A Quick Look at Hyperparameter Tuning

Misha Salim
Argonne Leadership Computing Facility
msalim@anl.gov
def run_model:
 batch_size=128,
 epochs=1,
 nunits1=16,
 nunits2=16,
 dropout=0.1,
 activation='relu',
 lr=0.01,
 momentum=0.0,
):
 ""
 Train MLP with 2 hidden layers on MNIST digit classification.
 Returns the minimization objective, which is (-1.0 * test_accuracy)
 ""

global x_train, x_test, y_train, y_test, num_classes
model = Sequential()
model.add(Dense(nunits1, activation=activation, input_shape=(784,)))
model.add(Dropout(dropout))
model.add(Dense(nunits2, activation=activation))
model.add(Dropout(dropout))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',
 optimizer=SGD(lr=lr, clipnorm=1., momentum=momentum),
 metrics=['accuracy'])

history = model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=0,
 validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)
return -1.0*score[1] # minimize -1.0*test_accuracy
Scikit-Optimize: Bayesian Optimization

Treat hyperparameters like magic rules of thumb?

Or optimize them in an "outer loop" over hyperparameters?

https://scikit-optimize.github.io/
Defining a Search Space

Consider tuning:

- **batch size** (64, 128, 256, or 512)
- **learning rate** (0.001 to 1.0)

```python
problem_dimensions = [
    (6, 9),  # log2 (batch_size)
    (-3.0, 0.0),  # log10 (learning rate)
]
def to_dict(x):
    return dict(batch_size=2**x[0], lr=10.0**x[1])
```
Create an Optimizer

Use ExtraTreesRegressor to predict test_accuracy from hyperparameters

```python
optimizer = skopt.Optimizer(
    problem_dimensions,
    "ET",
    acq_optimizer="sampling",
    n_initial_points=6,
)
```
Run Black-box Optimization Loop

1) Select new hyperparameters x from optimizer
2) Build, train, evaluate model with x
3) Update optimizer with objective

N = 20
for i in range(N):
 next_x = optimizer.ask()
 eprint(f"[{i+1}/N]", to_dict(next_x))
 objective = run_model(**to_dict(next_x))
 optimizer.tell(next_x, objective)
How do we parallelize this?

deeptools.readthedocs.io
A hyperparameter search (HPS) problem can be defined using three files with a HPS problem directory:

```
    hps_problem_directory/
    load_data.py
    model_run.py
    problem.py
```

We will illustrate the HPS problem definition using a regression example. We will use polynome function to generate training and test data and run a HPS to tune the hyperparameters of a simple neural network.

Create a problem directory

First, we will create a `hps_problem_directory` using `polynome2`.

```
bash
    mkdir polynome2
    cd polynome2
```

Create load_data.py
DeepHyper runs with Balsam Workflows

balsam.readthedocs.io
#!/bin/bash Job scripts run on MOM (Broadwell) nodes
myApp="/path/to/app --input="
#!/bin/bash

myApp="/path/to/app --input=

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

Job scripts run on MOM (Broadwell) nodes

Compute (KNL) Nodes

nid00001

nid00002

nid00003

nid00004

nid00005
#!/bin/bash

myApp="/path/to/app --input=

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

aprun -n 128 -N 64 $myApp input2 >& run2.out &
sleep 1

Job scripts run on MOM (Broadwell) nodes
#!/bin/bash

myApp="/path/to/app --input="

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

aprun -n 128 -N 64 $myApp input2 >& run2.out &
sleep 1

aprun -n 128 -N 64 $myApp input3 >& run3.out &
wait
What do we mean by workflow?

Sometimes a few scripts is enough

(100 runs) (1024 nodes) (12 hours) = 1.23 M node-hours

- Queue up to 20 script jobs
- Keep organized directory layout
- Compose shell commands with bash or Python scripting
What do we mean by workflow?

Sometimes a few scripts is enough

(100 runs) (1024 nodes) (12 hours) = 1.23 M node-hours

Large ensembles: start building more complex workflows

(9600 runs) (128 node) (1 hour) = 1.23 M node-hours

• Run jobs concurrently and one-after-another?
• Track which tasks are left to run?
• Handle timed-out runs?
Sometimes a few scripts is enough
(100 runs) (1024 nodes) (12 hours) = 1.23 M node-hours

Large ensembles: start building more complex workflows
(9600 runs) (128 node) (1 hour) = 1.23 M node-hours

Human effort scales unfavorably with # of runs
(12,288,000 runs) (1 node) (6 minutes) = 1.23 M node-hours
What do we mean by workflow?

Max 20 queued jobs

Lacking job packing / MPMD execution

Cumbersome error & timeout handling

Human effort scales unfavorably with # of runs

(12,288,000 runs) (1 node) (6 minutes) = 1.23 M node-hours

You either build workflow tools or adopt existing ones
Balsam
Automated scheduling and execution on ALCF Systems

• You tell Balsam about your jobs (Python API or command line)

• Balsam automates the rest: scheduling & execution

• no modification of user applications

• strong fault tolerance at task level

• Workflow status and project statistics available at-a-glance
Scaled to 91% of Theta, 1.2M+ tasks

Constructing and Navigating Polymorphic Landscapes of Molecular Crystals (PI: Alexandre Tkatchenko)

- User dumped a few million DFT runs into Balsam
- These ran over several jobs, totaling 7M+ core hours
- Up to 5 simultaneous Cobalt jobs running tasks from one centralized service
Balsam is a Python service that automates scheduling and concurrent, fault-tolerant execution of workflows in HPC environments. It is one of the easiest ways to set up a large computational campaign, where many instances of an application need to run across several days or weeks worth of batch jobs. You use a command line interface or Python API to control a Balsam database, which stores a task for each application instance. The Balsam launcher is then started inside a batch job to actually run the available work. The launcher automatically consumes tasks from the database, runs them in parallel across the available compute nodes, and records workflow state in the database.

module load balsam
Use Balsam for DeepHyper & other high-throughput workloads

- https://balsam.readthedocs.io
- https://deephyper.readthedocs.io