f5e019010 allocated at main.c:16, block 0x7f5f7ecb7010 allocated at main.c:15 91MB
b P4 264196 | Constant stride ench_stencil.c:30 block 0x7f5f5e019010 allocated at main.c:16, block Ox7f5f7ech 7010 allocated at main.c:15 91MB
» PS5 [E 264196 Constant stride ench_stencil.c:31 block 0x7f5f5e019010 allocated at main.c:16, block Ox7f5f7ecb 7010 allocated at main.c:15 91MB
»FE 264196 Constant stride ench_stencil.c:32 block 0x7f5f5e019010 allocated at main.c:16, block Ox7f5f7ecb 7010 allocated at main.c:15 91MB
7 264196 Constant stride ench_stencil.c:33 block 0x7f5f5e019010 allocated at main.c:16, block 0x7f5f7ecb7010 allocated at main.c:15 91MB
p PE 264196 | Constant stride ench_stencil.c:34 block 0x7f5f5e019010 allocated at main.c:16, block Ox7f5f7ech 7010 allocated at main.c:15 91MB
| 2t] TETnEL S e anen bench_stencil.c:24

PP11| B O Unifarm stride bench_stencil.c:24 4B
PP1Z B 0 Uniform stride bench_stencil.c:25 aB
PPIZ B 0 Uniform stride bench_stencil.c:26 4B

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of oth

Activity 7:

Splittin
ta%k to %les

(intel) software

Activity 7

Purpose: Improve memory access pattern

Build a version with tiling

$ git checkout ver4d
$ make

Re-run Roofline analysis
Create a snapshot

Compare with previous activity

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

H Vectorization Advisor

\ectorization Advisor is a vectorization analysis tool
vectorization and characterize your memory vs. vec

& Program metrics
Elapsed Time 1.32s

Vector Instruction Set k SSE
Number of CPU Threads 4

Activity 6. Screenshot

(ly v | Cores: 2 @ v HY Default: FLOAT CARM (L1+NTS) v H!P Compare ¥ H # Guidance ¥ —

K Q

P

Sd0O149
Y

100
?
DP Vector Add Peak: 59.7 GFLOPS

70.46 GFLOPS (3.8x). 5 |
J597GFLOPS(B2x) = T LT

[loop in bench_stencilompparallel_for@27 at bench_stencil.c:33]
Vectorized (Body; Peeled; Remainder) SSE; processes Float32 data type(s)
Performance: 18.42 GFLOPS

L2 Loads+Stores Arithmetic Intensity: 0.33 FLOP/Byte

Self Time: 1.950 s

Self Elapsed Time: 0.510 s

Total Time: 1.950 s

Self GB/s: 55.0589

Total GB/s: 55.0589

4

Bound by computg
Memo! and memory roofs’ Compute bound”
FLOP/Byte (Arithmetic Intensity)
T

T ~ T

0.1 1 10
. Physical Cores: 2 L2 App Threads: 4 @ self Elapsed Time: 0.510 s Total Time: 1.950 s

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Activity 8:
Enablin
AVX51

(intel') Software

Activity 8

Purpose: Fix compilation options to use the highest available ISA

Build a version with new compilation flags
$ git checkout ver5

$ make clean && make
Re-run Survey analysis
Create a snapshot
Compare with previous activity

Review recommendations

Optimization Notice

Copyright © 2017, Intel Corporation
*Other names and brands r

Activity 8. Screenshots

B Vectorization Advisor H Vectorization Advisor
Vectorization Advisor is a vectorization analysis tool Vectorization Advisor is a vectorization analysis too
vectorization and characterize your memory vs. vec vectorization and characterize your memory vs. vec
& Program metrics © Program metrics

Elapsed Time 1.325 Elapsed Time 1.32s

Vector Instruction Set Kk SSE Vector Instruction Set AVX512

Number of CPU Threads 4

Number of CPU Threads 4

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity 8. Screenshots

(8] sessne s

Summary ©, Survey & Roofline ™ Refinement Reports

FILTER:| AllModules || AlSources || Loops And Functions || AUTheads «

g [+] [=] Function Call Sites and Loops ') v :’Sesr::;mance Gillline Type Why No Vectorization? Mertoies Luéps -
a Total Time Self Time w Vecto ... | Efficiency GainE... VL (V...
Bl 5" [loop in bench_stencilsomp$parallel_for@27 atben |] 1.6405- 1.640s B Vectorized (Body ... AVXS... 19.57x 16
5 [loop in main at main.c:20] (] @ 2Ineffective pe... 0.350s 8 0.350s@ Vectorized (Body; ... AVX512 12.45x 16
31 (5 [loop in bench_stencilsomp$parallel_for@27 at bench [] 1.760s BEEE 0.120s1 Scalar & inner loop was already ...
5§ _start O 2.370s [EEI 0.000s(Function
3/ § main @) 2.370s [I 0.000s(Function
51 (5 [loop in bench_stencil at bench_stencil.c:26] [J @ 1Assumed dep... 2.020s EEEER 0.000s(Scalar & vector dependence pre...
3 f bench_stencil O 2.020s IR | 0.000s(Function
5/ § bench_stencilsomp$parallel_for@27 O 1.760s R 0.000s(Function
5/ [loop in bench_stencilsomp$parallel _for@27 at bench D 1.760s N 0.000s(Scalar @ inner loop was already ...
515 [loop in bench_stencilsompsparallel_for@27 at bench| [] 1.760s MEEE | 0.000s Threaded (OpenMP) & inner loop was already ..
4 Source | Top Down I Code Analytics y mﬁ Why No
All Advisor-detectable issues: C++ | Fortran Ineffec
loop(s
o Ineffective peelediremainder loop(s) present Dis
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from peeled/remainder loops to Roofli

the loop body. s

Disable dynamic alignment

The compiler automatically peeled iterations from the vector loop into a scalar loop to align the vector loop with a particular memory reference;
however, this optimization may not be ideal. To possibly achieve better performance, disable automatic peel generation using the directive: #pragma
vector nodynamic_align

Example (original code) ®

#pragma vector nodynamic align
for (int i = 0; i < len; i++)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Activity 9:
Disabling
dynamic
alignment =7

(intel) software

Activity 9

Purpose: Exclude loop peel/reminder execution

Build a version with new compilation flags
$ git checkout ver6
$ make

Re-run Roofline analysis
Create a snapshot

Compare with previous activity

Optimization Notice

Copyright © 2017, Intel Corporation
*Other names and brands

Activity 9. Screenshots

[Il Elapsed time: 1.19s FILTER:| AllModules || AllSources || Loops And Functions || Al Threads |

[Summa %, Survey & Roofline B Refinement Reports
y ep.

,lﬁ' CustomizeVirewl.l o, I

WIELADVSOR 2019

2 RN ely v | cores: 2 @ + |[¥ Default: FLOAT CARM (L1+NTS) ||l Compare v || # Guidance + | =
3 0 :
Q
u
o
0
12}
100 -
e 35.9.GBls
. W iz DRA
10 met 89.5:GR/s - . 56.6.GBIs_.-360.GBIs
: 1-
4
Bound by compute l
Memor and memory roofs’ Compute bound®
FLOP/Byte (Arithmetic Intensity)
T T T
) 0.1 X 10
Physical Cores: 2 @ App Threads: 4 @ gelf Elapsed Time: 0.480 s Total Time: 1.700 s

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Activity 10:
Comparing
roofline charts _~

(intel) software

ACTIVITY 10

[a—

7 Guidance
3

Purpose: Graph roofline chart for | e o _
] - - oW memao evel relationshi 39 =
optimized version, and compare e e e rT——y
with initial chart I _ ° |+ _
i T Compared results x |-
Turn off “Show different memory | O cunen i
. o . 1 e | i -
level relationships” at Guidance tab — 7 A stencil- vero

Ready for comparison

Compare with results for versions stencil - ver6

of source code “ver3” and “verQ” sl
stencil - ver2

stencil - verl

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity 10. Screenshot

lIl Elapsed time: 1.19s FILTER:l All Modules v| I All Sources v| | Loops And Functions vIl All Threads v| I-ﬁ Customize View |I (o} |

Summary U Survey & Roofline | Wi Refinement Reports e N ummmzms

R Q M « el v l Cores: 2 9 + HY Default: FLOAT CARM (L1+NTS) ~ HT 3 Compared Results H # Guidance v ‘ =

AIndNs

SdO149

4

Bound by computg 1
Memor and memory roofs’ Compute bound®
FLOP/Byte (Arithmetic Intensity)
T

01 a 1 10

Physical Cores: 2 @ App Threads: 4 @ Self Elapsed Time: 0.480 s Total Time: 1.700 s

Speedup: ~12x

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

