Science Use Case 3

Data driven materials discovery for dye sensitized solar cells

ATPESC
Aug 9, 2019

Álvaro V Mayagoitia
Argonne CPS
ALCF Acknowledgement
This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
My Summer project

“…make any problem a machine learning problem..”
4th Paradigm
Data-Intensive Scientific Discovery

History of Science, summarized by Jim Cray

Experiments

\[
\left(\frac{a}{a}\right)^2 = \frac{4\pi G \rho}{3} - K \frac{c^2}{a^2}
\]

1600 1950 2000

The 4th Paradigm
Data-Intensive Scientific Discovery

Chemical Compound Space

*Estimated Energetically Possible Organic Molecules

$>10^{60}$

*Nature, Insights, 2004
Chemical Compound Space

*Estimated Energetically Possible Organic Molecules >10^{60}

*Nature, Insights, 2004

Total number of water molecules in Earth: 10^{40}

Recent estimations say could exceed 10^{180}
Chemical Compound Space

*Estimated Energetically Possible Organic Molecules $>10^{60}$

Total number of water molecules in Earth: 10^{40}

How much do we know of the chemical space?

Compiled from experiments since the early 1800s: 10^8

Compilation:

- Computationally: eg. Harvard Clean Energy project
 - 10^7 Molecules
 - 10^7 CPU hrs
 - 10^9 Calculations

https://cepdb.molecularspace.org/
Substances in CAS registry (ACS)

10M of new substances per year in average

155M in Aug 2019

Are they any useful?
Materials Science Modeling

DFT publications in the last 35 years

- All DFT
- Substance related DFT

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

web of science queries

Computational Science Division
Evolution of DNA sequencing

June 2019: trillion bases a day
Renewable sources of energy

Solar
10^5 TW at earth surface
10,000 TW tech. value

Wind
14 TW

Energy needed
2007: 15 TW
2017: 18 TW
2050: ~30 TW
2100: ~50 TW

Biomass
5-7 TW

Geothermal
1.9 TW

Tide/Ocean
0.7 TW

The Third Industrial Revolution by Jeremy Rifkin, 2011
IRENA report 2018
Cost per watt-hour of Solar energy

1977 $76.67 \uparrow
2019 $0.10 \downarrow
Share of total US energy consumption by end-use sectors 2018

- Comercial: 18%
- Residencial: 20%
- Industrial: 33%
- Transportation: 29%
Carbon footprint per sector 2018

- Residential, commercial, and industry: 26%
- Transportation: 34%
- Electric power: 40%
Artificial Satellites

SF bus shelters

Electric golf carts

Food courts
Solar windows

Harris Theatre – Chicago [north Millenium park]
Solar windows

SwissTech Convention Center EPFL
Solar windows
dye-sensitized SOlar cell

Operational Mechanism

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO$_2$ films

Brian O'Regan* & Michael Grätzel†
Institute of Physical Chemistry, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

1991 Conversion efficiency: 7.9%
DYE-SENSITIZED SOLAR CELL

- Emerging technology
- Cost effective (good price-to-performance ratio) 😊
- Less efficient than Si-base cells 😞

Organometallic cells
- Nazeeruddin et al JACS 1993 (ruthenium-based) N719: 10.4% eff.
- Yella et al Science 2011 (Zn-porphyrin-based): 12.3 % eff.

Organic cells
- Daeneke et al Nat. chem. 2011 (carbazole-base): 7.5% eff.
ENCODING STRUCTURE-FUNCTION

Screening with TDDFT is costly

Rules:

\[\varepsilon_{LUMO} > E_{CT\text{TiO}_2} \quad \varepsilon_{HOMO} < E_{Electrolyte} \]
MAXIMIZING LIGHT HARVESTING EFFICIENCY

\[AM = \frac{L}{L_0} \approx \frac{1}{\cos z} \]

- \(L_0 \) = zenith path length
- \(L \) = path length to the atmosphere
- \(z \) = zenith angle

https://en.wikipedia.org/wiki/Air_mass_(solar_energy)
MAXIMIZING LIGHT HARVESTING EFFICIENCY

Maximizing light harvesting efficiency
Work flow

Experimental Data

• 30 years of Academic Literature

Data extraction

• Composition
• Properties
• Spectra

Theoretical Studies

• Geometry
• Physical properties
Funnel approach
Screening the chemical space

Funnel / Filters

- Size, spectra, charges
- Optoelectronics rules
- Semi-empirical Methods
- Density Functional Methods
- “Gold” standard methods

From 100 kilo molecules, which ones could be good dyes?
<table>
<thead>
<tr>
<th>Compound</th>
<th>Lamda max</th>
<th>Ext. Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triphenylmethane</td>
<td>480</td>
<td>4320</td>
</tr>
<tr>
<td>Indigo</td>
<td>613</td>
<td>320</td>
</tr>
<tr>
<td>anthraquinone</td>
<td>320</td>
<td>-----</td>
</tr>
</tbody>
</table>

How long would it take a person to get this information?
A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature

http://chemdataextractor.org

Figure 2 shows the UV-vis absorption spectra of 3a (red) and 3b (blue) in acetonitrile. The peak at...

NN 2 shows the **VBZ** absorption **NN** spectra of 3a (red) and 3b (blue) in **CC** acetonitrile.

NN 2 shows the **DT** UV-vis absorption **NN** spectra of 3a (red) and 3b (blue) in **IN** acetonitrile.

NN 2 shows the **VBZ** absorption **NN** spectra of 3a (red) and 3b (blue) in **CM** acetonitrile.

- **Type**: UV-vis absorption
- **Of**: 3a red, 3b blue
- **In**: acetonitrile

3a → 2-[2-[4-(dimethylamino)phenyl]diazenyl]-benzoic acid

3b → 2-[2-[4-(dipropylamino)phenyl]diazenyl]-benzoic acid
The dye 2-[2-[4-(dimethylamino)phenyl]diazenyl]-benzoic acid (3a) was added...

UV-vis spectra were recorded using an Agilent8453 diode array spectrophotometer.

```json
{
    "name": "2-[2-[4-(dimethylamino)phenyl]diazenyl]-benzoic acid",
    "label": "3a",
    "uvvis": [ {
        "solvent": "acetonitrile",
        "apparatus": "Agilent8453 diode array spectrophotometer",
        "peaks": [ {
            "wavelength": "448",
            "extinction": "29,000"
        } ]
    } ]
}
```

Figure 2: UV-vis absorption spectra of 3a in acetonitrile.

<table>
<thead>
<tr>
<th>Dye</th>
<th>λ_{max} (nm)</th>
<th>ε (M$^{-1}$ cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>448</td>
<td>29,000</td>
</tr>
<tr>
<td>3b</td>
<td>415</td>
<td>48,000</td>
</tr>
</tbody>
</table>
Informed high throughput computing

- **Global minima**
- **2D to 3D**

Force Fields
- Conformers
- Optimization
- Vibrations

Semiempiricals
- Geometry
- Excitations
- Multipoles

DFT
- Excitations
- Multipoles

Coupled Cluster
- Excitations
- Multipoles

Composite of codes:
- Babel
- Rdkit
- MOPAC
- ORCA
- NWChem
<table>
<thead>
<tr>
<th>Sample name</th>
<th>AFM parameters</th>
<th>XRR parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singly sensitized working electrodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 only</td>
<td>5 ± 1</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>8c only</td>
<td>5 ± 1</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>XS6 only</td>
<td>4.9 ± 0.4</td>
<td>6.0 ± 0.7</td>
</tr>
<tr>
<td>H3 only</td>
<td>9 ± 1</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>15 only</td>
<td>8 ± 2</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>Co-sensitized working electrodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 then 15</td>
<td>6 ± 2</td>
<td>10 ± 3</td>
</tr>
<tr>
<td>C1 and 15</td>
<td>7 ± 2</td>
<td>12 ± 4</td>
</tr>
<tr>
<td>H3 then C1</td>
<td>8 ± 2</td>
<td>16 ± 4</td>
</tr>
<tr>
<td>C1 and H3</td>
<td>5 ± 1</td>
<td>8 ± 3</td>
</tr>
<tr>
<td>8c then 15</td>
<td>6 ± 1</td>
<td>9 ± 2</td>
</tr>
<tr>
<td>8c and 15</td>
<td>4.6 ± 0.3</td>
<td>5.8 ± 0.4</td>
</tr>
<tr>
<td>H3 then 8c</td>
<td>5.5 ± 0.7</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>8c and H3</td>
<td>5.2 ± 0.7</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>XS6 then 15</td>
<td>6 ± 1</td>
<td>8 ± 2</td>
</tr>
<tr>
<td>XS6 and 15</td>
<td>7.8 ± 0.7</td>
<td>11 ± 1</td>
</tr>
<tr>
<td>XS6 then H3</td>
<td>5.5 ± 0.7</td>
<td>7.6 ± 0.8</td>
</tr>
<tr>
<td>XS6 and H3</td>
<td>5.3 ± 0.8</td>
<td>7 ± 1</td>
</tr>
</tbody>
</table>
Over fitting

Under fitting

Prediction + uncertainty
Gaussian Process

Quick introduction

Target function

\[y_i = f(x_i) + \epsilon_i \]

Noise function

\[\epsilon_i = \begin{bmatrix} y \\ y_\ast \end{bmatrix} \sim N \left(0, \begin{bmatrix} K & K^T \\ K^T & K_{**} \end{bmatrix} \right) \]

Given \(y \), the probability of \(y_\ast \) is:

\[y_\ast | y \sim N(K_\ast K^{-1} y, K_{**} - K_\ast K^{-1} K^T) \]

Prediction (or kriging)

\[\bar{y}_\ast = K_\ast K^{-1} y \]

Variation

\[\text{var}(y_\ast) = K_{**} - K_\ast K^{-1} K^T \]

Here* Means a point that we want to predict
Gaussian process

Covariance matrix

Covariance function

\[k(x, x') = \sigma_f^2 \exp \left[\frac{-(x - x')^2}{2l^2} \right] \]

Example: Square exponential

Covariance matrix

\[
K = \begin{bmatrix}
 k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\
 k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n)
\end{bmatrix}
\]
Molecular Fingerprint examples

Morgan Circular Fingerprint
Learn from data and feedback to experiments

Transition prediction

TDDFT gap prediction – We used Gaussian Process and Circular Morgan Fingerprints to predict the first transition of the a reduce scale TDDFT (sTDA//wB97X-D3/TZVP), we found that this value is predictable. Similar result found for HOMO-LUMO DFT gap.
Learn from data and feedback to experiments
Is this optically active?

Oscillator Strength prediction – Transitions could not be optically active. We can predict which of electronic transitions have an oscillator strength < 0.8 a.u. with an error 3%.

<table>
<thead>
<tr>
<th>True condition</th>
<th>Predicted condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>71.5</td>
</tr>
<tr>
<td>Non-Active</td>
<td>28.5</td>
</tr>
<tr>
<td>Active</td>
<td>2.7</td>
</tr>
<tr>
<td>Non-Active</td>
<td>97.3</td>
</tr>
</tbody>
</table>

Support:
- 428 (100%)
- 186 (0%)
Future work

• Extinction coefficients prediction could be improved adding extra information that could be slightly costly to get, such as orbital dipole moments or results from lower scale methods.
• Variational autoencoders (VAE) could help us to discover the most important molecular features of good dyes in the dataset. This is work in progress.
• Using Generative models to produce new molecules that optimize the physical chemical properties we want, and that are likely to exist (chemically stable) and can be synthetized in the lab.
• We will release a suit of code to simplify data driven materials research, with building blocks to tailor workflows for similar problems.