REINFORCEMENT LEARNING

SAMI KHAIRY
ILLINOIS TECH
OUTLINE

- Reinforcement learning, in a nutshell
- On-policy and Off-policy learning
- Q-learning
- Deep Q-Network (DQN)
- Policy Gradient Methods
WHAT IS REINFORCEMENT LEARNING?

- A branch of machine learning that attempts to formalize the nature of learning in human beings.
- An autonomous agent learns how to map situations to actions in an interactive environment, by trial and error.
- Environment gives the agent a reward signal, which guides the learning process.
- Based on the signal, agent reinforces the action, or avoids it at future encounters.

How to maximize my returns?
RL AS A MARKOV DECISION PROCESS

- Classical formalization of sequential decision making: actions influence immediate rewards, next states, and future rewards.
- **Def**: An MDP is a tuple \((S, \mathcal{A}, \mathcal{R}, p)\) such that environment dynamics are Markovian, \(p: S \times \mathcal{R} \times S \times \mathcal{A} \to [0,1]\), \(p(s', r|s, a) = \Pr\{S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a\}\).

- At each \(t\), agent observes environment state \(S_t\), selects action \(A_t\), receives reward \(R_{t+1}\), arrives at \(S_{t+1}\).
- **Trajectory**: \(S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \ldots\)
- **Return at** \(t\), \(G_t = \sum_{k=0}^{T} R_{t+k+1}\) or \(G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} = R_{t+1} + \gamma G_{t+1}\).
- **Objective**: maximize long-term expected total rewards by choice of a policy (strategy).
- In **Model-free RL**, \(p(s', r|s, a)\) are not known to the agent!
RL JARGONS

- **Policy** is a mapping from states to action probabilities, \(\pi(A_t = a|S_t = s) \).
- **State-Value function** of a state \(s \) under a policy \(\pi \), \(v_\pi (s) \), is the expected return starting in \(s \) and following \(\pi \) thereafter, \(v_\pi (s) = \mathbb{E}_\pi[G_t|S_t = s], \mathbb{E}_\pi \sim p(r|s) \).
- **Action-Value function** of taking action \(a \) in state \(s \) under a policy \(\pi \), \(q_\pi (s, a) \), is the expected return starting in \(s \), taking action \(a \), and following \(\pi \) thereafter, \(q_\pi (s, a) = \mathbb{E}_\pi[G_t|S_t = s, A_t = a] \).
- Policy \(\pi^* \) is optimal iff, \(v_{\pi^*} (s) \geq v_{\pi} (s), \forall \pi, s \).
- If agent learns the optimal \(v_\pi (s) \), or \(q_\pi (s, a) \), the optimal policy can be derived.
- **How to learn** \(v_{\pi^*} (s) \), or \(q_{\pi^*} (s, a) \) **given** \(p(s', r|s, a) \) **are not known**?
 \(\rightarrow \) Trade-off between exploration & exploitation.
OFF-POLICY VS ON-POLICY LEARNING

- **On-policy approach**: evaluate and improve the policy that is used to make decisions,
 - Does not reuse old data, sample inefficient, but more stable
 - Policy Gradient Algorithms: VPG, TRPO, PPO

- **Off-policy approach**: evaluate and improve a different policy from that used to generate the data,
 - Reuses old data, sample efficient, but no stability/performance guarantees
 - Q-learning, DQN, DDPG (~hybrid, actor-critic)

- **Exploration strategies**,
 - Exploring Starts: every episode starts in some state-action pair.
 - The Boltzmann approach: \(\pi(a|s) > 0, \forall a, s \), e.g., \(\pi(a|s) = \frac{\exp(Q(s,a)/\tau)}{\sum_{b \in A(s)} \exp(Q(s,b)/\tau)} \)
 - \(\epsilon \)-greedy: with probability \(\epsilon \) select a random action at random, with probability \(1 - \epsilon \) select the action with the maximal action-value.
TEMPORAL DIFFERENCE POLICY EVALUATION

- TD methods can learn directly from raw experience without a model of the environment’s dynamics.

- One-step TD updates the estimated State-Value function every time step, using sample updates based on the observed reward R_{t+1} and estimate of new state $V(S_{t+1})$. Learn on-the-fly,

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

- TD estimation error, $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$.

- α is step-size parameter, e.g. $\alpha_n(a) = \frac{1}{n}$ or $\alpha(a) = \zeta$ (very small constant)
TABULAR Q-LEARNING

- Q-learning directly approximates q_* independent of the policy being followed.
- Converges with probability 1 to π^* and $q_*(s, a)$ iff 1) all state-action pairs are visited an infinite number of times, 2) Policy converges in the limit to be greedy w.r.t q_π.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Not practical when state space is continuous or large.
 - **Solution**: maintain $q_\pi(s, a)$ as parameterized functions, adjust parameters to match observed returns.
 - **Learning** $q_\pi(s, a)$ from ‘samples’ involves function approximation techniques from supervised learning (e.g. regression, NNs).
DEEP Q-NETWORK (DQN)

- For discrete action space.
- Uses a DNN or CNN to learn the state-action value function $Q(s, a)$.
- For DNN training to converge, data samples should be \textit{i.i.d}. This is no longer the case in reinforcement learning, since samples are temporally-correlated trajectories.
- DQN mitigates this issue by creating an experience replay buffer to store transition samples, from which a batch of samples are picked uniformly and used for training the NN.
- The network is trained with another target Q-network, which will be used to compute the loss for every action during training. Weights are slowly updated and synchronized with the primary Q-network.
POLICY GRADIENT METHODS

- Q-learning/DQN: learn the action-value function \(q_{\pi}(s, a) \), from which the optimal policy is derived.
- In Policy Gradient Methods, adopt a parametrized policy that can select actions without consulting a state-value function (e.g., \(\theta \) weights/biases of DNN),

\[
\pi(a|s, \theta) = \Pr\{A_t = a|S_t = s, \theta_t = \theta\}
\]

- Objective: learn the parameters \(\theta \) of \(\pi(a|s, \theta) \) by maximizing a performance measure, \(J(\pi_{\theta}) \sim \) average rate of reward, and update parameters by gradient optimization, \(\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta})|_{\theta_k} \).
HANDS ON TUTORIAL

USEFUL RESOURCES

- OpenAI’s Baselines, Gym, Spinning Up in Deep RL, https://openai.com/resources/
- DeepMind’s Tensorflow RL, https://github.com/deepmind/trfl
THANK YOU